Global dynamics above the ground state energy for the 3D cubic nonlinear Klein-Gordon equation

Part 2

Justin Forlano

Supervisors: Tadahiro Oh and Oana Pocovnicu

Table of contents

1. Recap from William
2. Above the ground state
3. Dynamics off center-stable manifold
4. The full picture

Recap from William

The setup

We consider the cubic nonlinear Klein-Gordon equation (NLKG):

$$
\begin{aligned}
& \partial_{t}^{2} u-\Delta u+u=u^{3}, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R} \\
& \vec{u}(0)=\left(u(0), \partial_{t} u(0)\right) \in \mathcal{H}:=H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{3}\right) \times L_{\mathrm{rad}}^{2}\left(\mathbb{R}^{3}\right)
\end{aligned}
$$

Energy:

$$
E(\vec{u}(t)):=\int_{\mathbb{R}^{3}}\left(\frac{1}{2} u^{2}+\frac{1}{2}|\nabla u|^{2}+\frac{1}{2}\left(\partial_{t} u\right)^{2}-\frac{1}{4} u^{4}\right) d x
$$

Dynamics of NLKG understood below the ground state, Q, the unique, positive, radial solution in H^{1} of

$$
-\Delta Q+Q=Q^{3} .
$$

Properties:

- $Q \in C^{\infty}\left(\mathbb{R}^{3}\right)$ and exponentially decaying
- Minimizer of the stationary energy

$$
J(\varphi):=\int_{\mathbb{R}^{3}}\left(\frac{1}{2} \varphi^{2}+\frac{1}{2}|\nabla \varphi|^{2}-\frac{1}{4} \varphi^{4}\right) d x
$$

Dynamics below the ground state

Payne-Sattinger, 1975: Behaviour dictated by the sign of a functional K_{0} :

$$
K_{0}(\varphi):=\int\left(|\nabla \varphi|^{2}+|\varphi|^{2}-|\varphi|^{4}\right) d x,
$$

$$
\begin{aligned}
& \left\{\vec{u} \in \mathcal{H}: E(\vec{u})<J(Q), K_{0}(u) \geq 0\right\} \quad \Longrightarrow \text { Global Solutions } \\
& \left\{\vec{u} \in \mathcal{H}: E(\vec{u})<J(Q), K_{0}(u)<0\right\} \Longrightarrow \text { Finite time blow-up }
\end{aligned}
$$

Above the ground state

$E(\vec{u})<J(Q)+\epsilon^{2}$

Perturb about the ground state $u=Q+v$; obtain the system

$$
\partial_{t}\binom{v}{\dot{v}}=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-L_{+} & 0
\end{array}\right]}_{=: A}\binom{v}{\dot{v}}+\binom{0}{N(v)},
$$

where

$$
L_{+}:=-\Delta+1-3 Q^{2} .
$$

$$
\begin{gathered}
u=Q+v \\
\Downarrow \\
u(t, x)=Q(x)+\lambda(t) \rho(x)+\left(P_{\rho}^{\perp} v\right)(t, x)
\end{gathered}
$$

Projecting away unstable modes of λ : Center-stable manifold $W^{c s}$ (Interim presentations)

Dynamics off center-stable manifold

Control sign $K_{0}(u)$

Mechanics of the game

The pieces:

1. sign K_{0} can only change if you re-enter the 2ϵ-ball
2. Solutions not trapped by 2ϵ-ball are ejected (Ejection Lemma)
3. Upon exit from 2ϵ-ball, solution cannot re-enter (One-Pass)

A notion of distance

Main technical tool: The non-linear distance function

$$
d_{Q}(\vec{u}(t)) \simeq\|\vec{u}(t)-(Q, 0)\|_{\mathcal{H}} .
$$

"Distance measure in \mathcal{H} taking into account the non-linearity in NLKG."

$$
\begin{gathered}
d_{Q}(\vec{u}) \leq \delta_{E} \ll 1 \\
\Downarrow \\
d_{Q}^{2}(\vec{u}(t))=E(\vec{u})-J(Q)+k^{2} \lambda(t)^{2} .
\end{gathered}
$$

A notion of distance

Main technical tool: The non-linear distance function

$$
d_{Q}(\vec{u}(t)) \simeq\|\vec{u}(t)-(Q, 0)\|_{\mathcal{H}} .
$$

"Distance measure in \mathcal{H} taking into account the non-linearity in NLKG."

$$
\begin{gathered}
d_{Q}(\vec{u}) \leq \delta_{E} \ll 1 \\
\Downarrow \\
d_{Q}^{2}(\vec{u}(t))=E(\vec{u})-J(Q)+k^{2} \lambda(t)^{2} .
\end{gathered}
$$

