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These notes are made to accompany a presentation given during Jonathan Hickman’s course “Inci-
dence Geometry: Continuous and Discrete” in the second semester of the 2020-2021 academic year
at the University of Edinburgh. The goal of these notes is to give a combined presentation of the
proofs of the Finite Field Kakeya set conjecture following the paper of Dvir, Kopparty, Saraf and
Sudan, and the proof of the Kakeya set conjecture in Z/NZ for square-free N given in the paper of
Dhar and Dvir. We also refer to the paper of Hickman and Wright for a more extensive discussion
of the discrete analogues of the Kakeya set conjecture and related problems. See the bibliography
for details.

Motivation

The Kakeya set conjecture and its connections to other important problems in harmonic analysis
are well known, but let us briefly discuss it so as to understand how we should formulate our discrete
analogues.
A Kakeya set in Rn is a set K containing a line in each direction. The Kakeya set conjecture asks if
every such set has Hausdorff dimension n. This would be true if for each s < n, the s-dimensional
Hausdorff measure of K was non-zero. It would also be sufficient to show that the n-dimensional
Hausdorff measure was non-zero, however, as is well known there are examples of Kakeya sets for
which the n-dimensional measure is 0.
The underlying Additive Combinatorial structure of this problem has been observed and exploited
by Bourgain and others. This provides some motivation for why we might be interested in discrete
analogues, for instance we might consider replacing R with a Finite Field, or if we aren’t concerned
with preserving the field structure of R, we could instead consider Z/NZ.
We’ll mostly be interested in Z/NZ. The notion of a Kakeya set in this setting is discussed in
the Hickman and Wright paper; skipping a precise formulation for now, let’s ask what the correct
analogue of the conjecture should be.
It isn’t helpful to talk about Hausdorff dimension for finite sets. We could instead ask for precise
lower bounds on the size of such sets, or, in connection with the Euclidean case, we could think of
these as being discrete approximations to a Euclidean Kakeya set and look for some kind of lower
bound that holds as N →∞, that perhaps starts to resemble what we would see in the Euclidean
case.
For the sake of motivation, we will assume in some vague, non-precise way that our discrete Kakeya
K = KN ⊆ (Z/NZ)n sets are approximating a Euclidean Kakeya set KE (intersected with [0, 1]n,
say) at appropriate scales. Suppose that (Z/NZ)n represents a lattice of points separated by 1/N
that approximates a Euclidean Kakeya set on scale 1/N . Comparison with the s-dimensional
Hausdorff measure approximated at scale 1/N shows that the natural approximating quantity is
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|K|/N s, and we are interested in lower bounds on this that are independent of N - a statement
such as “|K|/N s ≥ C” can be interpreted as saying “The s-dimensional Hausdorff measure of K is
at least C”.
Continuing this analogy, we expect that it should be impossible to find estimates of the form
|K| ≥ CNn for some C > 0 independent of N , and in the paper of Hickman and Wright, it is
shown that this is true. However, this is not the case in the Finite Field setting, as we shall see.
We shall note why later - but for now, let us agree that the correct conjecture should be:

Conjecture. For each ε > 0, there exists C = C(n, ε) independent of N so that any Kakeya set
K in (Z/NZ)n satisfies |K| ≥ CNn−ε.

In these notes, we will first give a proof of the sharp Finite Field Kakeya set bounds, and then
extend this result to give a proof of the Kakeya set conjecture for square-free N , although we
remark at this stage that the formulation of Kakeya set will be slightly different to that given in
the Hickman and Wright paper in the latter case.

1 The Kakeya set conjecture in Finite Fields

We will first discuss the results in the Finite Field case due to Dvir, Kopparty, Saraf and Sudan.
We will only need this result for the fields Z/pZ for prime p, but the proof is the same in any finite
field. Let Fq denote the field of size q. A Kakeya set in Fnq is a set K for which given any non-zero
vector b ∈ Fnq , there is an a ∈ Fnq such that the line L = {a + tb : t ∈ Fq} is contained in K. For
later reference, notice that we can identify direction vectors b which are the same up to scaling,
and the set of these equivalence classes forms the projective space PFn−1

q .
We have the following lower bound:

Theorem 1. If K ⊆ Fnq is a Kakeya set, then |K| ≥ qn

(2− 1
q

)n
.

Immediately, we have that |K| ≥ Cn|Fq|n for any finite field.
Before we go into the proof of this theorem, we will need to review some facts about polynomials
which will form the basis of the polynomial methods in this work.

1.1 Hasse derivatives and the extended Schwartz-Zippel lemma

In this section we introduce the Hasse derivative, a formal notion of derivative for polynomials
replacing the classical derivative in polynomial rings over general fields. We then introduce a
notion of multiplicity analogous to the usual notion of a polynomial vanishing to a given order, and
prove a strengthened version of the Schwartz-Zippel lemma which will form the basis of the proof
of Theorem 1.
First, let us introduce some notation. For multiindices α ∈ Nn0 we will write |α| = α1 + . . .+αn. We
will use upper case X and Y to denote vectors (x1, . . . , xn) and (y1, . . . , ym) where the lengths will
be obvious from the context or stated otherwise. We will use F to denote a general field, and F[X]
to denote the ring of polynomials over X in variables x1, . . . , xn. We use Xα to denote xα1

1 . . . xαnn .
Given a polynomial P (X) of degree d, we let HP (X) denote the sum of the terms of degree d, that
is, HP is the homogeneous part of P having highest total degree.
For multiindices α and β we denote (

α
β

)
=

n∏
i=1

(
αi
βi

)
.
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Note that this is the coefficient of XβY α−β in the expansion of (X + Y )α.

