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Rough Outline

(1) Classical Polynomial Method and applications,
(2) Overview of Tidor–Yu–Zhao, Joints of Varieties, 2020,

(3/4) Technical Work:
Discrete continuity and monotonocity of construction,
New Vanishing Lemma and conclusion.

This is essentially self-contained, requiring only elementary
arguments and basic linear algebra and facts about
polynomials.
There will be A LOT of parameters floating around. If you
realise that you have lost track, please interrupt me and ask!
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Outline

1 Introduction
Discrete Problems

2 Polynomial Method
Parameter Counting
Vanishing Lemma

3 Proof of Joints Theorem (Quilodrán)
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Point - Line Incidence

Given a set of points and a set of lines in the plane, how many
incidences can occur?
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Szemerédi–Trotter

Theorem (Szemerédi–Trotter)
A collection of n points and m lines in the Euclidian plane can
have at most

O(n
2
3 m

2
3 + n + m)

incidences.

Might have seen this in the Harmonic Analysis Reading Group
last term.

Michael Tang Incidence Geometry



Line - Line Incidence: The Joints Problem

Let F be a field (R will do), and let L ⊂ Fd be a collection of
lines.

How many points of intersection P are there between pairs
of lines in L?
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Line - Line Incidence: The Joints Problem

How many incidences?

Michael Tang Incidence Geometry



Line - Line Incidence: The Joints Problem

When d = 2, the problem is trivial and |P| ≤ |L|d .
The same trivial estimate holds for d > 2.
In fact, this is sharp without any additional hypotheses.
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Joints

So that the problem is not trivial, we only count special
incidences.

Definition (Joint)

Let L ⊂ Fd be a collection of lines. A point p ∈ Fd is a joint if it
is a point of intersection of d lines whose directions span Fd .

The lines are “well spaced” at joints.
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Joints

It is no longer obvious whether or not we can construct
examples where |P| ∼d |L|d .
What should we expect to see on the RHS?
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Loomis–Whitney Type Example
So called because we have three colours of lines, each colour
having a fixed direction.

|P| = 27 = 9
3
2 = (N/3)

3
2 ∼d N

3
2 .
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Joints Theorem

Theorem (Joints)

Let L ⊂ Rd be a collection of lines. Then there are at most
O(|L|

d
d−1 ) joints.

Guth, Katz (d = 3) 2008,
Elekes, Kaplan, Sharir (simpler, d = 3) 2009,
Quilodrán (simplest) 2009.
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Parameter Counting

Lemma
The vector space Fn[x1, . . . , xd ] of d-variate polynomials over F
of degree at most n has dimension(

n + d
d

)
.
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Proof

Proof.
Count the number of monomials.
Same as number of d-tuples of non-negative integers
whose sum is at most n.

Use the “stars and bars” argument to place n stars into d bins
by using d bars. Stars in a common bin all lie to the immediate
left of a bar. So | ∗ ∗| ∗ ||∗ corresponds to x2

2 x3 ∈ F[x1, . . . , x4].
There are (n + d) objects in total. By choosing which of these
places are occupied by stars determines the locations of the
bars and vice versa. Hence, the total number of monomials is(n+d

d

)
=

(n+d
n

)
.
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Consequences

Corollary (Parameter Counting)

Given at most
(n+d

d

)
distinct points P, we can find a nonzero

polynomial of degree at most n which vanishes on P.

Proof.

P imposes at most
(n+d

d

)
− 1 conditions, but polynomials of

degree at most n have
(n+d

d

)
degrees of freedom. Hence, there

is a subspace of dimension at least 1 satisfying the
constraints.

(
n + d

d

)
=

(n + d)!
d !n!

=
(n + d) · · · (n + 1)

d !
∼d nd

In other words, given a set of N distinct points P ⊂ Fd , we can
find a non-zero polynomial f in d-variables such that f (p) = 0
for all p ∈ P, such that deg f ≤ CN

1
d for some C = C(d).
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Vanishing Lemma

Lemma (Vanishing)

Let f ∈ F[t ] be a polynomial. If |Z (f )| > deg f then f ≡ 0.

Proof.
Contrapositive of the Fundamental Theorem of Algebra.
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Joints Theorem

Lemma
There is a constant C = C(d) such that: For any J ′ ⊂ J, if
m ∈ N is such that every l ∈ L which intersects J ′ is such that
|l ∩ J ′| ≥ m, then |J ′| ≥ Cmd .

That is, joints configurations behave like the Loomis–Whitney
style lattice.

Proof of Lemma (1/3).
WLOG, assume m > 1. For a contradiction, suppose
otherwise. Then for any K > 0, we can find a collection of lines
L and subset of joints J ′ ⊂ J satisfying the hypothesis for some
m so that |J ′| < 1

K md .
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Joints Theorem

Proof of Lemma (2/3).
By Parameter Counting, we can find a non-zero polynomial f so
that f (p) = 0 for all p ∈ J ′, and deg f ≤ D

K
1
d

m for some

D = D(d). Of all possible f , choose one which has the least
degree. Since m > 1, J ′ is not co-linear and so deg f > 1. We
are free to choose K large enough so that deg f < m. Let
p ∈ J ′, and l 3 p, then |J ′ ∩ l | ≥ m. So |Z (f ) ∩ l | ≥ m. By the
Vanishing Lemma, the one-variable polynomial f |l is identically
0. Hence (∇f (p)) · e(l) = (∇ · e(l))f (p) = 0.
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Joints Theorem

Proof of Lemma (3/3).
Since p is a joint, there are d linearly independent such lines l .
Therefore, ∇f (p) is perpendicular to a spanning set of vectors,
and so ∇f (p) = 0. Since p ∈ J ′ was arbitrary, every component
of ∇f is zero at every p ∈ J ′, but has strictly smaller degree
than f and since deg f > 1, there is a component of ∇f which is
not identically zero.
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Proof of Joints Theorem (Quilodrán)

Proof.

Let m = K |J|
1
d , where K is chosen large enough, but

depending only on d , so that K dC > 1, where C is the constant
from the Lemma. Let L′ ⊆ L, and let J ′ ⊆ J be the set of joints
formed by L′. If every line l ′ ∈ L′ contains at least m points of
J ′, then

|J ′| ≥ Cmd = CK d |J| > |J|,

a contradiction. Hence, for every pair L′, J ′, there is a line
l ′ ∈ L′ that contains at most m elements of J ′. So, by iteratively
removing lines which contain fewer than m joints, we may cover
J by at most |L| sets of at most m joints. By subadditivity of the
counting measure,

|J| ≤ m|L| ≤ K (d)|L||J|
1
d .
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Remark

Without going into detail, the cover into sets of at most m joints
can be constructed using converse vanishing lemma – i.e.
Fundamental Theorem of Algebra, or more generally, Bézout’s
Theorem.
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Next Time

How might we generalise the Joints Theorem.
Joint “multiplicity”
Lines→ planes?
Lines→ curves?
Lines→ varieties?
Single collection of algebraic objects→ many collections?
Does this geometric problem have a functional form?

In what way do our tools fail for these generalisations?
My remaining contribution: A digest of Tidor–Yu–Zhao
(2020) which solves the problem in full generality.
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