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We consider the cubic nonlinear Klein-Gordon equation (NLKG):
Ou—Autu=u’, (z,t) ERIxR
(u(0), Opu(0)) € H = H 4(R%) x L7 4(R’)
Conserved Energy:

1 1 1 1
E(u, Oru)(t) = / (—u2 + 2| Vul|? + =(0pu)* — —u4) dx.
Ra\ 20 9 2 4

Dynamics of NLKG understood below the ground state, @), the
unique, smooth, positive, radial solution in A4 Lof —AQ +Q = Q°.

Dichotomy below the ground state (Payne-Sattinger Theory) [1, 2]

Let Ko(p) = [ ¢+ |V¢|? — ¢* dz, and define the regions

PS+={ueH : E(u) <J(Q), Ko(u) >0},
PS_ ={icH : E@ < JQ), Kyu) <D0},

Then PS4 are invariant under the (NLKG) flow and solutions in
PS . exists globally in time and scatter, while those in ‘PS_ blow-up

in finite time (t — £00).

Above the ground state
We now enter the perturbative regime

E(Q,0) < E(u,du) < E(Q,0) + €,

where € < 1, which was studied by Nakanishi-Schlag [3, 4, 5]. Their
theory combines Dispersive PDE, Dynamical systems and Spectral

analysis techniques.
Linearise (NLKG) about (@, 0) to obtain the system (u =: Q) + v):

n(5) = Lol () (vio)

— A

where L := —A + 1 — 3Q°. Analysing the spectra of A reveals we can
write

ult,z) = Q+ All)p(x) + (¢, x),
where )\ contains stable and unstable modes and ~ is ‘radiation.”

Projecting away unstable modes of A\: Construction of center-stable (in-
variant) manifold W,

Dynamics off the center-stable manifold
Q: What happens away from (£, 0)?
Idea: Mimic Payne-Sattinger theory = Control sign /{)(u) by study-
ing unstable mode of \.
The facts (about a 2e-ball around (Q, 0) in d)):

1. sign Ky can only change if you re-enter the 2e-ball (Variational)
2. Solutions not trapped by 2e-ball are ejected (Ejection Lemma)
3. Upon exit from 2e-ball, solution cannot re-enter (One-Pass)

—> “Either Trapped or Ejected.”
Main technical tool: The non-linear distance function

do(u(t)) = [lu(t) — (Q,0)[l%.
When d(u) < dp < 1, we have
doii(t)) = E(i) — J(Q) + k*At)” < € + k" A(t)".

= A dominance: do(u) == |A|

Fjection-Lemma [4]

There exists an abs. constant 0 < dy < 0 with the following prop-
erty. Let u(t) be an NLKG solution satisfying

do((0) <oy, E(@) < J(Q) +¢ and jtton@(t)) =0

Then d(u(t)) monotonically increases until hitting ¢ x while

dolii(t)) = do(@(0)e"!,  sKo(u(t)) 2 do(a(t)) — Crdg(@(0)),

where s € {-£1} is a fixed sign and C an abs. constant.
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The ejection lemma has two important immediate corollaries:

Corollary 1: There is no solution which circulates (2¢ < dg(u(t)) <
dx forallt > 0)

Corollary 2: Suppose d(u(0)) < dx and u(t) is not trapped by the
2e-ball about (@, 0). Then « is ejected to dx.

(1)+(2)=Insufficient: No chance for sign K to stabilize!
A 5X

A

Idea: Limit number of times solution can return to 2e-ball. Equiva-
lent to excluding almost homoclinic orbits.

0
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Homoclinic
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(@, 0)

One-Pass Theorem [4]

There exists an abs. constant 2¢ < Ry« < 0x such that if an NLKG
solution u satisfies for some R € (2¢, R«| and t| < to,

E(@) < J(@Q)+ ¢, dgli(tr)) < R = dg(i(ty)),

then for all ¢ > 19, d(u(t)) > R.

sign Ky(u)
constant

\/ 2€

This leads to the following classification of the behaviour:

Cor. 1:
>

Enter 2€ ball?

[ Start inside 2€ ball } {Start outside 2€ ball]
Cannot circulate

= } J

Cor.2 : Ejected to Oy Slgn Ko(u) Ejection Lemma
One-Pass: No return to R* stabilizes One Pass: No return to R,

sign Ko(u / w{o(u) = +1

Flmte time Global
blow-up existence

Nine-set Theorem [4]

The set of solutions to (NLKG) are characterised by three possibil-
ities, each of which can occur either forward or backward in time:
scattering to zero, finite time blow-up or trapping by the ground states.

Thus the solution set splits into nine non-empty sets.
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