Definition. Given P ∈ F[X], the αth Hasse derivative of P , denoted P (α), is the polynomial which
is the coefficient of Y α in the expansion of P (X + Y ), that is,

P (X + Y ) =
∑
α

P (α)(X)Y α.

The multiplicity of P at a point A, denoted mult(P,A), is defined to be the largest integer M for
which P (α)(A) = 0 for all α with |α| < M (we set mult(P,A) =∞ if there is no such largest integer).
For vectors of polynomials P = (P1, . . . , Pm) ∈ F[X]m, set mult(P,A) = mini{mult(Pi, A)}.

Here are some basic properties of Hasse derivatives and multiplicities:

Proposition 1. Let P,Q ∈ F[X], α, β ∈ Nn0 , λ, µ ∈ F. Then:

1. P (A) = 0 if and only if mult(P,A) ≥ 1.

2. λP (α) + µQ(α) = (λP + µQ)(α).

3. If P is homogeneous of degree d, then P (α) is homogeneous of degree d− |α| or P (α) = 0.

4. (HP )(α) = HP (α) or (HP )(α) = 0.

5.
(
P (α)

)(β)
=

(
α
β

)
P (α+β).

6. If A ∈ Fn is such that mult(P,A) = m, then mult(P (α), A) ≥ m− |α|.

Proof. We have that mult(P,A) ≥ 1 if and only if P (α)(A) = 0 for each |α| < 1 - that is, α = 0.
This proves the first statement.
The second statement follows from expanding P (X + Y ) and Q(X + Y ) and grouping coefficients,
which is easily seen. The third statement follows from expanding λdP (X + Y ) = P (λX + λY ) in
two different ways and comparing coefficients.
By the linearity just observed, we can write P = HP + R, where the degree of R is strictly less

than the degree of P , and we have H
(α)
P = P (α)−R(α). If this is non-zero, it must be homogeneous

of degree degP − |α|, hence P (α) −R(α) = HP (α)−R(α) . However, the degree of R(α) is strictly less
than degP − |α|, so we must have

P (α) = P (α) −R(α) = HP (α)−R(α) = HP (α) .

For the fifth statement, we expand P (X + Y + Z) in two different ways. Firstly,

P (X + (Y + Z)) =
∑
α

P (α)(X)(Y + Z)α

=
∑
α

∑
β+γ=α

P (α)(X)

(
α
β

)
Y γZβ

=
∑
β,γ

P (β+γ)(X)

(
β + γ
β

)
Y γZβ.

Also, we may write

P ((X + Y ) + Z) =
∑
β

P (β)(X + Y )Zβ =
∑
β

∑
γ

(
P (β)

)(γ)
(X)Y γZβ.

3



Comparing coefficients yields the result.
We now prove the final statement. By assumption, for any β with |β| < m, we have P (β)(A) = 0.
For each γ such that |γ| < m− |α|, we have

(P (α))(γ)(A) =

(
α+ γ
γ

)
P (α+γ)(A).

Since |α+ γ| < m, we have (P (α))(γ)(A) = 0. Thus mult(P (α), A) ≥ m− |α|.

We will also need some basic results on the behaviour of multiplicities under composition of poly-
nomials. Given P ∈ F[X]m, Q ∈ F[Y ]n, let us consider the polynomial P (Q(Y )). We have the
following:

Proposition 2. For any A, mult(P ◦ Q,A) ≥ mult(P,Q(A))mult(Q − Q(A), A). In particular,
since mult(Q−Q(A), A) ≥ 1,we have mult(P ◦Q,A) ≥ mult(P,Q(A)).

Proof. Let m1 = mult(P,Q(A)) and m2 = mult(Q − Q(A), A). Note that m2 ≥ 1. If m1 = 0 we
are done, so assume m1 ≥ 1, so that P (Q(A)) = 0. Now we have

P (Q(A+ Y )) = P

Q(A) +
∑
α 6=0

Q(α)(A)Y α


= P

Q(A) +
∑
|α|≥m2

Q(α)(A)Y α

 since mult(Q−Q(A), A) = m2 > 0

= P (Q(A) +R(Y )) where R(Y ) =
∑
|α|≥m2

Q(α)(A)Y α

= P (Q(A)) +
∑
β 6=0

P (β)(Q(A))R(Y )β

=
∑
|β|≥m1

P (β)(Q(A))R(Y )β since mult(P,Q(A)) = m1 > 0.

Since each monomial Y α appearing in R has |α| ≥ m2, and R(Y ) is raised to the power β with
β ≥ m1, we conclude that P (Q(A+ Y )) is of the form

∑
|γ|≥m1m2

cγY
γ , and the result follows.

