Discrete Geometry
 The Polynomial Method

Michael Tang

13th January 2021

Rough Outline

(1) Classical Polynomial Method and applications,
(2) Overview of Tidor-Yu-Zhao, Joints of Varieties, 2020,
(3/4) Technical Work:

- Discrete continuity and monotonocity of construction,
- New Vanishing Lemma and conclusion.

This is essentially self-contained, requiring only elementary arguments and basic linear algebra and facts about polynomials.
There will be A LOT of parameters floating around. If you realise that you have lost track, please interrupt me and ask!

Outline

(9) Introduction

- Discrete Problems
(2) Polynomial Method
- Parameter Counting
- Vanishing Lemma
(3) Proof of Joints Theorem (Quilodrán)

Point - Line Incidence

Given a set of points and a set of lines in the plane, how many incidences can occur?

Szemerédi-Trotter

Theorem (Szemerédi-Trotter)

A collection of n points and m lines in the Euclidian plane can have at most

$$
O\left(n^{\frac{2}{3}} m^{\frac{2}{3}}+n+m\right)
$$

incidences.

Might have seen this in the Harmonic Analysis Reading Group last term.

Line - Line Incidence: The Joints Problem

- Let \mathbb{F} be a field (\mathbb{R} will do), and let $\mathcal{L} \subset \mathbb{F}^{d}$ be a collection of lines.
- How many points of intersection \mathcal{P} are there between pairs of lines in \mathcal{L} ?

Line - Line Incidence: The Joints Problem

How many incidences?

Line - Line Incidence: The Joints Problem

- When $d=2$, the problem is trivial and $|\mathcal{P}| \leq|\mathcal{L}|^{d}$.
- The same trivial estimate holds for $d>2$.
- In fact, this is sharp without any additional hypotheses.

Joints

So that the problem is not trivial, we only count special incidences.

Definition (Joint)

Let $\mathcal{L} \subset \mathbb{F}^{d}$ be a collection of lines. A point $p \in \mathbb{F}^{d}$ is a joint if it is a point of intersection of d lines whose directions span \mathbb{F}^{d}.

- The lines are "well spaced" at joints.

Joints

- It is no longer obvious whether or not we can construct examples where $|\mathcal{P}| \sim_{d}|\mathcal{L}|^{d}$.
- What should we expect to see on the RHS?

Loomis-Whitney Type Example

So called because we have three colours of lines, each colour having a fixed direction.

Joints Theorem

Theorem (Joints)

Let $\mathcal{L} \subset \mathbb{R}^{d}$ be a collection of lines. Then there are at most $O\left(|\mathcal{L}|^{\frac{d}{d-1}}\right)$ joints.

- Guth, Katz $(d=3) 2008$,
- Elekes, Kaplan, Sharir (simpler, $d=3$) 2009,
- Quilodrán (simplest) 2009.

Parameter Counting

Lemma

The vector space $\mathbb{F}_{n}\left[x_{1}, \ldots, x_{d}\right]$ of d-variate polynomials over \mathbb{F} of degree at most n has dimension

$$
\binom{n+d}{d}
$$

Proof

Proof.

- Count the number of monomials.
- Same as number of d-tuples of non-negative integers whose sum is at most n.
Use the "stars and bars" argument to place n stars into d bins by using d bars. Stars in a common bin all lie to the immediate left of a bar. So $|* *| * \| *$ corresponds to $x_{2}^{2} x_{3} \in \mathbb{F}\left[x_{1}, \ldots, x_{4}\right]$. There are $(n+d)$ objects in total. By choosing which of these places are occupied by stars determines the locations of the bars and vice versa. Hence, the total number of monomials is $\binom{n+d}{d}=\binom{n+d}{n}$.

Consequences

Corollary (Parameter Counting)

Given at most $\binom{n+d}{d}$ distinct points \mathcal{P}, we can find a nonzero polynomial of degree at most n which vanishes on \mathcal{P}.

Proof.

\mathcal{P} imposes at most $\binom{n+d}{d}-1$ conditions, but polynomials of degree at most n have $\binom{n+d}{d}$ degrees of freedom. Hence, there is a subspace of dimension at least 1 satisfying the constraints.

$$
\binom{n+d}{d}=\frac{(n+d)!}{d!n!}=\frac{(n+d) \cdots(n+1)}{d!} \sim_{d} n^{d}
$$

In other words, given a set of N distinct points $\mathcal{P} \subset \mathbb{F}^{d}$, we can find a non-zero polynomial f in d-variables such that $f(p)=0$ for all $p \in \mathcal{P}$, such that $\operatorname{deg} f \leq C N^{\frac{1}{d}}$ for some $C=C(d)$.

