
MODERN DEVELOPMENTS IN FOURIER ANALYSIS

Instructor: Jonathan Hickman Email: jonathan.hickman@ed.ac.uk

Office: JCMB 5322 Course website: www.maths.ed.ac.uk/~jhickman/MDFA

Syllabus: Recently, there have been a number of remarkable developments in euclidean harmonic
analysis, related to the Fourier restriction conjecture. Broadly speaking, one is interested in studying
functions f whose Fourier transform is supported in a neighbourhood of a submanifold of Rn, such
as a paraboloid or a cone or a sphere. Such situations arise naturally in PDE, as well as in harmonic
analysis and analytic number theory.

One of the goals of this course is to understand the so-called decoupling inequalities of Wolff [4]
and Bourgain–Demeter [2]. The idea is that whilst f may be difficult to analyse, it can be broken up
as a sum of pieces fθ which are much easier to understand (in particular, the pieces fθ are localised
in frequency to small regions where the submanifold is essentially flat). The key question is then to
understand how the various fθ interact with one another. In decoupling theory this is achieved via
a norm inequality of the form

(1) ‖f‖Lp(Rn) /
(∑

θ

‖fθ‖2Lp(Rn)

)1/2
.

The key feature of (1) is that an `2 expression appears on the right-hand side, rather than the trivial
`1 expression given by the triangle inequality; this crucially takes into account complex destructive
interference patterns between the different fθ.

Decoupling theory has had a profound impact on a wide range of (ostensibly) distinct areas of
mathematical analysis. A large portion of the course will investigate applications.

Possible topics include:

• Fourier analysis philosophy and uncertainty principle heuristics.
• Multilinear harmonic analysis: the Bennett–Carbery–Tao theorem via induction-on-scale

[1].
• The Bourgain–Guth method for estimating oscillatory integral operators [3].
• Proof of the `2-decoupling theorem of Bourgain–Demeter [2].
• Relation to incidence geometry.
• Applications of decoupling to PDE: Strichartz estimates on the torus, spectral theory, local

smoothing for the wave equation.
• Applications of decoupling to harmonic analysis: Bochner–Riesz means, Fourier restriction,
Lp-Sobolev and maximal bounds for generalised Radon transforms.

• Applications of decoupling to analytic number theory: diophantine equations, the proof of
the Vinogradov mean value theorem, Weyl sum bounds, the Lindelöf hypothesis.

• Variable coefficient extensions and analysis on manifolds.

Relevant indicated interests: Harmonic analysis, the `2 decoupling theorem, pseudo-differential
operators, dispersive PDEs, wave equations, spectral theory, operator theory, functional analysis,
geometric measure theory.

Schedule: The class meets Tuesdays and Fridays 9:15 am – 10:15 am from 6th January to 13th
March 2020. The lectures will be supplemented with additional contact hours and meetings for
discussion between students.

Textbooks: The topic of this course is a very recent development and no textbooks are available.
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A comprehensive bibliography will be made available to the students on the course webpage.

Assessment: Whilst the initial lectures will be given by the instructor, the students will be asked
to choose a topic to present later as the course progresses. A list of topics will be prepared and made
available at the outset of the course, with the option for students to suggest their own (relevant)
topic if they so wish. The syllabus is particularly conducive to this approach: we hope to explore
various applications of the decoupling theory and each application should fill 1 - 2 sessions. Support
for the students will be provided through office hours. The students will also be asked to prepare
a latex write up of the topic they present. Ideally, these reports will be compiled at the end of the
course and will be made publicly available and are likely to prove a valuable reference for the wider
mathematical community.

Prerequisites: A modest background in functional analysis and measure theory: Lp spaces, in-
terpolation of operators, Hölder and Minkowski inequalities, etc. Elementary theory of the Fourier
transform: Schwartz functions, Fourier inversion, Plancherel’s theorem. The course will aim to de-
velop some basic understanding of the Fourier transform at a heuristic level and should be accessible
to students working in pure analysis in a broad sense.

References

[1] J. Bennett, A. Carbery, and T. Tao. On the multilinear restriction and Kakeya conjectures. Acta Math.,
196(2):261–302, 2006.

[2] J. Bourgain and C. Demeter. The proof of the l2 decoupling conjecture. Ann. of Math. (2), 182(1):351–389, 2015.

[3] J. Bourgain and L. Guth. Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct.
Anal., 21(6):1239–1295, 2011.

[4] T. Wolff. Local smoothing type estimates on Lp for large p. Geom. Funct. Anal., 10(5):1237–1288, 2000.

2


	References