In practice we will only use this result to say that for A,B ∈ Fn, the single variable polynomial
PA,B(T ) := P (A+ TB) has mult(PA,B, t) ≥ mult(P,A+ tB) for each t ∈ F.
We are now ready to prove the strengthened Schwartz-Zippel lemma.

Lemma 3. Let P ∈ F[X] be a non-zero polynomial of degree at most d. Then for any finite S ⊆ F,
we have ∑

A∈Sn
mult(P,A) ≤ d|S|n−1.

Proof. We induct on n. For n = 1, we must show that for a polynomial of one variable, the sum
of multiplicities at each point of S is at most the degree d. Clearly, it is enough to show that if
mult(P,A) = m then (X − A)m divides P , so that P factors as (

∏
A∈S(X − A)mult(P,A))Q(X). In

this case, we have that P (A + Y ) =
∑

α P
(α)(A)Y α and P (α)(A) = 0 for all α < m. Thus Y m

divides P (A+ Y ), and setting Y = X −A concludes this case.
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Now suppose n > 1. Write

P (x1, . . . , xn) =
t∑

j=0

Pj(x1, . . . , xn−1)xjn,

where 0 ≤ t ≤ d, Pt is non-zero and degPj ≤ d− j. For any a1, . . . , an−1 ∈ S, denote ma1,...,an−1 =
mult(Pt, (a1, . . . , an−1)). We first show that∑

an∈S
mult(P, (a1, . . . , an)) ≤ ma1,...,an−1 |S|+ t.

Let α ∈ Nn−1
0 be such that |α| = ma1,...,an−1 and P

(α)
t 6= 0. Then we have that

P (α,0)(x1, . . . , xn) =
t∑

j=0

P
(α)
j (x1, . . . , xn−1)xjn

and hence P (α,0) is non-zero (since P
(α)
t 6= 0). So by the previous proposition,

mult(P, (a1, . . . , an)) ≤ |(α, 0)|+ mult(P (α,0)(x1, . . . , xn), (a1, . . . , an))

≤ ma1,...,an−1 + mult(P (α,0)(a1, . . . , an−1, xn), an).

Summing over an ∈ S, and applying the n = 1 case to P (α,0)(a1, . . . , an−1, xn) (which has degree
t), we get the desired inequality.
We may now bound

∑
a1,...,an∈S

mult(P, (a1, . . . , an)) ≤

 ∑
a1,...,an−1∈S

ma1,...,an−1

 |S|+ |S|n−1t.

By the inductive hypothesis, the sum in brackets is bounded by (d− t)|S|n−2, which completes the
proof.

This gives an important corollary in Finite Fields.

Corollary 1. Let P ∈ Fq[X] be a polynomial of degree at most d. If
∑

A∈Fnq mult(P,A) > dqn−1,

then P = 0.

1.2 Proof of the lower bound

In this section we prove Theorem 1. At this point we introduce some more notation to simplify
some expressions that will appear in applying our polynomial methods. We use

δn,d =

(
d+ n− 1
n− 1

)
=

(
d+ n− 1

d

)
to denote the dimension of the space of homogeneous polynomials of degree d in n variables over a
given field, and

∆n,d =

(
d+ n
n

)
=

(
d+ n
d

)
to denote the dimension of the space of polynomials of degree at most d in n variables (these
equalities follow from simple combinatorial arguments, e.g. stars and bars).
The following proposition expresses our basic polynomial technique:
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Proposition 4. Given a set K ⊆ Fn and non-negative integers m, d such that ∆n,m−1|K| < ∆n,d,
there exists a non-zero polynomial P ∈ F[X] of total degree at most d such that mult(P,A) ≥ m for
every A ∈ K.

Proof. For a given A, the condition that mult(P,A) ≥ m means that the rank 1 linear function
P 7→ P (α)(A) = 0 for each multiindex α with |α| < m. This imposes ∆n,m−1 linear constraints
on P . Since the total number of linear constraints is ∆n,m−1|K|, which is strictly less than the
dimension of the space of polynomials of degree at most d in n variables, so there is a non-zero
polynomial of degree d vanishing to multiplicity m at every point of K.

Proof of Theorem 1. Let l be a large multiple of q and let m = 2l− l/q, d = lq−1. Note that d < lq
and thus (m− l)q = ql− l > d− l. We will prove by contradiction that |K| ≥ ∆n,d/∆n,m−1, so let
us assume that ∆n,m−1|K| < ∆n,d. By the previous proposition, there exists a non-zero polynomial
P ∈ F[X] of degree d∗ ≤ d such that mult(P,A) ≥ m for each A ∈ K.
Note that d∗ ≥ l since m ≥ l and, since P vanishes to multiplicity m at some A but is non-zero,
there must be monomials of degree greater than m in the expansion of P (A+ (X −A)).
We will show that HP vanishes to multiplicity l at each point B ∈ Fnq . Let α be such that |α| < l.

