Kakeya maximal function conjecture

Jean Burnazyan

February 14, 2021

Basic definitions

For a set $E \subseteq \mathbb{R}^{n}$, define by E_{δ} the δ-neighbourhood of E, that is

$$
E_{\delta}=\left\{x \in R^{n}: \operatorname{dist}(x, E) \leq \delta\right\}
$$

Definition (Minkowski dimension)

Let E be a compact subset of \mathbb{R}^{n}. The Minkowski dimension of E is defined as:

$$
\operatorname{dim}_{M}(E)=n+\lim _{\delta \rightarrow 0} \frac{\log \left|E_{\delta}\right|}{\log \delta^{-1}}
$$

Definition (Hausdorff dimension)

Define the Hausdorff d-measure \mathscr{H}^{d} of set $E \subseteq \mathbb{R}^{n}$ by

$$
\mathscr{H}^{d}(E)=\lim _{\epsilon \rightarrow 0} \mathscr{H}_{\epsilon}^{d}(E)
$$

where $\mathscr{H}_{\epsilon}^{d}=\inf \left\{\sum_{j} r\left(B_{j}\right)^{d}: r\left(B_{j}\right) \leq \epsilon, E \subseteq \bigcup_{j} B_{j}\right\}$.
Then we say that E has Hausdorff dimension d if $\mathscr{H}^{d+\epsilon}(E)=0$ and $\mathscr{H}^{d-\epsilon}(E)=\infty$ for any $\epsilon>0$.

Kakeya conjectures

Definition.

A Kakeya set is a subset of \mathbb{R}^{n} which has a unit line segment in every direction.

Kakeya set conjecture.

All Kakeya sets in \mathbb{R}^{n} have Hausdorff and Minkowski dimension n.

Kakeya maximal operator conjecture.

Let $\left\{T_{\omega}\right\}_{\omega \in \Omega}$ be any collection of tubes of equal sizes and $\frac{1}{\delta}$ eccentricity, whose orientation are δ-separated. Then for each $\epsilon>0$

$$
\begin{equation*}
\left\|\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right\|_{\frac{n}{n-1}} \lesssim \delta^{-\epsilon}\left(\sum_{\omega \in \Omega}\left|T_{\omega}\right|\right)^{\frac{n-1}{n}} \tag{1}
\end{equation*}
$$

Some observations.

Notice that when T_{ω} are disjoint, the left-hand side equals to the right-hand side in (1) except for the $\delta^{-\epsilon}$ term.

Let us look at the quantity α, which measures the overlap of the tubes:

$$
\left|\bigcup_{\omega \in \Omega} T_{\omega}\right|=\alpha \sum_{\omega \in \Omega}\left|T_{\omega}\right| \quad \text { for } \alpha \in(0,1]
$$

We have

$$
\begin{aligned}
\sum_{\omega \in \Omega}\left|T_{\omega}\right| & =\left\|\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right\|_{1} \\
& \leq\left\|\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right\|_{\frac{n}{n-1}}\left|\bigcup_{\omega \in \Omega} T_{\omega}\right|^{1 / n} \\
& \lesssim \delta^{-\epsilon}\left(\sum_{\omega \in \Omega}\left|T_{\omega}\right|\right)^{\frac{n-1}{n}}\left(\alpha \sum_{\omega \in \Omega}\left|T_{\omega}\right|\right)^{1 / n}
\end{aligned}
$$

i.e. $\delta^{\epsilon} \lesssim \alpha$.

More generally, we will use the notation $A \lesssim B$ if $A \leq C_{\epsilon} \delta^{-\epsilon} B$ for any $\epsilon>0$ and $A \approx B$ if $A \lesssim B$ and $B \lesssim A$. So that we now have

$$
\begin{equation*}
\alpha \approx 1 \tag{2}
\end{equation*}
$$

Theorem

The Kakeya maximal operator conjecture implies the Kakeya set conjecture.

Proof (1/5).

Minkowski: Let K be a Kakeya set in \mathbb{R}^{n}. Then K_{δ} contains a $\delta \times 1$ tube in every direction and there will certainly be $C_{n} \delta^{1-n}$ many tubes in K_{δ} that are δ-separated in direction. Thus, by (2) we get that

$$
\left|K_{\delta}\right| \geq\left|\bigcup_{\omega \in \Omega} T_{\omega}\right| \geq C_{\epsilon}^{-1} \delta^{\epsilon} \sum_{\omega \in \Omega}\left|T_{\omega}\right| \geq C_{\epsilon}^{-1} \delta^{\epsilon} C_{n} \delta^{1-n}\left|T_{\omega}\right| \gtrsim \delta^{\epsilon}
$$

and consequently

$$
\operatorname{dim}_{M}(K)=n+\lim _{\delta \rightarrow 0} \frac{\log \left|E_{\delta}\right|}{\log \delta^{-1}} \geq n-\epsilon
$$

for each $\epsilon>0$. So that $\operatorname{dim}_{M}(K)=n$.

