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Recap from William



We consider the cubic nonlinear Klein-Gordon equation (NLKG):
?u—Au+u=1® (x,t)eR3xR
6(0) = (u(0), 0u(0)) € H 1= Higq(R?) x L7,4(R?)

. 1 1 1 1
E(u(t)) := /]R3 (2u2 + §|Vu\2 + 5(8tu)2 - 4u4) dx

Dynamics of NLKG understood below the , @, the unique,
positive, radial solution in H* of

-AQ+ Q=@
Properties:

e Q € C°°(IR?) and exponentially decaying
e Minimizer of the stationary energy

_ 1y 1o 2 1,4
J(p) = /R3 (2<p +2|Vs0| 4@) dx



Dynamics below the ground state

Payne-Sattinger, 1975: Behaviour dictated by the sign of a functional Kjy:

Kalio) = / (IVel + P — lol*) dix,

{GeH : E(d) < J(Q), Ko(u) >0} = Global Solutions
{teH : E(d) <JQ), Ko(u) <0} = Finite time blow-up



Above the ground state




E(0) < J(Q) + €2

Perturb about the ground state u = Q + v; obtain the system

0-[2 40-(o)

= A
where
L, i=—-A+1-3Q%
o(Ly) a(4)
Lyp=—k?p l_i:=_1
¢ r; NPV >
_kz 1L —k —i k
5




u=Q-+v

|

u(t,x) = Q(x) + A(t)p(x) + (P, v)(t, x)

Projecting away unstable modes of \: Center-stable manifold W<
(Interim presentations)



Dynamics off center-stable
manifold




Control sign Koy(u)



Mechanics of the game

Not
Trapped
Trapped

The pieces:

1. sign Ky can only change if you re-enter the 2e-ball
2. Solutions not trapped by 2e-ball are ejected (Ejection Lemma)
3. Upon exit from 2e-ball, solution cannot re-enter (One-Pass)

— “Either Trapped or Ejected.” 6



A notion of distance

Main technical tool: The non-linear distance function

do(i(t)) = [|d(t) = (Q, 0) |-

“Distance measure in H taking into account the non-linearity in NLKG."

do(b) < dg <1
4
dg(d(t)) = E(d) — J(Q) + K*A(t)*.



A notion of distance

Main technical tool: The non-linear distance function

do(i(t)) = [|d(t) = (Q, 0) |-

“Distance measure in H taking into account the non-linearity in NLKG."

do(b) < dg <1
4
F(i(2)) = E(7) - HQ) + KAt



A notion of distance

Main technical tool: The non-linear distance function

do(d(t)) = [|d(t) = (Q, 0)l3-

“Distance measure in H taking into account the non-linearity in NLKG."

do(u) < de <1
J
d3(@(t)) = E(@) — H(Q)+KA(1)*.

< €2



A notion of distance

Main technical tool: The non-linear distance function

do(u(t)) = [[a(t) = (Q, 0)[|-

“Distance measure in A taking into account the non-linearity in NLKG."

do(b) < dp <1
U
dé(ﬂ(t)) = E(d) — J(Q) +K>\(t)°.

<e2

= X dominance: do(4) =~ |}
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(2) Ejection Lemma

Ejection Lemma (Nakanishi-Schlag, 2011)
There exists an abs. constant 0 < dx < dg with the following property.
Let u(t) be an NLKG solution satisfying

0 < do(@i(0)) < dx, E(d) < J(Q) + €,

and



(2) Ejection Lemma

Ejection Lemma (Nakanishi-Schlag, 2011)
There exists an abs. constant 0 < dx < dg with the following property.
Let u(t) be an NLKG solution satisfying

0 < do(@i(0)) < dx, E(d) < J(Q) + €,

and

Then dg(i(t)) monotonically increases until hitting dx while

=~ dq(u(0))e™,  sKo(u(t)) Z do((t)) — C.do(u(0)),

where is a fixed sign and C, an abs. constant.



(2) Ejection Lemma cont.

Proof (sketch):
Differentiating d(i(t)) = E(d) — J(Q) + k*A(t)?, using

A~ KX =P,N(v)
and A dominance implies
R d3((t)) ~ k23 (d(1)).

t

If we had equality, solve the ODE to get ' and e~ modes. O



(2) Not trapped implies ejection

Corollary 1: There is no circulating solution (2 < do(d(t)) < dx for all
t >0).

0 2 R ©6x 6
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(2) Not trapped implies ejection

Corollary 1: There is no circulating solution (2 < do(d(t)) < dx for all
t > 0).

Proof.

Min achieved Min not achieved

8x Sx

2€ 2€
azdg (b)) = €2

atdé(ﬁ(t)) -0, t>®
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(2) Not trapped implies ejection

Corollary 1: There is no circulating solution (2 < do(d(t)) < dx for all
t > 0).

Proof.

Min achieved Min not achieved

Sy N\ s,

2€ 2€
/ AN v 02d3(u(t)) z\e*\

atdé(ﬁ(t)) -0, t>®
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(2) Not trapped implies ejection

Corollary 1: There is no circulating solution (2 < dg(ii(t)) < dx for all
t>0).

Corollary 2: Suppose dq(4(0)) < dx and u(t) is not trapped by the
2e¢-ball about (@Q,0). Then & is ejected to dx.

10



(2) Not trapped implies ejection

Corollary 1: There is no circulating solution (2¢ < dg(4(t)) < dx for all
t >0).

Corollary 2: Suppose do(d(0)) < dx and @(t) is not trapped by the
2e-ball about (Q,0). Then & is ejected to dx.

Proof.
Never enters 2¢-ball: Cannot circulate = Ejection Lemma

Enters 2e-ball: Not trapped = exits at some time t = T. Apply Ejection
Lemmaatt=T. O

0 2€ R, SX 55
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(1)+(2)=Insufficient

1. sign Ky can only change if you re-enter the 2¢-ball.

A AN {, S W )

No chance for sign Kj to stabilize!
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(3) One-Pass

Idea: Limit number of times solution can return to 2e-ball.

“Almost”
Homoclinic
Homoclinic Orbit
Orbit
° (Q.0)
,0 ’
0.0) 2

Can only make ‘one-pass.’

12



(3) One-Pass

One-Pass (Nakanishi-Schlag, 2011)
There exists an abs. constant 2¢ < R, < dx such that if an NLKG
solution u satisfies for some R € (2¢, R.] and t; < to,

E(@) < J(Q) + ¢, do(i(t)) < R = do(i(t2)),

13
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(3) One-Pass

One-Pass (Nakanishi-Schlag, 2011)
There exists an abs. constant 2¢ < R, < dx such that if an NLKG
solution u satisfies for some R € (2¢, R.] and t; < to,

E(@) < J(Q) + ¢, do(i(t)) < R = do(i(t2)),

then for all

sign Ky(u)
___________________ R, constant
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The full picture




Classification of global behaviour

( Start inside 2€ ball ’ ‘ Start outside 2€ ballJ

. Cor. 1:
Trapped" \><—< Enter2€ ball? >—> Or_
/ \ Cannot circulate
\\ N /

A
Cor.2 : Ejected to dx sign Ko(u) Ejection Lemma
One-Pass: No return to R, stabilizes One-Pass: No return to R,

sign Ko(u) = -1

Finite time
blow-up

sign Ko(u) = +1

Global
existence

14



Thank you.
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