Denote Q = P (α), and let d′ ≤ d∗−|α| be the degree of Q. Pick A such that {A+ tB : t ∈ Fq} ⊆ K.
Then for all t ∈ Fq, mult(Q,A+ tB) ≥ m− |α|.
Since |α| < l and (m−l)q > d−l ≥ d∗−l, we get (m−|α|)q = (m−l)q+(|α|−l)q > d∗−l+(|α|−l)q =
d∗ − |α|+ (l − |α|)(q − 1) > d∗ − |α|.
Let QA,B(T ) be the polynomial Q(A + TB). Then mult(QA,B, t) ≥ mult(Q,A + tB) ≥ m − |α|.
Since (m− |α|)q > d∗− |α| ≥ d′ ≥ degQA,B, the n = 1 case of the corollary of the Schwartz-Zippel
lemma implies QA,B = 0.
Therefore the coefficient of T d

′
in QA,B is 0. It is easily checked that this coefficient is equal to

HQ(B), so HQ(B) = 0. Thus (HP )(α)(B) = (HQ(B) or 0) = 0. Since this is true for all α with
|α| < l, we have mult(HP , B) ≥ l.
Note. For future reference, observe that we have shown for a homogeneous polynomial of degree
at most lq − 1 in n variables that if it vanishes to multiplicity at least m at each point of a line L
in direction B, then it vanishes to multiplicity at least l at B.
By the corollary of the Schwartz-Zippel lemma, noting that lqn > d∗qn−1, we conclude that HP = 0,
which in turn means P = 0, a contradiction. At this point all that remains is to tidy up our lower
bound, using the freedom we have in our choice of l.
We have

|K| ≥
(
d+ n
n

)
/

(
m+ n− 1

n

)
=

(
lq − 1 + n

n

)
/

(
2l − l/q + n− 1

n

)
=

∏n
i=1(lq − 1 + i)∏n

i=1 (2l − l/q − 1 + i)
=

∏n
i=1(q − 1/l + i/l)∏n

i=1 (2− 1/q − 1/l + i/l)

Since l can be any large multiple of q, we can take the limit l→∞ to get the result.

2 Proof of the Kakeya set conjecture in Z/NZ for square-free N

In this case, we need to take a bit more care than the case of fields about how we define our
Kakeya sets. But before we do that, let us briefly comment on why the Finite Field case has some
inadequacies as being a model for the Euclidean case, and why Z/NZ is a step in the right direction.
This connection will provide some explanation as for why the Finite Field bound is better than
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expected, and we will see how the improvements that Z/NZ possesses relate to the “worse” lower
bound in the more general Theorem.
The issue is that of the scales available in each case. In the Euclidean case, the usual distance
gives a range of infinitely many scales which are ubiquitous in many arguments. In the Finite
Field case, there are no natural notions of distance that provide any more scales than the trivial
discrete distance. In the setting of rings such as Z/NZ, this is no longer the case - the divisors
of N provide a range of scales to work with. For instance, we could consider the balls Bd in
(Z/NZ)n, indexed by divisors of N , defined as Bd := {x = (x1, . . . , xn) ∈ (Z/NZ)n : ‖x‖ � d}
where ‖x‖ := N/ gcd(x1, . . . , xn, N) and a � b if and only if a|b. We will not develop this theory
any further, but note that the divisors of N give a natural (finite) range of scales, and it is through
this connection that we might hope to extend our arguments to the Euclidean case.
This should provide some motivation for why the bound expressed below is “natural” - in adding
in more scales, that is, more divisors for N , we are obtaining a better model for the Euclidean case,
and in the bound below, we do not obtain a lower bound of the form CnN

n unless we bound the
number of divisors of N .

Theorem 2. Let N = p1 . . . pr be a square-free integer with distinct prime factors p1, . . . , pr. Then
for each Kakeya set K ⊆ (Z/NZ)n, we have

|K| ≥ Nn∏r
i=1(2− 1/pi)n

.

At this stage, we have not even been precise about what a Kakeya set in (Z/NZ)n is. We will now
go into these preliminary definitions and results.

2.1 Preliminaries

Recall the Chinese remainder theorem - if m and n are coprime, then Z/mnZ and Z/mZ× Z/nZ
are isomorphic as rings. Applied iteratively, one can say that for a square-free integer N having
distinct prime factors p1, . . . , pr, that Z/NZ is isomorphic as a ring to Fp1 × . . . × Fpr , where Fpi
denotes the Finite Field Z/piZ. Thus we may identify (Z/NZ)n with Fnp1 × . . .× Fnpr .
In the case of one finite field, we could take the definition of our set of directions to be the projective
space PFn−1

pi . In general, denoting R = Z/NZ, we will take as our set of directions the projective

space PRn−1 := PFn−1
p1 × . . . × PFn−1

pr . It is a basic fact following from the Chinese remainder
theorem that the set {tb : t ∈ Z}, where b ∈ PRn−1, is independent of the choices of representative
for each element of the PFn−1

pi .
Note that this definition of the projective space differs from that given in the Hickman and Wright
paper, where it is instead asked that at least one entry in an n-tuple from (Z/NZ)n be invertible.
Through the Chinese remainder theorem, this would mean an element of Fnp1 × . . .× Fnpr in which

