BLOWN-UP TORIC SURFACES WITH NON-POLYHEDRAL EFFECTIVE CONE

Ana-Maria Castravet (Versailles)
with Antonio Laface, Jenia Tevelev and Luca Ugaglia

EDGE Wokshop, December 2020

Moduli space of stable Rational curves

- $\mathrm{M}_{0, n}=\left\{\begin{array}{c}p_{1}, \ldots, p_{n} \in \mathbb{P}^{1} \\ p_{i} \neq p_{j}\end{array}\right\} / \mathrm{PGL}_{2}$
- $\mathrm{M}_{0,3}=\mathrm{pt}\left(\right.$ send $\left.p_{1}, p_{2}, p_{3} \rightarrow 0,1, \infty\right)$
- $M_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$ via cross-ratio
- $\overline{\mathrm{M}}_{0,4}=\mathbb{P}^{1}$
- $\bar{M}_{0, n}$ functorial compactification
- $\overline{\mathrm{M}}_{0,5}=\mathrm{dP}_{5}$ (del Pezzo of degree 5)
- $\overline{\mathrm{M}}_{0,6}=$ blow-up of the Segre cubic at the 10 nodes ($-K$ is big and nef)
- $\overline{\mathrm{M}}_{0, n}, n \geq 8:-K$ not pseudo-effective

The effective cone of $\overline{\mathrm{M}}_{0, n}$

- (Kapranov models) $\bar{M}_{0, n}=\ldots \mathrm{Bl}_{\binom{n-1}{3}} \mathrm{Bl}_{\binom{n-1}{2}} \mathrm{Bl}_{n-1} \mathbb{P}^{n-3}$ (blow-up $n-1$ points, all lines, planes,... spanned by them)
- Every boundary divisor is contracted by a Kapranov map $\overline{\mathrm{M}}_{0, n} \rightarrow \mathbb{P}^{n-3}$ and generates an extremal ray of $\overline{\operatorname{Eff}}\left(\overline{\mathrm{M}}_{0, n}\right)$
- $\overline{\operatorname{Eff}}\left(\overline{\mathrm{M}}_{0,5}\right)$ is generated by the 10 boundary divisors (-1 curves)
- $\overline{\operatorname{Eff}}\left(\overline{\mathrm{M}}_{0,6}\right)$ is generated by boundary and Keel-Vermeire divisors (Hassett-Tschinkel 2002)

The effective cone of $\overline{\mathrm{M}}_{0, n}$

- $\overline{\operatorname{Eff}}\left(\overline{\mathrm{M}}_{0, n}\right)$ has many extremal rays, generated by hypertree divisors, contractible by birational contractions (C.-Tevelev 2013)
- More extremal divisors for $n \geq 7$ (Opie 2016, based on Chen-Coskun 2014, Doran-Giansiracusa-Jensen 2017, Gonzàlez 2020)

Theorem (C.-LAface-Tevelev-Ugaglia 2020)
The cone $\overline{\operatorname{Eff}}\left(\bar{M}_{0, n}\right)$ is not polyhedral for $n \geq 10$, both in characteristic 0 and in characteristic p, for an infinite set of primes p of positive density (including all primes up to 2000).

Rational contractions

Definition

A rational contraction $X \rightarrow Y$ between \mathbb{Q}-factorial, normal projective varieties, is a rational map that can be decomposed into a sequence of

- small \mathbb{Q}-factorial modifications,
- surjective morphisms between \mathbb{Q}-factorial varieties.

Theorem

Let $X \rightarrow Y$ be a rational contraction. If X has any of these properties then Y does as well:

- Mori Dream Space (Keel-Hu 2000, Okawa 2016)
- (rational) polyhedral effective cone (BDPP 2013)

$\overline{\mathrm{M}}_{0, n}$ AND BLOW-UPS OF TORIC VARIETIES

Philosophy (Fulton)

$\bar{M}_{0, n}$ is similar to a toric variety.
Not quite true. Instead, $\overline{\mathrm{M}}_{0, n}$ is similar to a blown up toric variety:
Theorem (C.-Tevelev 2015)
There are rational contractions

$$
B I_{e} \overline{L M}_{0, n+1} \rightarrow \bar{M}_{0, n} \rightarrow B I_{e} \overline{L M}_{0, n},
$$

where $\overline{L M}_{0, n}$ is the Losev-Manin moduli space of dimension $n-3$, $e=$ identity point of the open torus $\mathbb{G}_{m}^{n-3} \subseteq \overline{L M}_{0, n}$.

