Kakeya maximal function conjecture

Jean Burnazyan

February 14, 2021

Basic definitions

For a set $E \subseteq \mathbb{R}^n$, define by E_δ the δ -neighbourhood of E, that is

$$E_{\delta} = \{x \in R^n : dist(x, E) \leq \delta\}.$$

Definition (Minkowski dimension)

Let *E* be a compact subset of \mathbb{R}^n . The Minkowski dimension of *E* is defined as:

$$dim_M(E) = n + \lim_{\delta o 0} rac{\log |E_\delta|}{\log \delta^{-1}}$$

Definition (Hausdorff dimension)

Define the Hausdorff *d*-measure \mathscr{H}^d of set $E \subseteq \mathbb{R}^n$ by

$$\mathscr{H}^{d}(E) = \lim_{\epsilon \to 0} \mathscr{H}^{d}_{\epsilon}(E)$$

where $\mathscr{H}^{d}_{\epsilon} = \inf \left\{ \sum_{j} r(B_{j})^{d} : r(B_{j}) \leq \epsilon, E \subseteq \bigcup_{j} B_{j} \right\}.$ Then we say that *E* has Hausdorff dimension *d* if $\mathscr{H}^{d+\epsilon}(E) = 0$ and $\mathscr{H}^{d-\epsilon}(E) = \infty$ for any $\epsilon > 0$.

Definition.

A Kakeya set is a subset of \mathbb{R}^n which has a unit line segment in every direction.

Kakeya set conjecture.

All Kakeya sets in \mathbb{R}^n have Hausdorff and Minkowski dimension n.

Kakeya maximal operator conjecture.

Let $\{T_{\omega}\}_{\omega\in\Omega}$ be any collection of tubes of equal sizes and $\frac{1}{\delta}$ eccentricity, whose orientation are δ -separated. Then for each $\epsilon > 0$

$$\left\|\sum_{\omega\in\Omega}\mathbb{1}_{T_{\omega}}\right\|_{\frac{n}{n-1}}\lesssim\delta^{-\epsilon}\left(\sum_{\omega\in\Omega}|T_{\omega}|\right)^{\frac{n-1}{n}}\tag{1}$$

Some observations.

Notice that when T_{ω} are disjoint, the left-hand side equals to the right-hand side in (1) except for the $\delta^{-\epsilon}$ term.

Let us look at the quantity α , which measures the overlap of the tubes:

$$|\bigcup_{\omega\in\Omega} \mathcal{T}_{\omega}| = lpha \sum_{\omega\in\Omega} |\mathcal{T}_{\omega}| \qquad ext{for } lpha \in (0,1]$$

We have

$$\begin{split} \sum_{\omega \in \Omega} |\mathcal{T}_{\omega}| &= \left\| \sum_{\omega \in \Omega} \mathbb{1}_{\mathcal{T}_{\omega}} \right\|_{1} \\ &\leq \left\| \sum_{\omega \in \Omega} \mathbb{1}_{\mathcal{T}_{\omega}} \right\|_{\frac{n}{n-1}} \left| \bigcup_{\omega \in \Omega} \mathcal{T}_{\omega} \right|^{1/n} \\ &\lesssim \delta^{-\epsilon} \left(\sum_{\omega \in \Omega} |\mathcal{T}_{\omega}| \right)^{\frac{n-1}{n}} \left(\alpha \sum_{\omega \in \Omega} |\mathcal{T}_{\omega}| \right)^{1/n} \end{split}$$

i.e. $\delta^{\epsilon} \lesssim \alpha$.

More generally, we will use the notation $A \lesssim B$ if $A \leq C_{\epsilon} \delta^{-\epsilon} B$ for any $\epsilon > 0$ and $A \approx B$ if $A \lesssim B$ and $B \lesssim A$. So that we now have

 $\alpha \approx 1.$

Theorem

The Kakeya maximal operator conjecture implies the Kakeya set conjecture.

Proof (1/5).

Minkowski: Let K be a Kakeya set in \mathbb{R}^n . Then K_{δ} contains a $\delta \times 1$ tube in every direction and there will certainly be $C_n \delta^{1-n}$ many tubes in K_{δ} that are δ -separated in direction. Thus, by (2) we get that

$$|\mathcal{K}_{\delta}| \geq \left| \bigcup_{\omega \in \Omega} \mathcal{T}_{\omega} \right| \geq C_{\epsilon}^{-1} \delta^{\epsilon} \sum_{\omega \in \Omega} |\mathcal{T}_{\omega}| \geq C_{\epsilon}^{-1} \delta^{\epsilon} C_{n} \delta^{1-n} |\mathcal{T}_{\omega}| \gtrsim \delta^{\epsilon}$$

and consequently

$$dim_M(\mathcal{K}) = n + \lim_{\delta \to 0} \frac{\log |\mathcal{E}_{\delta}|}{\log \delta^{-1}} \ge n - \epsilon$$

for each $\epsilon > 0$. So that $dim_M(K) = n$.