for some j, the jth coordinate in each Fnpi is non-zero. In our definition, the “j” for which we have
a non-zero entry in Fnpi can be different for each i, so our formulation contains more directions.
This means that our Kakeya set should be “bigger” than those given in the Hickman and Wright
formulation, however, this gives a more natural formulation for square-free N , as it does not depend
on a choice of generating set for Z/NZ.
The proof of Theorem 2, roughly speaking, proceeds as follows. We can compare the size of Kakeya
set to the rank of some matrix, which we will construct. In the case of Fp, we could take this to be
a “line matrix” with rows being the indicator vectors of some lines, one chosen for each direction,
columns indexed by elements of Fnp . We then multiply this matrix by some matrix to get a matrix
of possibly lower rank, but that is well understood and its rank easily bounded below. In the Fp
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case, this pairs with known results on the “point-hyperplane incidence matrix” to give a lower
bound on the size of Kakeya sets in Fp. In general, we will need to construct a more complicated
matrix that combines the line matrix with a matrix constructed to multiply to the “right” matrix
to get a lower bound on the rank, but once we unpack all the arguments, we see that this is only
possible because of the same polynomial method techniques from the finite field case.
We will briefly need to make use of the line matrix in the general case, so let us discuss it here.
Given a Kakeya set S ⊆ Rn, where R = Z/NZ, for each direction b ∈ PRn−1 choose a line
L(b) ⊆ S in direction b. Define the line matrix MS with rows indexed by directions b and columns
indexed by elements of Rn by setting its rows to be the indicator vectors of L(b), that is, the entry
corresponding to a direction b and point X is 1 if X lies on L(b), 0 otherwise.

Proposition 5. For any field F, the line matrix MS of a Kakeya set S ∈ Rn has rank at least
|S′|/|R|, where S′ is the set of indices corresponding to non-zero columns of MS. Also, S′ is itself
a Kakeya set.

Proof. First pick a non-zero line L1 = L(b1). Given lines L1 = L(b1), . . . , Lt−1 = L(bt−1), the
cardinality of their union is at most |R|(t− 1). If |R|(t− 1) < |S′|, there is a column corresponding
to a point which does not intersect L1, . . . , Lt−1, but does intersect some Lt(bt). Hence if we cannot
add another such line to the collection, the final number t of lines satisfies |R|t ≥ |S′|. Furthermore,
by construction the row corresponding to bt is independent over any field to those corresponding
to b1, . . . , bt−1, so the rank of MS is at least t, and we obtain the result.
That S′ is a Kakeya set is straightforward - given a direction b, consider the line L(b) used to
construct MS . By construction, S′ contains each point of this line, for whenever L(b) hits a point,
we have a 1 entry, so that column is non-zero.

We will need some basic tools from Linear Algebra, which we shall now review. Firstly, we need
the following dimension bound for tensors:

Proposition 6. Let U and V be finite dimensional vector spaces over a field F, let u1, . . . , un ∈ U
linearly independent, and for each i ∈ {1, . . . , n}, let v

(i)
1 , . . . , v

(i)
m ∈ V be linearly independent. Then

the elementary tensors ui ⊗ v(i)
j form a linearly independent collection of size nm in U ⊗ V .

Proof. Let w1, . . . , wl be a basis of V and write v
(i)
j =

∑l
k=1 λi,j,kwk. Note that the ui ⊗ wk form

a linearly independent collection in U ⊗ V . We must show that

n∑
i=1

m∑
j=1

αi,jui ⊗ v(i)
j = 0 ⇒ ∀i, j, αi,j = 0.

We have that

0 =

n∑
i=1

m∑
j=1

αi,jui ⊗ v(i)
j =

n∑
i=1

m∑
j=1

l∑
k=1

αi,jλi,j,kui ⊗ wk

and so by linear independence of the ui ⊗ wk, we have that for each i, k,
∑m

j=1 αi,jλi,j,k = 0 and

hence
∑l

k=1

∑m
j=1 αi,jλi,j,kwk =

∑m
j=1 αi,jv

(i)
j = 0 for each i. Thus by linear independence of the

v
(i)
j , we have αi,j = 0.

We shall also make use of the Kronecker product of two matrices.
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Definition. Given an m× n matrix A and a r × s matrix B, the Kronecker product A⊗B is the
mr × ns block matrix given by  a1,1B · · · a1,nB

...
. . .

...
am,1B · · · am,nB

 .
This product satisfies a number of helpful properties, however, here we shall only need the following:

Proposition 7. Let A = (ai,j) be an m×n matrix, B = (bi,j) an r× s matrix, X = (xi,j) an n×p
matrix and Y = (yi,j) an s× t matrix. Then (A⊗B)(X ⊗ Y ) = (AX)⊗ (BY ).

Proof. Let us index rows in (A⊗B) by pairs (i1, i2) corresponding to rows of A and B, and columns
by pairs (j1, j2) corresponding to those of A and B, and similarly for the other Kronecker products.
For instance, the ((i1, i2), (j1, j2)) entry of A⊗ B is ai1,j1bi2,j2 . We have that the ((i1, i2), (k1, k2))
entry of (A⊗B)(X ⊗ Y ) is given by

∑
(j1,j2)

ai1,j1bi2,j2xj1,k1yj2,k2 =

∑
j1

ai1,j1xj1,k1

∑
j2

bi2,j2yj2,k2

 .