Kapranov description: $\overline{\mathrm{LM}}_{0, n}=\ldots \mathrm{Bl}_{\binom{n-2}{3}} \mathrm{Bl}_{\binom{n-2}{2}} \mathrm{Bl}_{n-2} \mathbb{P}^{n-3}$ (blow-up $n-2$ points, all lines, planes,... spanned by them)

The Losev-Manin moduli space $\overline{\mathrm{LM}}_{0, n}$

The Losev-Manin moduli space $\overline{\mathrm{LM}}_{0, n}$ is the Hassett moduli space of stable rational curves with n markings and weights $1,1, \epsilon, \ldots, \epsilon$.

trees of \mathbb{P}^{1} 's

chains of \mathbb{P}^{1} 's

Universal blown up toric variety

Theorem

X projective \mathbb{Q}-factorial toric variety. For $n \gg 0$

- there exists a toric rational contraction $\overline{L M}_{0, n} \rightarrow X$
- there exists a rational contraction $B l_{e}{L M_{0, n} \rightarrow B l_{e} X}$

Corollary (C.-Tevelev, 2015)
$\bar{M}_{0, n}$ is not a MDS in characteristic 0 for $n \gg 0$. There exists a rational contraction

$$
\bar{M}_{0, n} \rightarrow B I_{e} \mathbb{P}(a, b, c)
$$

for some a, b, c such that $B l_{e} \mathbb{P}(a, b, c)$ has a nef but not semi-ample divisor (Goto-Nishida-Watanabe 1994).

Remark

This argument cannot work in characteristic p, where, by Artin's contractibility criterion, a nef divisor on $B l_{e} \mathbb{P}(a, b, c)$ is semi-ample.

Blown up TORIC SURFACES

Theorem (C.-Laface-Tevelev-Ugaglia 2020)

There exist projective toric surfaces \mathbb{P}_{Δ}, given by good polygons Δ, such that $\overline{E f f}\left(B I_{e} \mathbb{P}_{\Delta}\right)$ is not polyhedral in characteristic 0.
For some of these toric surfaces, $\overline{E f f}\left(B l_{e} \mathbb{P}_{\Delta}\right)$ is not polyhedral in characteristic p for an infinite set of primes p of positive density.

Corollary

For $n \geq 10$, the space $\bar{M}_{0, n}$ is not a MDS both in characteristic 0 and in characteristic p for an infinite set of primes of positive density, including all primes up to 2000.

Example of a good polygon

Example of a good polygon

There is a rational contraction $\overline{\mathrm{M}}_{0,10} \rightarrow \mathrm{Bl}_{e} \overline{\mathrm{LM}}_{0,10} \rightarrow \mathrm{Bl}_{e} \mathbb{P}_{\Delta}$:

Red \rightarrow normal fan of Δ
Black \rightarrow projection of fan of $\overline{\mathrm{LM}}_{0,10}$

Elliptic Pairs

A good polygon will correspond to an elliptic pair $\left(\mathrm{Bl}_{e} \mathbb{P}_{\Delta}, C\right)$.
Definition
An elliptic pair (C, X) consists of

- a projective rational surface X with log terminal singularities,
- an arithmetic genus 1 curve $C \subseteq X$ such that $C^{2}=0$,
- C disjoint from singularities of X.

Restriction map res: $C^{\perp} \rightarrow \operatorname{Pic}^{0}(C), \quad D \mapsto \mathcal{O}(D) \mid C$
$C^{\perp} \subseteq \mathrm{Cl}(X)$ orthogonal complement of C, C^{\perp} contains C
Definition
The order $e(C, X)$ of the pair (C, X) is the order of $\operatorname{res}(C)$ in $\operatorname{Pic}^{0}(C)$.

