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Recap from William



The setup

We consider the cubic nonlinear Klein-Gordon equation (NLKG):

∂2t u −∆u + u = u3, (x , t) ∈ R3 × R
~u(0) = (u(0), ∂tu(0)) ∈ H := H1(R3)× L2(R3)

Energy:

E (~u)(t) :=

ˆ
R3

(
1

2
u2 +

1

2
|∇u|2 +

1

2
(∂tu)2 − 1

4
u4
)

dx

Dynamics of NLKG understood about the ground state, Q, the unique,

positive, radial solution in H1 of

−∆Q + Q = Q3.

Properties:

• Q ∈ C∞(R3) and exponentially decaying

• Minimizer of the stationary energy

J(ϕ) :=

ˆ
R3

(
1

2
ϕ2 +

1

2
|∇ϕ|2 − 1

4
ϕ4

)
dx
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Dynamics below the ground state

Payne-Sattinger, 1975: Behaviour dictated by the sign of a functional K0:

K0(ϕ) := ∂λ|λ=0 J(eλϕ) =

ˆ (
|∇ϕ|2 + |ϕ|2 − |ϕ|4

)
dx ,

PS+ = {~u ∈ H : E (~u) < J(Q), K0(u) ≥ 0}

PS− = {~u ∈ H : E (~u) < J(Q), K0(u) < 0}

PS+ : Global solutions

PS− : Finite time blow-up
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Scattering in PS+



Scattering

A global solution u scatters if there exists initial data (v0, v1) ∈ H such

that

‖~u(t)− S0(t)(v0, v1)‖H → 0, as t →∞,
where S0(t) is the free Klein-Gordon evolution.

A global solution u scatters ⇐⇒ ‖u‖L3
t ([0,∞);L6

x (R3)) <∞.
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Improvement to Payne-Sattinger theory

Theorem (Ibrahim-Masmoudi-Nakanishi, 2011)

All solutions ~u(t) ∈ PS+ scatter as t → ±∞ and ‖u‖L3
t L

6
x
<∞.
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Ingredients of proof

Radial case:

• Small data, scattering theory

• Profile decomposition/ Concentrated compactness

• Perturbation lemma

• Virial-type argument

Non-radial case:

• More involved profile decomposition

• Refined virial argument using momentum and Lorentz

transformations
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Idea of proof

Proof.

By contradiction (×9)
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Proof.
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Idea of proof
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Invariant manifolds



Above the ground state

J(Q) ≤ E (~u) < J(Q) + ε2

We perturb about the ground state by writing u = Q + v ; obtaining the

system

∂t

(
v

v̇

)
=

[
0 1

−L+ 0

]
︸ ︷︷ ︸

=:A

(
v

v̇

)
+

(
0

N(v)

)
,

where

L+ := −∆ + 1− 3Q2.

Spectral properties of L+ and A on L2rad :

• σ(L+) = {−k2} ∪ [1,∞)

• ⇒ σ(A) = {±k} ∪ i [1,∞) ∪ i (−∞,−1]

• Gap property: L+ has no eigenvalues in (0, 1] and no resonance at 1.
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The center-stable manifold

Theorem (Nakanishi-Schlag, 2011)

Assume that the gap property for L+ holds.

Then there exists a smooth graph M contained in a small ball

B(Q, 0) ⊂ Hrad with tangent plane

TQM = {(v0, v1) ∈ H | 〈kv0 + v1 | ρ} = 0}.

Any data (u0, u1) ∈M lead to global evolutions of the form u = Q + v

where v scatters to a free KG solution in H. Furthermore, M is

invariant under the flow for all t ≥ 0.

• The stable and unstable manifolds are obtained as corollaries.

• Lyapunov-Perron method: Requires full description of the spectrum

of L+ but gives scattering and stability information. Generalizes to

other powers of the non-linearity.

“Needs more but gives more”
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Proof: The Lyapunov-Perron method

Further decompose v = λ(t)ρ+ γ(t), γ ⊥ ρ, where L+ρ = −k2ρ. Then

for (λ, γ) ∈ R× P⊥ρ (H1)λ̈− k2λ = 〈N(v) | ρ〉 =: Nρ(v),

γ̈ + ω2γ = P⊥ρ N(v), ω :=
√

P⊥ρ L+
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Proof: The Lyapunov-Perron method

Further decompose v = λ(t)ρ+ γ(t), γ ⊥ ρ, where L+ρ = −k2ρ. Then

for (λ, γ) ∈ R× P⊥ρ (H1)λ̈− k2λ = 〈N(v) | ρ〉 =: Nρ(v),

γ̈ + ω2γ = P⊥ρ N(v), ω :=
√

P⊥ρ L+

Under the stability condition

λ̇(0) + kλ(0) = −
ˆ ∞
0

e−ksNρ(v)(s) ds,

we look for solutions to

Γλ(t) = e−kt
[
λ(0) +

1

2k

ˆ ∞
0

e−ksNρ(v)(s) ds

]
+

1

2k

ˆ ∞
0

e−k|t−s|Nρ(v)(s) ds,

Γγ(t) = cos(ωt)γ(0) +
sin(ωt)

ω
γ̇(0) +

ˆ t

0

sin(ω(t − s))

ω
P⊥ρ N(v)(s) ds.
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Proof: The Lyapunov-Perron method

Further decompose v = λ(t)ρ+ γ(t), γ ⊥ ρ, where L+ρ = −k2ρ. Then

for (λ, γ) ∈ R× P⊥ρ (H1)λ̈− k2λ = 〈N(v) | ρ〉 =: Nρ(v),

γ̈ + ω2γ = P⊥ρ N(v), ω :=
√

P⊥ρ L+

Need Strichartz estimates for e itω: Heavy machinery!
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What’s up next?



Cool manifolds, so what?
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Thank you.
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