The right hand side is precisely the ((i1, i2), (k1, k2)) entry of (AX)⊗ (BY ).

Finally, we will also need the concept of crank for a set of matrices.

Definition. Given a finite set T = {A1, . . . , An} of matrices having the same number of columns
we let crank(T ) be the rank of the matrix obtained by concatenating all the elements Ai in T along
their columns. Equivalently, it is the dimension of the space spanned by ∪ni=1{r : r is a row in Ai}.

Some basic properties follow.

Proposition 8. Given m×n matrices A1, . . . , Ar and an n× p matrix B we have crank{Ai}ri=1 ≥
crank{AiB}ri=1.

Proof. Simply note that B acts linearly on the combined rowspace of the Ai, and this cannot
increase the dimension.

Proposition 9. Given matrices A1, . . . , Ar of size m1 × n1 such that crank{Ai}ri=1 ≥ k1 and
matrices Bi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ s of size m2 × n2 such that crank{Bi,j}sj=1 ≥ k2 for each i
we have,

crank{Ai ⊗Bi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} ≥ k1k2.

Proof. Let U be an independent subset of ∪ri=1{u : u is a row in Ai} of size k1 and for each 1 ≤ i ≤ r
let Vi be an independent subset of ∪sj=1{v : v is a row in Bi,j} of size k2. By the above tensor
product bound we have that ∪ri=1{u⊗ v : u ∈ U, v ∈ Vi} is a linearly independent set of size k1k2.
Now observe that if the rows of the Ai are regarded as coordinates of vectors u with respect to
some basis {ea}a, and the rows of the Bi,j are coordinates of vectors v with respect to some basis
{fb}b, then the rows of the Ai ⊗ Bi,j represent the coordinates of the vectors u ⊗ v with respect
to the basis {ea ⊗ fb}a,b. Thus the lower bound just proven is equivalent to a lower bound on the
rank of the concatenated matrix, yielding the result.
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One last fact that will be necessary to sharpen our bounds at the end of the proof will be a tensor
power trick. For this we will need to know that the repeated product of our Kakeya set is itself a
Kakeya set - we prove that here.

Lemma 10. Let K be a Kakeya set in Rn where R = Z/NZ for a square-free integer N = p1 . . . pr.
Then Km ⊆ Rmn is a Kakeya set in Rmn.

Proof. Let b ∈ PRmn−1 be some direction and choose a representative (b1, . . . , bm) ∈ (Rn)m of

this direction. Let b
(j)
i denote the Fnpj component of bi obtained through the Chinese remainder

theorem. If all b
(j)
i are non-zero, then every bi corresponds to a direction in PRn−1 and the proof

is straightforward, but some could be 0.

In the general case, for each i let Li ⊆ K be a line in some direction ci that agrees with b
(j)
i

whenever it is non-zero. We claim that L1 × . . .× Lm contains a line in direction (b1, . . . , bm). We
have Li = {ai + tci : t ∈ R} for some ai. Let L = {(a1, . . . , am) + t(b1, . . . , bm) : t ∈ R}, a line in
direction b. Now, the set L1 × . . .× Lm contains all points of the form (a1 + t1c1, . . . , am + tmcm)
where ti ∈ R. Under the isomorphism given by the Chinese remainder theorem, choose ti to be

equal to t in the jth entry when b
(j)
i is non-zero, and 0 in the other entries. Then tici = tbi for each

i, and we have (a1 + t1c1, . . . , am + tmcm) = (a1, . . . , am) + t(b1, . . . , bm), so Km contains a line in
direction b and we are done.

2.2 Proof of the Kakeya bound

We are now ready to develop the core part of the proof. We start with a definition and then
construct the “decoding matrix” C lL.

Definition. Let m,n be natural numbers, and U ⊆ Fn. We will consider vectors in F|U |∆n,m−1

with entries indexed by (A,α) where A runs through U and α runs through the set of multiindices
with |α| < m. We define

EVALmU : F[X]→ F|U |∆n,m−1

to be the linear map which sends a polynomial P to (P (α)(A))(A,α). Here P (α) is the αth Hasse
derivative.

Lemma 11. Let Fq be a Finite Field, and let l, n,m ∈ N0 be such that q|l, m = 2l − l/p, and let
L ⊆ Fnq be a line in the direction b ∈ PFn−1

q . Then we can construct a ∆n,l−1 × qn∆n,m−1 matrix

C lL such that, for a homogeneous P ∈ Fq[X] of degree lq − 1 we have

C lL · EVALmFnq (P ) = EVALlb(P ).

Moreover, following the notation from the previous definition, the only non-zero columns of C lL are
the ones corresponding to (X,α) for which X ∈ L.

Proof. The bulk of the proof was contained in our proof of the Finite Field Kakeya bound. Indeed,
we noted in the proof that for homogenous polynomials P of degree lq − 1 we have

EVALmL (P ) = 0 ⇒ EVALlb(P ) = 0

where m = 2l − l/q. Now, recall the basic fact from Linear Algebra that whenever A and B are
linear maps from Fk to some other (possibly different) vector spaces, we have that if for each v ∈ Fk,
Av = 0 implies Bv = 0, then there exists C such that CA = B. This is straightforward, since this
means that the kernel of A is a subset of the kernel of B, so the dimension of the range of B is
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at most that of A, hence we have enough linearly independent vectors to construct a map C with
CA = B.
These two facts together show that there is a matrix C ′ such that

C ′ · EVALmL (P ) = EVALlb(P ).