In characteristic p, we have $e(C, X)<\infty$.

Order of an elliptic pair

The order $e(C, X)$ is the smallest integer $e>0$ such $h^{0}(e C)>1$.
Lemma

- If $e=e(C, X)<\infty$, then $h^{0}(e C)=2$ and $|e C|: X \rightarrow \mathbb{P}^{1}$ is an elliptic fibration with C a multiple fiber.
- If $e(C, X)=\infty$, then C is rigid :

$$
h^{0}(n C)=1 \quad \text { for all } \quad n \geq 1 .
$$

In this case, $\overline{\operatorname{Eff}}(X)$ is not polyhedral if $\rho(X) \geq 3$.

Proof.

Observation (Nikulin): If $\rho(X) \geq 3$ and $\operatorname{Eff}(X)$ is polyhedral, then

- $\overline{\operatorname{Eff}}(X)$ is generated by negative curves,
- every irreducible curve with $C^{2}=0$ is contained in the interior of a facet; in particular, a multiple moves.

Minimal elliptic Pairs

Polyhedrality when $e(C, X)<\infty$? In general, for any $e(C, X)$:

Definition

An elliptic pair (C, X) is called minimal if there are no smooth rational curves $E \subseteq X$ such that $K \cdot E<0$ and $C \cdot E=0$.

Theorem

For an elliptic pair (C, X), there exists a minimal elliptic pair (C, Y) and a morphism $\pi: X \rightarrow Y$, which is an isomorphism in a neighborhood of C. In particular, $e(C, X)=e(C, Y)$.

Proof.

$\mathcal{O}(K+C) \mid c \simeq \mathcal{O}_{C} \Rightarrow K \cdot C=0$
(C, X) is minimal $\Leftrightarrow K+C$ is nef $\Leftrightarrow K+C \sim \alpha C, \alpha \in \mathbb{Q}$
Run $(K+C)$-MMP: contract all curves $E \subseteq X$ with $K \cdot E<0, C \cdot E=0$.

Minimal + Du Val singularities

Definition

Since $K \cdot C=0$, define on $\mathrm{Cl}_{0}(X)=C^{\perp} /\langle K\rangle$ the reduced restriction map

$$
\overline{\mathrm{res}}: \mathrm{Cl}_{0}(X) \rightarrow \mathrm{Pic}^{0}(C) /\langle\operatorname{res}(K)\rangle
$$

Theorem

Let (C, Y) be an elliptic pair such that Y has $D u$ Val singularities. Let Z be the minimal resolution of Y. Then

$$
(C, Y) \text { minimal } \Leftrightarrow \quad(C, Z) \text { minimal } \Leftrightarrow \rho(Z)=10 .
$$

In this case $\mathrm{Cl}_{0}(Z) \simeq \mathbb{E}_{8}$.
Assume (C, Y) minimal elliptic pair with $\rho(Y) \geq 3$ and $e(C, Y)<\infty$:
$\overline{E f f}(Y)$ polyhedral $\Leftrightarrow \overline{\operatorname{Eff}}(Z)$ polyhedral \Leftrightarrow $\operatorname{Ker}(\overline{\mathrm{res}})$ contains 8 linearly independent roots of \mathbb{E}_{8}.

UPSHOT

(C, Y) $=$ minimal model of elliptic pair (C, X)

- $e(C, X)=\infty \Rightarrow \operatorname{Eff}(X)$, $\operatorname{Eff}(Y)$ not polyhedral (if $\rho \geq 3$) In this case, Y is Du Val: $\mathcal{O}(C) \mid c$ not torsion implies $-K_{Y} \sim C$
- $e(C, X)<\infty$ and Y is Du Val \Rightarrow polyhedrality criterion for $\overline{\operatorname{Eff}}(Y)$

