Dynamics near the ground state energy for the Cubic Nonlinear Klein-Gordon equation in 3D

MIGSAA Extended Project 2017

Supervisors: Tadahiro Oh, Oana Pocovnicu

We consider the cubic nonlinear Klein-Gordon equation (NLKG):

$$\begin{cases} \partial_t^2 u - \Delta u + u = u^3, & (x,t) \in \mathbb{R}^3 \times \mathbb{R} \\ (u(0), \partial_t u(0)) \in \mathcal{H} := H^1_{\text{rad}}(\mathbb{R}^3) \times L^2_{\text{rad}}(\mathbb{R}^3) \end{cases}$$

Conserved Energy:

$$E(u, \partial_t u)(t) := \int_{\mathbb{R}^3} \left(\frac{1}{2} u^2 + \frac{1}{2} |\nabla u|^2 + \frac{1}{2} (\partial_t u)^2 - \frac{1}{4} u^4 \right) dx.$$

Dynamics of NLKG understood below the ground state, Q, the unique, smooth, positive, radial solution in H^1 of $-\Delta Q + Q = Q^3$.

Dichotomy below the ground state (Payne-Sattinger Theory) [1, 2]

Let $K_0(\varphi) := \int \varphi^2 + |\nabla \varphi|^2 - \varphi^4 dx$, and define the regions

$$\mathcal{PS}_{+} = \{ \vec{u} \in \mathcal{H} : E(\vec{u}) < J(Q), \ K_{0}(u) \ge 0 \},$$

$$\mathcal{PS}_{-} = \{ \vec{u} \in \mathcal{H} : E(\vec{u}) < J(Q), \ K_{0}(u) < 0 \}.$$

Then \mathcal{PS}_{\pm} are *invariant* under the (NLKG) flow and solutions in \mathcal{PS}_{+} exists *globally in time* and *scatter*, while those in \mathcal{PS}_{-} blow-up in finite time $(t \to \pm \infty)$.

Above the ground state

We now enter the perturbative regime

$$E(Q,0) \le E(u,\partial_t u) < E(Q,0) + \epsilon^2,$$

where $\epsilon \ll 1$, which was studied by Nakanishi-Schlag [3, 4, 5]. Their theory combines Dispersive PDE, Dynamical systems and Spectral analysis techniques.

Linearise (NLKG) about (Q, 0) to obtain the system (u =: Q + v):

$$\partial_t \begin{pmatrix} v \\ \dot{v} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ -L_+ & 0 \end{bmatrix}}_{-\cdot A} \begin{pmatrix} v \\ \dot{v} \end{pmatrix} + \begin{pmatrix} 0 \\ N(v) \end{pmatrix},$$

where $L_+ := -\Delta + 1 - 3Q^2$. Analysing the spectra of A reveals we can write

$$u(t,x) = Q + \frac{\lambda(t)\rho(x)}{\lambda(t)} + \gamma(t,x),$$

where λ contains *stable* and *unstable* modes and γ is 'radiation.' *Projecting away unstable modes of* λ : Construction of center-stable (invariant) manifold W^{cs} .

Dynamics off the center-stable manifold

Q: What happens away from $(\pm Q, 0)$?

Idea: Mimic Payne-Sattinger theory \Longrightarrow Control sign $K_0(u)$ by studying unstable mode of λ .

The facts (about a 2ϵ -ball around (Q, 0) in d_Q):

- 1. sign K_0 can *only change* if you re-enter the 2ϵ -ball (Variational)
- 2. Solutions not trapped by 2ϵ -ball are ejected (Ejection Lemma)
- 3. Upon exit from 2ϵ -ball, solution *cannot* re-enter (One-Pass)
- ⇒ "Either Trapped or Ejected."

Main technical tool: The non-linear distance function

$$d_Q(\vec{u}(t)) \simeq ||\vec{u}(t) - (Q, 0)||_{\mathcal{H}}.$$

When $d_Q(\vec{u}) \leq \delta_E \ll 1$, we have

$$d_Q^2(\vec{u}(t)) = E(\vec{u}) - J(Q) + k^2 \lambda(t)^2 < \epsilon^2 + k^2 \lambda(t)^2.$$

$$\implies \lambda \text{ dominance: } d_Q(\vec{u}) \simeq |\lambda|$$

Ejection-Lemma [4]

There exists an abs. constant $0 < \delta_X \le \delta_E$ with the following property. Let u(t) be an NLKG solution satisfying

$$d_Q(\vec{u}(0)) \leq \delta_X, \quad E(\vec{u}) < J(Q) + \epsilon^2, \quad \text{and} \quad \frac{d}{dt} \bigg|_{t=0} d_Q(\vec{u}(t)) \geq 0.$$

Then $d_O(\vec{u}(t))$ monotonically increases until hitting δ_X while

$$d_Q(\vec{u}(t)) \simeq d_Q(\vec{u}(0))e^{kt}, \quad \mathfrak{s}K_0(u(t)) \gtrsim d_Q(\vec{u}(t)) - C_*d_Q(\vec{u}(0)),$$

where $\mathfrak{s} \in \{\pm 1\}$ is a fixed sign and C_* an abs. constant.

The ejection lemma has two important immediate corollaries:

Corollary 1: There is no solution which *circulates* ($2\epsilon < d_Q(\vec{u}(t)) < \delta_X$ for all $t \ge 0$)

Corollary 2: Suppose $d_Q(\vec{u}(0)) \ll \delta_X$ and $\vec{u}(t)$ is *not trapped* by the 2ϵ -ball about (Q,0). Then \vec{u} is *ejected* to δ_X .

(1)+(2)=Insufficient: No chance for sign K_0 to stabilize!

Idea: Limit number of times solution can return to 2ϵ -ball. Equivalent to excluding *almost homoclinic orbits*.

One-Pass Theorem [4]

There exists an abs. constant $2\epsilon \ll R_* \ll \delta_X$ such that if an NLKG solution u satisfies for some $R \in (2\epsilon, R_*]$ and $t_1 < t_2$,

$$E(\vec{u}) < J(Q) + \epsilon^2, \quad d_Q(\vec{u}(t_1)) < R = d_Q(\vec{u}(t_2)),$$

then for all $t > t_2$, $d_Q(\vec{u}(t)) \ge R$.

This leads to the following classification of the behaviour:

Nine-set Theorem [4]

The set of solutions to (NLKG) are characterised by three possibilities, each of which can occur either forward or backward in time: scattering to zero, finite time blow-up or trapping by the ground states. Thus the solution set splits into nine non-empty sets.

- [1] L.E. Payne, D.H. Sattinger, *Saddle points and instability of nonlinear hyperbolic equations*, Israel Journal of Mathematics, 22 (1975), no. 3, 273–303.
- [2] S. Ibrahim, N. Masmoudi, and K. Nakanishi, *Scattering thershold for the focusing nonlinear Klein-Gordon equation*, Analysis and PDE 4 (2011), no. 3, 405—460.
- [3] K. Nakanishi, W. Schlag, *Invariant Manifolds and Dispersive Hamiltonian Evolution Equations*, Zurich Lectures in Advanced Mathematics, EMS Publishing House (2011).
- [4] K. Nakanishi, W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Diff. Eq 250, (2011), no. 5, 2299–2333.
- [5] K. Nakanishi, W. Schlag, Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Archive for Rational Mechanics and Analysis 203 (2012), no. 3, pp. 809–851.