We now add in zero columns to C ′ to correspond to (X,α) for X ∈ Fnq \ L, and we see that the

resulting matrix C lL has the desired properties.

With the decoding matrix now constructed, the proof now proceeds via induction and mostly
makes use of simple counting arguments. Note that this proof also works for Kakeya sets in
products of general Finite Fields (defined in the obvious way), but since we are more interested in
Z/NZ ∼= Fp1 × . . .× Fpr , we will use the notation pi in the proof.

Proof of Theorem 2. We will use induction over r. For r = 1, this is simply Theorem 1, so suppose
now that r > 1 and the result holds for N0 = p2 . . . pr. We will prove the result for N = p1 . . . pr.
Denote R = Z/NZ, R0 = Z/N0Z and p = p1 so that R ∼= Fp ×R0. We will work over Fp.
Let K be a Kakeya set in Rn. Every direction b ∈ PRn−1 is represented by (b1, b2) ∈ PFn−1

p ×PRn−1
0 .

Through the Chinese remainder theorem, we see that a line L ⊆ Rn in direction b = (b1, b2) is a
product of lines L1 ⊆ Fnp in direction b1 and L2 ⊆ Rn0 in direction b2.
Let IL denote the indicator row vector of L, with entries IL(X) indexed by points of X ∈ Rn,
and similarly for IL1 and IL2 . Identifying X ∈ Rn with (X1, X2) ∈ Fnp ×Rn0 by Chinese remainder
theorem, we have IL(X) = IL1(X1)IL2(X2) = IL1 ⊗ IL2(X), the Kronecker product of IL1 and IL2 .
For each direction b ∈ PRn−1 we have at least one line in K in that direction. Pick one for each b
and denote it by L(b) contained in K. We may write it as a product L1(b) × L2(b) of lines in Fnp
and Rn0 in directions b1 and b2 respectively.
Now fix an l divisible by p, set m = 2l− l/p, and for a direction b consider the ∆n,l−1 × pn∆n,m−1

decoding matrix C lL1(b) over the field Fp. We will show that

|K|∆n,m−1 ≥ crank{C lL1(b) ⊗ IL2(b)}b∈PRn−1 .

For each b, the columns in C lL1(b) are indexed by (X,α) ∈ Fnp ×Nn0 with |α| < m, hence the columns

in C lL1(b) ⊗ IL2(b) are indexed by (X,α) ∈ Rn × Nn0 with |α| < m. The non-zero columns of C lL1(b)

correspond to the points for which X ∈ L1(b), and so the non-zero columns in C lL1(b) ⊗ IL2(b)

correspond to points for which X ∈ L(b) ⊆ K. Hence the columns of the concatenated matrix are
non-zero only if they correspond to (X,α) for which X ∈ K. For each such X there are ∆n,m−1

such columns, which gives the bound.
It remains to lower bound the crank of this set of matrices. For shorthand, let E be a matrix of
size pn∆n,m−1× δn,lp−1 representing the linear map EVALmFnp restricted to the space of polynomials

over Fp that are homogeneous of degree lp − 1. Given a direction b1 ∈ PFn−1
p , let Db1 be the

∆n,l−1 × δn,lp−1 matrix representing the linear map EVALlb1 restricted to space of homogeneous
polynomials of degree lp− 1.
For b = (b1, b2) ∈ PFn−1

p × PRn−1
0 , we have C lL1(b) · EVALmFnp (P ) = EVALlb1(P ) for any polynomial

P homogeneous of degree lp − 1, that is, C lL1(b)E = Db1 . Let INn
0

be an identity matrix of size
Nn

0 ×Nn
0 . Then

crank{C lL1(b) ⊗ IL2(b)}b∈PRn−1 ≥ crank{(C lL1(b) ⊗ IL2(b))(E ⊗ INn
0

)}b∈PRn−1

= crank{(C lL1(b)E)⊗ IL2(b)}b∈PRn−1

= crank{Db1 ⊗ IL2(b1,b2)}b=(b1,b2)∈PFn−1
p ×PRn−1

0
.
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To lower bound this, note that by Proposition 9 it suffices to separately lower bound the crank
of the collection of Db1 as b1 ranges over PFn−1

p and for each b1, to lower bound the crank of the

collection of IL2(b1,b2) as b2 ranges over PRn−1
0 .

First, we show that crank({Db1}b1∈PFn−1
p

) ≥ δn,lp−1. Let us consider the matrix D obtained by

concatenating these matrices. Observe that this is precisely the matrix for the map EVALlPFn−1
p

(where we have chosen a representative for each direction), restricted to the space of homogeneous
polynomials of degree lp − 1. We claim that this map is injective, so that its rank is equal to the
dimension of its domain, which is δn,lp−1.
To see this, observe that if some homogeneous polynomial P lies in the kernel of this map, then
all its Hasse derivatives of order less than l vanish over PFn−1

p . Since P is homogenous, so are its
Hasse derivatives, hence P and its Hasse derivatives of order less than l vanish everywhere. By
the extended Schwartz-Zippel lemma (more precisely, its corollary), as (lp− 1)pn−1 < lpn, we have
P = 0, so the map is injective.
Next we show that for each b1 ∈ PFn−1

p we have

crank{IL2(b1,b2)}b2∈PRn−1
0
≥ Nn−1

0
r∏
i=2

(2− 1/pi)n
.