Proof (2/5).

Hausdorff: We want to show that $\mathscr{H}^{n-\epsilon_0}(K) = \infty$ for each $\epsilon_0 > 0$. More specifically we want to show that if we cover K by a collection of balls B of radius at most 2^{-j} , then

$$\sum_{B} r(B)^{n-\epsilon_0} > c_j, \tag{3}$$

where $c_j \to \infty$ as $j \to \infty$.

Let $\epsilon_0 > 0, j \gg 0$ and take a covering of E as above. Suppose for contradiction that

$$\sum_{B} r(B)^{n-\epsilon_0} \lesssim c_j.$$

WLOG we can assume that each ball has radius 2^{-i} with $i \ge j$ and that each ball intersects a bounded number of balls of the same size.

Proof (3/5).

For each $\omega \in \mathbb{S}^{n-1}$, let I_{ω} be the corresponding unit line segment in K and $\mathscr{H}^{1}_{|I_{\omega}}$ be the associated Lebesgue measure. Averaging over all these we obtain a measure $\mu := \int_{\mathbb{S}^{n-1}} \mathscr{H}^{1}_{|I_{\omega}} d\omega$ on K with total mass 1. In particular,

$$\sum_{B} \mu(B) \ge \mu(\bigcup_{B} B) = 1$$

so there is $k \ge j$ such that

$$\sum_{B:r(B)=2^{-k}} \mu(B) \ge k^{-2}.$$
 (4)

Fix such k and let $\delta = 2^{-k}$. Now throw away all balls B from our collection other than the ones with radius δ . Next, we have

$$\mathscr{H}^1(I_\omega\cap B)\lesssim \delta^{1-n}\int_B\mathbbm{1}_{T_\omega}(x)dx$$

where T_{ω} is the $\delta \times 1$ tube centred around the line I_{ω} . Thus

$$\mu(B) \lesssim \delta^{1-n} \int_{B} \left(\int_{\mathbb{S}^{n-1}} \mathbb{1}_{\tau_{\omega}} d\omega \right) dx \tag{5}$$

Proof (4/5).

Using (4) together with $1 \approx k^{-2}$ and the fact that the balls are essentially disjoint (bounded number of intersections),

$$1 \lessapprox \mu(\bigcup_B B) \lesssim \delta^{1-n} \int_{\bigcup_B B} \left(\int_{\mathbb{S}^{n-1}} \mathbb{1}_{\tau_\omega} d\omega \right) dx.$$

We then can choose a δ -separated subset of directions $\Omega \subseteq \mathbb{S}^{n-1}$ with $|\Omega| \sim \delta^{1-n}$ (e.g. maximally δ -separated tubes) such that

$$1 \lessapprox \int_{\bigcup_B B} \left(\sum_{\omega \in \Omega} \mathbb{1}_{\tau_\omega} \right) dx.$$

By Hölder's inequality

$$\int_{\bigcup_{B}B} \left(\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right) dx \leq \left\|\sum_{\omega \in \Omega} \mathbb{1}_{T_{\omega}}\right\|_{\frac{n}{n-1}} \left|\bigcup_{B}B\right|^{1/n}$$

Proof (5/5).

The maximal function estimate then yields

$$1 \lessapprox \left(\sum_{\omega \in \Omega} |T_{\omega}| \right)^{\frac{n-1}{n}} \left| \bigcup_{B} B \right|^{1/n}$$

This gives us

$$\left|\bigcup_{B}B\right|\approx 1.$$

1 1

As Bs have bounded overlap, the estimate above forces the number of balls to be $\approx \delta^{-n}.$ But then

$$\sum_{B:r(B)=\delta} r(B)^{n-\epsilon_0} \approx \delta^{-n} \delta^{n-\epsilon_0} = \delta^{-\epsilon_0} \gg 1.$$

Kakeya maximal function.