A notion of distance

Main technical tool: The non-linear distance function

$$
d_{Q}(\vec{u}(t)) \simeq\|\vec{u}(t)-(Q, 0)\|_{\mathcal{H}} .
$$

"Distance measure in \mathcal{H} taking into account the non-linearity in NLKG."

$$
\begin{gathered}
d_{Q}(\vec{u}) \leq \delta_{E} \ll 1 \\
\Downarrow \\
d_{Q}^{2}(\vec{u}(t))=\underbrace{E(\vec{u})-J(Q)}_{<\epsilon^{2}}+k^{2} \lambda(t)^{2} .
\end{gathered}
$$

A notion of distance

Main technical tool: The non-linear distance function

$$
d_{Q}(\vec{u}(t)) \simeq\|\vec{u}(t)-(Q, 0)\|_{\mathcal{H}} .
$$

"Distance measure in \mathcal{H} taking into account the non-linearity in NLKG."

$$
\begin{gathered}
d_{Q}(\vec{u}) \leq \delta_{E} \ll 1 \\
\Downarrow \\
d_{Q}^{2}(\vec{u}(t))=\underbrace{E(\vec{u})-J(Q)}_{<\epsilon^{2}}+k^{2} \lambda(t)^{2} . \\
\Longrightarrow \lambda \text { dominance: } d_{Q}(\vec{u}) \simeq|\lambda|
\end{gathered}
$$

A notion of distance

Main technical tool: The non-linear distance function

$$
d_{Q}(\vec{u}(t)) \simeq\|\vec{u}(t)-(Q, 0)\|_{\mathcal{H}} .
$$

"Distance measure in \mathcal{H} taking into account the non-linearity in NLKG."

$$
\begin{gathered}
d_{Q}(\vec{u}) \leq \delta_{E} \ll 1 \\
\Downarrow \\
d_{Q}^{2}(\vec{u}(t))=\underbrace{E(\vec{u})-J(Q)}_{<\epsilon^{2}}+k^{2} \lambda(t)^{2} . \\
\Longrightarrow \lambda \text { dominance: } d_{Q}(\vec{u}) \simeq|\lambda|
\end{gathered}
$$

(2) Ejection Lemma

Ejection Lemma (Nakanishi-Schlag, 2011)

There exists an abs. constant $0<\delta_{X} \leq \delta_{E}$ with the following property. Let $u(t)$ be an NLKG solution satisfying

$$
0<d_{Q}(\vec{u}(0)) \leq \delta_{X}, \quad E(\vec{u})<J(Q)+\epsilon^{2},
$$

and

$$
\left.\frac{d}{d t}\right|_{t=0} d_{Q}(\vec{u}(t)) \geq 0 .
$$

(2) Ejection Lemma

Ejection Lemma (Nakanishi-Schlag, 2011)

There exists an abs. constant $0<\delta_{X} \leq \delta_{E}$ with the following property. Let $u(t)$ be an NLKG solution satisfying

$$
0<d_{Q}(\vec{u}(0)) \leq \delta_{X}, \quad E(\vec{u})<J(Q)+\epsilon^{2},
$$

and

$$
\left.\frac{d}{d t}\right|_{t=0} d_{Q}(\vec{u}(t)) \geq 0
$$

Then $d_{Q}(\vec{u}(t))$ monotonically increases until hitting δ_{X} while

$$
d_{Q}(\vec{u}(t)) \simeq d_{Q}(\vec{u}(0)) e^{k t}, \quad s K_{0}(u(t)) \gtrsim d_{Q}(\vec{u}(t))-C_{*} d_{Q}(\vec{u}(0)),
$$

where $\mathfrak{s} \in\{ \pm 1\}$ is a fixed sign and C_{*} an abs. constant.

(2) Ejection Lemma cont.

Proof (sketch):

Differentiating $d_{Q}^{2}(\vec{u}(t))=E(\vec{u})-J(Q)+k^{2} \lambda(t)^{2}$, using

$$
\ddot{\lambda}-k^{2} \lambda=P_{\rho} N(v)
$$

and λ dominance implies

$$
\partial_{t}^{2} d_{Q}^{2}(\vec{u}(t)) \simeq k^{2} d_{Q}^{2}(\vec{u}(t)) .
$$

If we had equality, solve the ODE to get $e^{k t}$ and $e^{-k t}$ modes.

(2) Not trapped implies ejection

Corollary 1: There is no circulating solution $\left(2 \epsilon<d_{Q}(\vec{u}(t))<\delta_{X}\right.$ for all $t \geq 0$).