It is here that we use the inductive hypothesis - observe that for fixed b1 the union of the L2(b1, b2)
is a Kakeya set S in Rn0 . The crank of the set of indicator vectors is just the rank of the line matrix
MS over Fp. By Proposition 5, the rank of MS over any field is bounded below by |S′|/|R0|, which
by the induction hypothesis is at least the desired lower bound.
It follows from these bounds that

|K|∆n,m−1 ≥
Nn−1

0
r∏
i=2

(2− 1/pi)n
δn,lp−1

For our particular choices, this is

|K|
(

2l − l/p+ n− 1
n

)
≥ Nn−1

0
r∏
i=2

(2− 1/pi)n

(
lp+ n− 2
n− 1

)
.

Let l be a square multiple of p. We will use a tensor power trick. Apply the argument so far to
the product of K with itself

√
l times, which is a Kakeya set by Lemma 10. the above bound now

becomes

|K|
√
l

(
2l − l/p+ n

√
l − 1

n
√
l

)
≥ Nn

√
l−1

0
r∏
i=2

(2− 1/pi)n
√
l

(
lp+ n

√
l − 2

n
√
l − 1

)
.

Rearranging the terms gives

|K|
√
l ≥ Nn

√
l−1

0
r∏
i=2

(2− 1/pi)n
√
l

(lp+ n
√
l − 2) . . . (lp− 1)

(2l − l/p+ n
√
l − 1) . . . (2l − l/p− 1)

n
√
l.
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Take the
√
l
th

root on both sides and let l → ∞ among the square multiples of p. By standard

limits, one easily sees that (n
√
l)1/
√
l → 1, and Nn
√
l−1

0
r∏
i=2

(2− 1/pi)n
√
l


1/
√
l

→ Nn
0

r∏
i=2

(2− 1/pi)n
.

For the remaining fraction, divide the top and bottom by l, and note that for large l the numerator
and denominator respectively are products of n

√
l− 1 and n

√
l terms that are arbitarily close to p

and (2− 1/p), hence taking the
√
l
th

root and letting l→∞ gives

|K| ≥ pnNn
0

(2− 1/p)
r∏
i=2

(2− 1/pi)n

which is the desired result.

2.3 Additional comments

Note that in Theorem 2, we have not actually proven bounds of the form |K| ≥ Cn,εNn−ε (for each
ε > 0). We shall take up such matters here for the sake of completeness, but it is only a matter of
applying standard results from Analytic Number Theory at this stage.
An immediate corollary of Theorem 2 is that |K| ≥ Nn2−rn, where r is the number of distinct
prime factors. This is known to be O(log(N)/ log log(N)), hence 2r = O(N1/ log log(n)), and so
2−rn ≥ CNn/ log log(N). The estimates |K| ≥ Cn,εNn−ε for each ε > 0 follow immediately.
Let us include a brief proof of this fact. Let ω(N) denote the number of distinct prime factors of
N . We have:

Lemma 12. ω(N) = O(log(N)/ log log(N)) as N →∞

Proof. Firstly, note that by Stirling’s formula (the ratio of k! and
√

2πk(k/e)k approaches 1 as
k → ∞), we have k! ≥ (k/e)k = ek log(k)−k for sufficiently large k. Take logs and set k = ω(N) to
get ω(N) log(ω(N))−ω(N) ≤ log(ω(N)!) (except for when ω(N) is small and the desired bound is
trivial).
Now, we can write N = pa11 . . . parr where r = ω(N) and pi are prime numbers satisfying p1 < . . . <
pr. Clearly i < pi for each i, so r! < p1 . . . pr ≤ N , hence ω(N)! ≤ N .
Thus ω(N) log(ω(N)) − ω(N) ≤ log(N) except for small ω(N). Rearranging gives ω(N) ≤
log(N)/(ω(N)−1) ≤ log(N) for large ω(N). Alternatively, we could rearrange as ω(N) log(ω(N)) ≤
log(N) + ω(N) ≤ 2 log(N).
Now let C > 2 and suppose for a contradiction that there are infinitely many N with ω(N) ≥
C log(N)/ log log(N). Then for these N we have

[C log(N)/ log log(N)] · [log(C log(N)/ log log(N))] ≤ ω(N) log(ω(N)) ≤ 2 log(N).

Rearranging, we get
log(C log(N)/ log log(N)) ≤ (2/C) log log(N)

and taking exponentials gives

C log(N)/ log log(N) ≤ (log(N))2/C .

Rearranging gives C(log(N))1−(2/C)/ log log(N) ≤ 1 for infinitely many N , but as N →∞ the left
hand side goes to infinity, a contradiction. This completes the proof.
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