Proof (2/5).

Hausdorff: We want to show that $\mathscr{H}^{n-\epsilon_{0}}(K)=\infty$ for each $\epsilon_{0}>0$. More specifically we want to show that if we cover K by a collection of balls B of radius at most 2^{-j}, then

$$
\begin{equation*}
\sum_{B} r(B)^{n-\epsilon_{0}}>c_{j} \tag{3}
\end{equation*}
$$

where $c_{j} \rightarrow \infty$ as $j \rightarrow \infty$.
Let $\epsilon_{0}>0, j \gg 0$ and take a covering of E as above. Suppose for contradiction that

$$
\sum_{B} r(B)^{n-\epsilon_{0}} \lesssim c_{j}
$$

WLOG we can assume that each ball has radius 2^{-i} with $i \geq j$ and that each ball intersects a bounded number of balls of the same size.

Proof (3/5).

For each $\omega \in \mathbb{S}^{n-1}$, let l_{ω} be the corresponding unit line segment in K and $\mathscr{H}_{\mid l_{\omega}}^{1}$ be the associated Lebesgue measure. Averaging over all these we obtain a measure $\mu:=\int_{\mathbb{S}^{n-1}} \mathscr{H}_{\mid l \omega}^{1} d \omega$ on K with total mass 1 . In particular,

$$
\sum_{B} \mu(B) \geq \mu\left(\bigcup_{B} B\right)=1
$$

so there is $k \geq j$ such that

$$
\begin{equation*}
\sum_{B: r(B)=2^{-k}} \mu(B) \geq k^{-2} \tag{4}
\end{equation*}
$$

Fix such k and let $\delta=2^{-k}$. Now throw away all balls B from our collection other than the ones with radius δ. Next, we have

$$
\mathscr{H}^{1}\left(I_{\omega} \cap B\right) \lesssim \delta^{1-n} \int_{B} \mathbb{1}_{\omega}(x) d x
$$

where T_{ω} is the $\delta \times 1$ tube centred around the line I_{ω}. Thus

$$
\begin{equation*}
\mu(B) \lesssim \delta^{1-n} \int_{B}\left(\int_{\mathbb{S}^{n-1}} \mathbb{1}_{T_{\omega}} d \omega\right) d x \tag{5}
\end{equation*}
$$

Proof (4/5).

Using (4) together with $1 \approx k^{-2}$ and the fact that the balls are essentially disjoint (bounded number of intersections),

$$
1 \lesssim \mu\left(\bigcup_{B} B\right) \lesssim \delta^{1-n} \int_{\bigcup_{B} B}\left(\int_{\mathbb{S}^{n-1}} \mathbb{1}_{T_{\omega}} d \omega\right) d x
$$

We then can choose a δ-separated subset of directions $\Omega \subseteq \mathbb{S}^{n-1}$ with $|\Omega| \sim \delta^{1-n}$ (e.g. maximally δ-separated tubes) such that

$$
1 \lesssim \int_{\bigcup_{B} B}\left(\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right) d x .
$$

By Hölder's inequality

$$
\int_{\bigcup_{B} B}\left(\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right) d x \leq\left\|\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right\|_{\frac{n}{n-1}}\left|\bigcup_{B} B\right|^{1 / n}
$$

Proof (5/5).

The maximal function estimate then yields

$$
1 \lesssim\left(\sum_{\omega \in \Omega}\left|T_{\omega}\right|\right)^{\frac{n-1}{n}}\left|\bigcup_{B} B\right|^{1 / n}
$$

This gives us

$$
\left|\bigcup_{B} B\right| \approx 1 .
$$

As B s have bounded overlap, the estimate above forces the number of balls to be $\approx \delta^{-n}$. But then

$$
\sum_{B: r(B)=\delta} r(B)^{n-\epsilon_{0}} \approx \delta^{-n} \delta^{n-\epsilon_{0}}=\delta^{-\epsilon_{0}} \gg 1
$$

Kakeya maximal operator

Kakeya maximal function.