(2) Not trapped implies ejection

Corollary 1: There is no circulating solution $\left(2 \epsilon<d_{Q}(\vec{u}(t))<\delta_{X}\right.$ for all $t \geq 0$).

Proof.

Min achieved
Min not achieved

(2) Not trapped implies ejection

Corollary 1: There is no circulating solution $\left(2 \epsilon<d_{Q}(\vec{u}(t))<\delta_{X}\right.$ for all $t \geq 0$).

Proof.

Corollary 1: There is no circulating solution $\left(2 \epsilon<d_{Q}(\vec{u}(t))<\delta_{X}\right.$ for all $t \geq 0$).

Proof.

(2) Not trapped implies ejection

Corollary 1: There is no circulating solution $\left(2 \epsilon<d_{Q}(\vec{u}(t))<\delta_{X}\right.$ for all $t \geq 0$).

Corollary 2: Suppose $d_{Q}(\vec{u}(0)) \ll \delta_{X}$ and $\vec{u}(t)$ is not trapped by the 2ϵ-ball about $(Q, 0)$. Then \vec{u} is ejected to δ_{X}.

(2) Not trapped implies ejection

Corollary 1: There is no circulating solution $\left(2 \epsilon<d_{Q}(\vec{u}(t))<\delta_{X}\right.$ for all $t \geq 0$).

Corollary 2: Suppose $d_{Q}(\vec{u}(0)) \ll \delta_{X}$ and $\vec{u}(t)$ is not trapped by the 2ϵ-ball about $(Q, 0)$. Then \vec{u} is ejected to δ_{X}.

Proof.

Never enters 2ϵ-ball: Cannot circulate \Rightarrow Ejection Lemma
Enters 2ϵ-ball: Not trapped \Rightarrow exits at some time $t=T$. Apply Ejection Lemma at $t=T$.

$(1)+(2)=$ Insufficient

1. sign K_{0} can only change if you re-enter the 2ϵ-ball.

No chance for sign K_{0} to stabilize!

(3) One-Pass

Idea: Limit number of times solution can return to 2ϵ-ball.

Can only make 'one-pass.'

(3) One-Pass

One-Pass (Nakanishi-Schlag, 2011)
There exists an abs. constant $2 \epsilon \ll R_{*} \ll \delta_{X}$ such that if an NLKG solution u satisfies for some $R \in\left(2 \epsilon, R_{*}\right]$ and $t_{1}<t_{2}$,

$$
E(\vec{u})<J(Q)+\epsilon^{2}, \quad d_{Q}\left(\vec{u}\left(t_{1}\right)\right)<R=d_{Q}\left(\vec{u}\left(t_{2}\right)\right),
$$

(3) One-Pass

One-Pass (Nakanishi-Schlag, 2011)
There exists an abs. constant $2 \epsilon \ll R_{*} \ll \delta_{X}$ such that if an NLKG solution u satisfies for some $R \in\left(2 \epsilon, R_{*}\right]$ and $t_{1}<t_{2}$,

$$
E(\vec{u})<J(Q)+\epsilon^{2}, \quad d_{Q}\left(\vec{u}\left(t_{1}\right)\right)<R=d_{Q}\left(\vec{u}\left(t_{2}\right)\right),
$$

then for all $t>t_{2}, d_{Q}(\vec{u}(t)) \geq R$.

(3) One-Pass

One-Pass (Nakanishi-Schlag, 2011)
There exists an abs. constant $2 \epsilon \ll R_{*} \ll \delta_{X}$ such that if an NLKG solution u satisfies for some $R \in\left(2 \epsilon, R_{*}\right]$ and $t_{1}<t_{2}$,

$$
E(\vec{u})<J(Q)+\epsilon^{2}, \quad d_{Q}\left(\vec{u}\left(t_{1}\right)\right)<R=d_{Q}\left(\vec{u}\left(t_{2}\right)\right),
$$

then for all $t>t_{2}, d_{Q}(\vec{u}(t)) \geq R$.

$\operatorname{sign} K_{0}(u)$
constant

The full picture

Classification of global behaviour

Thank you.

References

圊
Payne, L. E., Sattinger, D. H., Saddle points and instability of non-linear hyperbolic equations. Israel J. Math. 22 (1975), no. 3-4, 273-303.
Nakanishi, K., Schlag, W., Invariant manifolds and dispersive hamiltonian equations European Mathematical Society Publishing House, (2011) Zurich, Switzerland.

The $3 \times 3=9$ scoops