Vanishing Lemma

Lemma (Vanishing)

Let $f \in \mathbb{F}[t]$ be a polynomial. If $|Z(f)|>\operatorname{deg} f$ then $f \equiv 0$.

Proof.

Contrapositive of the Fundamental Theorem of Algebra.

Joints Theorem

Lemma

There is a constant $C=C(d)$ such that: For any $J^{\prime} \subset J$, if $m \in \mathbb{N}$ is such that every $I \in \mathcal{L}$ which intersects J^{\prime} is such that $\left|I \cap J^{\prime}\right| \geq m$, then $\left|J^{\prime}\right| \geq C m^{d}$.

That is, joints configurations behave like the Loomis-Whitney style lattice.

Proof of Lemma (1/3).

WLOG, assume $m>1$. For a contradiction, suppose otherwise. Then for any $K>0$, we can find a collection of lines \mathcal{L} and subset of joints $J^{\prime} \subset J$ satisfying the hypothesis for some m so that $\left|J^{\prime}\right|<\frac{1}{K} m^{d}$.

Joints Theorem

Proof of Lemma (2/3).

By Parameter Counting, we can find a non-zero polynomial f so that $f(p)=0$ for all $p \in J^{\prime}$, and $\operatorname{deg} f \leq \frac{D}{k^{\frac{1}{d}}} m$ for some
$D=D(d)$. Of all possible f, choose one which has the least degree. Since $m>1, J^{\prime}$ is not co-linear and so $\operatorname{deg} f>1$. We are free to choose K large enough so that $\operatorname{deg} f<m$. Let $p \in J^{\prime}$, and $I \ni p$, then $\left|J^{\prime} \cap I\right| \geq m$. So $|Z(f) \cap I| \geq m$. By the Vanishing Lemma, the one-variable polynomial $\left.f\right|_{\|}$is identically 0 . Hence $(\nabla f(p)) \cdot e(I)=(\nabla \cdot e(I)) f(p)=0$.

Joints Theorem

Proof of Lemma (3/3).

Since p is a joint, there are d linearly independent such lines l. Therefore, $\nabla f(p)$ is perpendicular to a spanning set of vectors, and so $\nabla f(p)=0$. Since $p \in J^{\prime}$ was arbitrary, every component of ∇f is zero at every $p \in J^{\prime}$, but has strictly smaller degree than f and since $\operatorname{deg} f>1$, there is a component of ∇f which is not identically zero.

Proof of Joints Theorem (Quilodrán)

Proof.

Let $m=K|J|^{\frac{1}{d}}$, where K is chosen large enough, but depending only on d, so that $K^{d} C>1$, where C is the constant from the Lemma. Let $\mathcal{L}^{\prime} \subseteq \mathcal{L}$, and let $J^{\prime} \subseteq J$ be the set of joints formed by \mathcal{L}^{\prime}. If every line $I^{\prime} \in \mathcal{L}^{\prime}$ contains at least m points of J^{\prime}, then

$$
\left|J^{\prime}\right| \geq C m^{d}=C K^{d}|J|>|J|
$$

a contradiction. Hence, for every pair $\mathcal{L}^{\prime}, J^{\prime}$, there is a line $I^{\prime} \in \mathcal{L}^{\prime}$ that contains at most m elements of J^{\prime}. So, by iteratively removing lines which contain fewer than m joints, we may cover J by at most $|\mathcal{L}|$ sets of at most m joints. By subadditivity of the counting measure,

$$
|J| \leq m|\mathcal{L}| \leq K(d)|\mathcal{L}||J|^{\frac{1}{d}}
$$

Without going into detail, the cover into sets of at most m joints can be constructed using converse vanishing lemma - i.e. Fundamental Theorem of Algebra, or more generally, Bézout's Theorem.

Next Time

- How might we generalise the Joints Theorem.
- Joint "multiplicity"
- Lines \rightarrow planes?
- Lines \rightarrow curves?
- Lines \rightarrow varieties?
- Single collection of algebraic objects \rightarrow many collections?
- Does this geometric problem have a functional form?
- In what way do our tools fail for these generalisations?
- My remaining contribution: A digest of Tidor-Yu-Zhao (2020) which solves the problem in full generality.

