Discrete Geometry The Polynomial Method

Michael Tang

13th January 2021

Michael Tang Incidence Geometry

Rough Outline

- (1) Classical Polynomial Method and applications,
- (2) Overview of Tidor-Yu-Zhao, Joints of Varieties, 2020,
- (3/4) Technical Work:
 - Discrete continuity and monotonocity of construction,
 - New Vanishing Lemma and conclusion.

This is essentially self-contained, requiring only elementary arguments and basic linear algebra and facts about polynomials.

There will be A LOT of parameters floating around. If you realise that you have lost track, please interrupt me and ask!

Outline

- Discrete Problems
- Polynomial Method
 - Parameter Counting
 - Vanishing Lemma

Point - Line Incidence

Given a set of points and a set of lines in the plane, how many incidences can occur?

Theorem (Szemerédi–Trotter)

A collection of n points and m lines in the Euclidian plane can have at most

$$O(n^{\frac{2}{3}}m^{\frac{2}{3}}+n+m)$$

incidences.

Might have seen this in the Harmonic Analysis Reading Group last term.

- Let 𝔽 be a field (𝔅 will do), and let 𝔅 ⊂ 𝔅^d be a collection of lines.
- How many points of intersection *P* are there between pairs of lines in *L*?

Line - Line Incidence: The Joints Problem

How many incidences?

- When d = 2, the problem is trivial and $|\mathcal{P}| \leq |\mathcal{L}|^d$.
- The same trivial estimate holds for d > 2.
- In fact, this is sharp without any additional hypotheses.

So that the problem is not trivial, we only count special incidences.

Definition (Joint)

Let $\mathcal{L} \subset \mathbb{F}^d$ be a collection of lines. A point $p \in \mathbb{F}^d$ is a *joint* if it is a point of intersection of *d* lines whose directions span \mathbb{F}^d .

• The lines are "well spaced" at joints.

- It is no longer obvious whether or not we can construct examples where |P| ∼_d |L|^d.
- What should we expect to see on the RHS?

Loomis–Whitney Type Example

So called because we have three colours of lines, each colour having a fixed direction.

Theorem (Joints)

Let $\mathcal{L} \subset \mathbb{R}^d$ be a collection of lines. Then there are at most $O(|\mathcal{L}|^{\frac{d}{d-1}})$ joints.

- Guth, Katz (*d* = 3) 2008,
- Elekes, Kaplan, Sharir (simpler, d = 3) 2009,
- Quilodrán (simplest) 2009.

Lemma

The vector space $\mathbb{F}_n[x_1, \ldots, x_d]$ of *d*-variate polynomials over \mathbb{F} of degree at most *n* has dimension

$$\binom{n+d}{d}$$

Proof

Proof.

- Count the number of monomials.
- Same as number of *d*-tuples of non-negative integers whose sum is at most *n*.

Use the "stars and bars" argument to place *n* stars into *d* bins by using *d* bars. Stars in a common bin all lie to the immediate left of a bar. So |**|*||* corresponds to $x_2^2 x_3 \in \mathbb{F}[x_1, \ldots, x_4]$. There are (n + d) objects in total. By choosing which of these places are occupied by stars determines the locations of the bars and vice versa. Hence, the total number of monomials is $\binom{n+d}{d} = \binom{n+d}{n}$.

Corollary (Parameter Counting)

Given at most $\binom{n+d}{d}$ distinct points \mathcal{P} , we can find a nonzero polynomial of degree at most n which vanishes on \mathcal{P} .

Proof.

 \mathcal{P} imposes at most $\binom{n+d}{d} - 1$ conditions, but polynomials of degree at most n have $\binom{n+d}{d}$ degrees of freedom. Hence, there is a subspace of dimension at least 1 satisfying the constraints.

$$\binom{n+d}{d} = \frac{(n+d)!}{d!n!} = \frac{(n+d)\cdots(n+1)}{d!} \sim_d n^d$$

In other words, given a set of *N* distinct points $\mathcal{P} \subset \mathbb{F}^d$, we can find a non-zero polynomial *f* in *d*-variables such that f(p) = 0 for all $p \in \mathcal{P}$, such that deg $f \leq CN^{\frac{1}{d}}$ for some C = C(d).