For any
$$\delta \in (0,1)$$
 and $\omega \in \mathbb{S}^{n-1}$ and $a \in \mathbb{R}^n$, let

$$T_{\omega}^{\delta}(\mathbf{a}) = \{ x \in \mathbb{R}^n : |(x - \mathbf{a}) \cdot \omega| \le 1/2, |(x - \mathbf{a}) - \omega[(x - \mathbf{a}) \cdot \omega]| \le \delta \}.$$

For a function $f \in L^1_{loc}(\mathbb{R}^n)$, we define the *Kakeya maximal function* of width δ by setting $\mathcal{K}_{\delta}f : \mathbb{S}^{n-1} \to [0,\infty]$

$$\mathcal{K}_{\delta}f(\omega) = \sup_{a\in\mathbb{R}^n} rac{1}{|\mathcal{T}_{\omega}^{\delta}(a)|} \int_{\mathcal{T}_{\omega}^{\delta}(a)} |f(y)| dy.$$

Basic facts:

•
$$\|\mathcal{K}_{\delta}f\|_{L^{\infty}(\mathbb{S}^{n-1})} \leq \|f\|_{L^{\infty}(\mathbb{R}^n)}$$

- $\|\mathcal{K}_{\delta}f\|_{L^{\infty}(\mathbb{S}^{n-1})} \lesssim \delta^{1-n} \|f\|_{L^{1}(\mathbb{R}^{n})}$
- For $1 \leq q \leq \infty$, and $p < \infty$, no other bound of the form

$$\|\mathcal{K}_{\delta}f\|_{L^{q}(\mathbb{S}^{n-1})} \lesssim \|f\|_{L^{p}(\mathbb{R}^{n})}$$

holds with constant independent of δ .

• For any $\epsilon > 0$ and $1 \leq \textit{p} < \infty$

$$\|\mathcal{K}_{\delta}f\|_{L^{p}(\mathbb{S}^{n-1})} \lesssim_{\epsilon,p} \delta^{-\epsilon} \|f\|_{L^{p}(\mathbb{R}^{n})}$$

fails for p < n.

Kakeya maximal operator conjecture 2.

For all $\epsilon > 0$, $n \in \mathbb{N}$ and $\delta \in (0, 1)$ and $f \in L^n(\mathbb{R}^n)$ we have

$$\left\|\mathcal{K}_{\delta}f\right\|_{L^{n}(\mathbb{S}^{n-1})} \lesssim_{\epsilon,n} \delta^{-\epsilon} \left\|f\right\|_{L^{n}(\mathbb{R}^{n})}$$

Proposition.

Let $\epsilon > 0$ and $\delta \in (0,1)$. Then

$$\left\|\mathcal{K}_{\delta}f\right\|_{L^{n}(\mathbb{S}^{n-1})} \lesssim_{\epsilon,n} \delta^{-\epsilon} \left\|f\right\|_{L^{n}(\mathbb{R}^{n})}$$

if and only if

$$\left\|\sum_{\omega\in\Omega}\mathbbm{1}_{\tau_{\omega}}\right\|_{\frac{n}{n-1}}\lesssim\delta^{-\epsilon}\left(\delta^{n-1}\#\Omega\right)^{\frac{n-1}{n}}$$

for all collections of δ -separated δ tubes $\{T_{\omega}\}_{\omega \in \Omega}$.

Proof.

 (\Rightarrow) Let $n'=\frac{n}{n-1}$ and take $g\in L^{n'}(\mathbb{R}^n)$ with norm one. Then

$$egin{aligned} &\int \sum_{\omega \in \Omega} \mathbbm{1}_{ au_\omega} g = \sum_{\omega \in \Omega} \int_{ au_\omega} g \lesssim \sum_{\omega \in \Omega} \delta^{n-1}(\mathcal{K}_\delta g)(\omega) \ &\lesssim \int_{igcup_{\omega \in \Omega} B(\omega, \delta)} (\mathcal{K}_\delta g)(e) d\sigma(e) \ &\le \|\mathcal{K}_\delta g\|_{L^n(\mathbb{S}^{n-1})} \left| igcup_{\omega \in \Omega} B(\omega, \delta)
ight|^{1/n'} \ &\lesssim \delta^{-\epsilon} \mathcal{M}(\#\Omega \delta^{n-1})^{rac{n-1}{n}}. \end{aligned}$$

Now take supremum over g with one norm to get the result.

[1] T. Tao: Restriction theorems and applications, available at https://www.math.ucla.edu/ $\sim\!tao/254b.1.99s/$.

[2] O. Saari: Advanced topics in analysis: Geometric Fourier Analysis, available at https://www.math.unibonn.de/people/saari/teaching/luentomoniste_fourier.pdf