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We consider the cubic nonlinear Klein-Gordon equation (NLKG):{
∂2
tu−∆u + u = u3, (x, t) ∈ R3 × R

(u(0), ∂tu(0)) ∈ H := H1
rad(R3)× L2

rad(R3)

Conserved Energy:
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Dynamics of NLKG understood below the ground state, Q, the
unique, smooth, positive, radial solution in H1 of −∆Q + Q = Q3.

Dichotomy below the ground state (Payne-Sattinger Theory) [1, 2]

Let K0(ϕ) :=
∫
ϕ2 + |∇ϕ|2 − ϕ4 dx, and define the regions

PS+ = {~u ∈ H : E(~u) < J(Q), K0(u) ≥ 0},
PS− = {~u ∈ H : E(~u) < J(Q), K0(u) < 0}.

Then PS± are invariant under the (NLKG) flow and solutions in
PS+ exists globally in time and scatter, while those in PS− blow-up
in finite time (t→ ±∞).

Above the ground state
We now enter the perturbative regime

E(Q, 0) ≤ E(u, ∂tu) < E(Q, 0) + ε2,

where ε � 1, which was studied by Nakanishi-Schlag [3, 4, 5]. Their
theory combines Dispersive PDE, Dynamical systems and Spectral
analysis techniques.

Linearise (NLKG) about (Q, 0) to obtain the system (u =: Q + v):
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where L+ := −∆ + 1− 3Q2. Analysing the spectra of A reveals we can
write

u(t, x) = Q + λ(t)ρ(x) + γ(t, x),

where λ contains stable and unstable modes and γ is ‘radiation.’
Projecting away unstable modes of λ: Construction of center-stable (in-
variant) manifold W cs.

Dynamics off the center-stable manifold
Q: What happens away from (±Q, 0)?

Idea: Mimic Payne-Sattinger theory =⇒ Control signK0(u) by study-
ing unstable mode of λ.

The facts (about a 2ε-ball around (Q, 0) in dQ):
1. signK0 can only change if you re-enter the 2ε-ball (Variational)
2. Solutions not trapped by 2ε-ball are ejected (Ejection Lemma)
3. Upon exit from 2ε-ball, solution cannot re-enter (One-Pass)
=⇒ “Either Trapped or Ejected.”

Main technical tool: The non-linear distance function

dQ(~u(t)) ' ‖~u(t)− (Q, 0)‖H.

When dQ(~u) ≤ δE � 1, we have

d2
Q(~u(t)) = E(~u)− J(Q) + k2λ(t)2 < ε2 + k2λ(t)2.

=⇒ λ dominance: dQ(~u) ' |λ|

Ejection-Lemma [4]
There exists an abs. constant 0 < δX ≤ δE with the following prop-
erty. Let u(t) be an NLKG solution satisfying

dQ(~u(0)) ≤ δX , E(~u) < J(Q) + ε2, and
d

dt

∣∣∣∣
t=0

dQ(~u(t)) ≥ 0.

Then dQ(~u(t)) monotonically increases until hitting δX while

dQ(~u(t)) ' dQ(~u(0))ekt, sK0(u(t)) & dQ(~u(t))− C∗dQ(~u(0)),

where s ∈ {±1} is a fixed sign and C∗ an abs. constant.

The ejection lemma has two important immediate corollaries:

Corollary 1: There is no solution which circulates (2ε < dQ(~u(t)) <
δX for all t ≥ 0)
Corollary 2: Suppose dQ(~u(0)) � δX and ~u(t) is not trapped by the
2ε-ball about (Q, 0). Then ~u is ejected to δX .

(1)+(2)=Insufficient: No chance for signK0 to stabilize!

Idea: Limit number of times solution can return to 2ε-ball. Equiva-
lent to excluding almost homoclinic orbits.

One-Pass Theorem [4]
There exists an abs. constant 2ε � R∗ � δX such that if an NLKG
solution u satisfies for some R ∈ (2ε, R∗] and t1 < t2,

E(~u) < J(Q) + ε2, dQ(~u(t1)) < R = dQ(~u(t2)),

then for all t > t2, dQ(~u(t)) ≥ R.

This leads to the following classification of the behaviour:

Nine-set Theorem [4]
The set of solutions to (NLKG) are characterised by three possibil-
ities, each of which can occur either forward or backward in time:
scattering to zero, finite time blow-up or trapping by the ground states.
Thus the solution set splits into nine non-empty sets.
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