Lemma (Vanishing)

Let $f \in \mathbb{F}[t]$ be a polynomial. If $|Z(f)| > \deg f$ then $f \equiv 0$.

Proof.

Contrapositive of the Fundamental Theorem of Algebra.

Lemma

There is a constant C = C(d) such that: For any $J' \subset J$, if $m \in \mathbb{N}$ is such that every $I \in \mathcal{L}$ which intersects J' is such that $|I \cap J'| \ge m$, then $|J'| \ge Cm^d$.

That is, joints configurations behave like the Loomis–Whitney style lattice.

Proof of Lemma (1/3).

WLOG, assume m > 1. For a contradiction, suppose otherwise. Then for any K > 0, we can find a collection of lines \mathcal{L} and subset of joints $J' \subset J$ satisfying the hypothesis for some m so that $|J'| < \frac{1}{K}m^d$.

Proof of Lemma (2/3).

By Parameter Counting, we can find a non-zero polynomial *f* so that f(p) = 0 for all $p \in J'$, and deg $f \leq \frac{D}{K^{\frac{1}{d}}}m$ for some D = D(d). Of all possible *f*, choose one which has the least degree. Since m > 1, J' is not co-linear and so deg f > 1. We are free to choose *K* large enough so that deg f < m. Let $p \in J'$, and $l \ni p$, then $|J' \cap l| \ge m$. So $|Z(f) \cap l| \ge m$. By the Vanishing Lemma, the one-variable polynomial $f|_l$ is identically 0. Hence $(\nabla f(p)) \cdot e(l) = (\nabla \cdot e(l))f(p) = 0$.

Proof of Lemma (3/3).

Since *p* is a joint, there are *d* linearly independent such lines *I*. Therefore, $\nabla f(p)$ is perpendicular to a spanning set of vectors, and so $\nabla f(p) = 0$. Since $p \in J'$ was arbitrary, every component of ∇f is zero at every $p \in J'$, but has strictly smaller degree than *f* and since deg f > 1, there is a component of ∇f which is not identically zero.

Proof of Joints Theorem (Quilodrán)

Proof.

Let $m = K|J|^{\frac{1}{d}}$, where *K* is chosen large enough, but depending only on *d*, so that $K^dC > 1$, where *C* is the constant from the Lemma. Let $\mathcal{L}' \subseteq \mathcal{L}$, and let $J' \subseteq J$ be the set of joints formed by \mathcal{L}' . If every line $l' \in \mathcal{L}'$ contains at least *m* points of *J*', then

$$|J'| \geq \textit{Cm}^{\textit{d}} = \textit{CK}^{\textit{d}}|J| > |J|,$$

a contradiction. Hence, for every pair \mathcal{L}', J' , there is a line $l' \in \mathcal{L}'$ that contains at most *m* elements of *J*'. So, by iteratively removing lines which contain fewer than *m* joints, we may cover *J* by at most $|\mathcal{L}|$ sets of at most *m* joints. By subadditivity of the counting measure,

$$|J| \leq m|\mathcal{L}| \leq K(d)|\mathcal{L}||J|^{\frac{1}{d}}.$$

Without going into detail, the cover into sets of at most m joints can be constructed using converse vanishing lemma – i.e. Fundamental Theorem of Algebra, or more generally, Bézout's Theorem.

Next Time

- How might we generalise the Joints Theorem.
 - Joint "multiplicity"
 - Lines \rightarrow planes?
 - Ines → curves?
 - Lines → varieties?
 - Single collection of algebraic objects \rightarrow many collections?
 - Does this geometric problem have a functional form?
- In what way do our tools fail for these generalisations?
- My remaining contribution: A digest of Tidor–Yu–Zhao (2020) which solves the problem in full generality.