For any $\delta \in(0,1)$ and $\omega \in \mathbb{S}^{n-1}$ and $a \in \mathbb{R}^{n}$, let

$$
T_{\omega}^{\delta}(a)=\left\{x \in \mathbb{R}^{n}:|(x-a) \cdot \omega| \leq 1 / 2,|(x-a)-\omega[(x-a) \cdot \omega]| \leq \delta\right\}
$$

For a function $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, we define the Kakeya maximal function of width δ by setting $\mathcal{K}_{\delta} f: \mathbb{S}^{n-1} \rightarrow[0, \infty]$

$$
\mathcal{K}_{\delta} f(\omega)=\sup _{a \in \mathbb{R}^{n}} \frac{1}{\left|T_{\omega}^{\delta}(a)\right|} \int_{T_{\omega}^{\delta}(a)}|f(y)| d y
$$

Basic facts:

- $\left\|\mathcal{K}_{\delta} f\right\|_{L^{\infty}\left(\mathbb{S}^{n-1}\right)} \leq\|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}$
- $\left\|\mathcal{K}_{\delta} f\right\|_{L^{\infty}\left(\mathbb{S}^{n-1}\right)} \lesssim \delta^{1-n}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}$
- For $1 \leq q \leq \infty$, and $p<\infty$, no other bound of the form

$$
\left\|\mathcal{K}_{\delta} f\right\|_{L^{q}\left(\mathbb{S}^{n-1}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

holds with constant independent of δ.

- For any $\epsilon>0$ and $1 \leq p<\infty$

$$
\left\|\mathcal{K}_{\delta} f\right\|_{L^{p}\left(\mathbb{S}^{n-1}\right)} \lesssim_{\epsilon, p} \delta^{-\epsilon}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

fails for $p<n$.

Kakeya maximal operator conjecture 2.

For all $\epsilon>0, n \in \mathbb{N}$ and $\delta \in(0,1)$ and $f \in L^{n}\left(\mathbb{R}^{n}\right)$ we have

$$
\left\|\mathcal{K}_{\delta} f\right\|_{L^{n}\left(\mathbb{S}^{n-1}\right)} \lesssim_{\epsilon, n} \delta^{-\epsilon}\|f\|_{L^{n}\left(\mathbb{R}^{n}\right)} .
$$

Proposition.

Let $\epsilon>0$ and $\delta \in(0,1)$. Then

$$
\left\|\mathcal{K}_{\delta} f\right\|_{L^{n}\left(\mathbb{S}^{n-1}\right)} \lesssim_{\epsilon, n} \delta^{-\epsilon}\|f\|_{L^{n}\left(\mathbb{R}^{n}\right)}
$$

if and only if

$$
\left\|\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right\|_{\frac{n}{n-1}} \lesssim \delta^{-\epsilon}\left(\delta^{n-1} \# \Omega\right)^{\frac{n-1}{n}}
$$

for all collections of δ-separated δ tubes $\left\{T_{\omega}\right\} \omega \in \Omega$.

Proof.

(\Rightarrow) Let $n^{\prime}=\frac{n}{n-1}$ and take $g \in L^{n^{\prime}}\left(\mathbb{R}^{n}\right)$ with norm one. Then

$$
\begin{aligned}
\int \sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}} g & =\sum_{\omega \in \Omega} \int_{T_{\omega}} g \lesssim \sum_{\omega \in \Omega} \delta^{n-1}\left(\mathcal{K}_{\delta} g\right)(\omega) \\
& \lesssim \int_{\omega \in \Omega} B(\omega, \delta) \\
& \left(\mathcal{K}_{\delta} g\right)(e) d \sigma(e) \\
& \leq\left\|\mathcal{K}_{\delta} g\right\|_{L^{n}\left(\mathbb{S}^{n-1}\right)}\left|\bigcup_{\omega \in \Omega} B(\omega, \delta)\right|^{1 / n^{\prime}} \\
& \lesssim \delta^{-\epsilon} M\left(\# \Omega \delta^{n-1}\right)^{\frac{n-1}{n}}
\end{aligned}
$$

Now take supremum over g with one norm to get the result.
[1] T. Tao: Restriction theorems and applications, available at https://www.math.ucla.edu/~tao/254b.1.99s/ .
[2] O. Saari: Advanced topics in analysis: Geometric Fourier Analysis, available at https://www.math.uni-
bonn.de/people/saari/teaching/luentomoniste_fourier.pdf

