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Recap from William



The setup

We consider the cubic nonlinear Klein-Gordon equation (NLKG):

∂2t u −∆u + u = u3, (x , t) ∈ R3 × R
~u(0) = (u(0), ∂tu(0)) ∈ H := H1

rad(R3)× L2rad(R3)

Energy:

E (~u(t)) :=

ˆ
R3

(
1

2
u2 +

1

2
|∇u|2 +

1

2
(∂tu)2 − 1

4
u4
)

dx

Dynamics of NLKG understood below the ground state, Q, the unique,

positive, radial solution in H1 of

−∆Q + Q = Q3.

Properties:

• Q ∈ C∞(R3) and exponentially decaying

• Minimizer of the stationary energy

J(ϕ) :=

ˆ
R3

(
1

2
ϕ2 +

1

2
|∇ϕ|2 − 1

4
ϕ4

)
dx
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Dynamics below the ground state

Payne-Sattinger, 1975: Behaviour dictated by the sign of a functional K0:

K0(ϕ) :=

ˆ (
|∇ϕ|2 + |ϕ|2 − |ϕ|4

)
dx ,

{~u ∈ H : E (~u) < J(Q), K0(u) ≥ 0} =⇒ Global Solutions

{~u ∈ H : E (~u) < J(Q), K0(u) < 0} =⇒ Finite time blow-up
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Above the ground state



E (~u) < J(Q) + ε2

Perturb about the ground state u = Q + v ; obtain the system

∂t

(
v

v̇

)
=

[
0 1

−L+ 0

]
︸ ︷︷ ︸

=:A

(
v

v̇

)
+

(
0

N(v)

)
,

where

L+ := −∆ + 1− 3Q2.
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E (~u) < J(Q) + ε2

u = Q + vw�
u(t, x) = Q(x) + λ(t)ρ(x) + (P⊥ρ v)(t, x)

Projecting away unstable modes of λ: Center-stable manifold W cs

(Interim presentations)
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Dynamics off center-stable

manifold



Control signK0(u)
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Mechanics of the game

The pieces:

1. signK0 can only change if you re-enter the 2ε-ball

2. Solutions not trapped by 2ε-ball are ejected (Ejection Lemma)

3. Upon exit from 2ε-ball, solution cannot re-enter (One-Pass)

=⇒ “Either Trapped or Ejected.” 6



A notion of distance

Main technical tool: The non-linear distance function

dQ(~u(t)) ' ‖~u(t)− (Q, 0)‖H.

“Distance measure in H taking into account the non-linearity in NLKG.”

dQ(~u) ≤ δE � 1

⇓

d2
Q(~u(t)) = E (~u)− J(Q) + k2λ(t)2.
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(2) Ejection Lemma

Ejection Lemma (Nakanishi-Schlag, 2011)

There exists an abs. constant 0 < δX ≤ δE with the following property.

Let u(t) be an NLKG solution satisfying

0 < dQ(~u(0)) ≤ δX , E (~u) < J(Q) + ε2,

and
d

dt

∣∣∣∣
t=0

dQ(~u(t)) ≥ 0.

Then dQ(~u(t)) monotonically increases until hitting δX while

dQ(~u(t)) ' dQ(~u(0))ekt , sK0(u(t)) & dQ(~u(t))− C∗dQ(~u(0)),

where s ∈ {±1} is a fixed sign and C∗ an abs. constant.
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(2) Ejection Lemma cont.

Proof (sketch):

Differentiating d2
Q(~u(t)) = E (~u)− J(Q) + k2λ(t)2, using

λ̈− k2λ = PρN(v)

and λ dominance implies

∂2t d
2
Q(~u(t)) ' k2d2

Q(~u(t)).

If we had equality, solve the ODE to get ekt and e−kt modes.
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(2) Not trapped implies ejection

Corollary 1: There is no circulating solution (2ε < dQ(~u(t)) < δX for all

t ≥ 0).
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(2) Not trapped implies ejection

Corollary 1: There is no circulating solution (2ε < dQ(~u(t)) < δX for all

t ≥ 0).

Corollary 2: Suppose dQ(~u(0))� δX and ~u(t) is not trapped by the

2ε-ball about (Q, 0). Then ~u is ejected to δX .

Proof.

Never enters 2ε-ball: Cannot circulate ⇒ Ejection Lemma

Enters 2ε-ball: Not trapped ⇒ exits at some time t = T . Apply Ejection

Lemma at t = T .
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(1)+(2)=Insufficient

1. signK0 can only change if you re-enter the 2ε-ball.

No chance for signK0 to stabilize!
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(3) One-Pass

Idea: Limit number of times solution can return to 2ε-ball.

Can only make ‘one-pass.’
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(3) One-Pass

One-Pass (Nakanishi-Schlag, 2011)

There exists an abs. constant 2ε� R∗ � δX such that if an NLKG

solution u satisfies for some R ∈ (2ε,R∗] and t1 < t2,

E (~u) < J(Q) + ε2, dQ(~u(t1)) < R = dQ(~u(t2)),

then for all t > t2, dQ(~u(t)) ≥ R.
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The full picture



Classification of global behaviour
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Thank you.
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