Problem

- Suppose $C, X, \mathrm{Cl}(X)$ are defined over $\mathbb{Q}, e(C, X)=\infty$
- $X \rightarrow Y$ extends to the morphism of integral models $\mathcal{X} \rightarrow \mathcal{Y}$ over Spec \mathbb{Z} (outside of finitely many primes of bad reduction)
- $\left(C_{p}, Y_{p}\right)$ is still the minimal elliptic pair associated to $\left(C_{p}, X_{p}\right)$
- e($\left.C_{p}, X_{p}\right)<\infty$. Study distribution of "polyhedral" primes

BLOWN UP TORIC SURFACES

Lattice polygon $\Delta \subseteq \mathbb{R}^{2} \Longrightarrow\left(\mathbb{P}_{\Delta}, \mathcal{L}_{\Delta}\right)$ associated polarized toric surface Set $X=\mathrm{Bl}_{e} \mathbb{P}_{\Delta}$ and let $m>0$ integer. Then $X, \mathrm{Cl}(X)$ are defined over \mathbb{Q}.

Definition

A lattice polygon Δ with at least 4 vertices is good if there exists

$$
C \in\left|\mathcal{L}_{\Delta}-m E\right|
$$

irreducible such that (C, X) is an elliptic pair with $e(C, X)=\infty$:
(I) The Newton polygon of C coincides with Δ ($\left.\Leftrightarrow C \subseteq X^{\text {smooth }}\right)$,
(iI) $\operatorname{Vol}(\Delta)=m^{2}$ and $\left|\partial \Delta \cap \mathbb{Z}^{2}\right|=m\left(\Leftrightarrow C^{2}=0, p_{a}(C)=1\right)$,
(iii) The restriction res $(C)=\mathcal{O}_{X}(C) \mid C$ is not torsion in $\operatorname{Pic}^{0}(C)$ over \mathbb{Q}.

Theorem

If Δ is a good polygon, then $\overline{E f f}(X)$ is not polyhedral in characteristic 0 .

Example

$\operatorname{Vol}(\Delta)=36, \quad\left|\partial \Delta \cap \mathbb{Z}^{2}\right|=6$

Example of a good polygon

$$
\operatorname{Vol}(\Delta)=36, \quad\left|\partial \Delta \cap \mathbb{Z}^{2}\right|=6
$$

The linear system $\left|\mathcal{L}_{\Delta}-6 E\right|$ contains a unique curve C with equation

$$
\begin{gathered}
x^{4} y^{6}+6 x^{5} y^{4}-2 x^{4} y^{5}-14 x^{5} y^{3}-17 x^{4} y^{4}-4 x^{3} y^{5}+ \\
+x^{6} y+11 x^{5} y^{2}+38 x^{4} y^{3}+26 x^{3} y^{4}-9 x^{5} y-27 x^{4} y^{2}- \\
-34 x^{3} y^{3}+22 x^{4} y+16 x^{3} y^{2}-10 x^{2} y^{3}-24 x^{3} y+ \\
+10 x^{2} y^{2}+15 x^{2} y+5 x y^{2}-11 x y+1=0
\end{gathered}
$$

Example of a good polygon

The curve C is a smooth elliptic curve labelled 997.a1 in the LMFDB database. It has the minimal equation

$$
y^{2}+y=x^{3}-x^{2}-24 x+54
$$

The Mordell-Weil group $C(\mathbb{Q})$ is $\mathbb{Z} \times \mathbb{Z}$, with generators

$$
Q=(1,5), \quad P=(6,-10)
$$

Computation : $\operatorname{res}(C)=-Q($ not torsion, so Δ is good $)$

Example - Minimal Resolution

Fan of the minimal resolution $\tilde{\mathbb{P}}_{\Delta}$ of \mathbb{P}_{Δ} :

The proper transforms C_{1}, C_{2} of 1-parameter subgroups $\{v=1\},\{u=1\}$

- have self-intersection -1 on $\mathrm{BI}_{e} \tilde{\mathbb{P}}_{\Delta}$, and also on $X=\mathrm{BI}_{e} \mathbb{P}_{\Delta}$
- have $C \cdot C_{1}=C \cdot C_{2}=0$

Example - Minimal Elliptic pair

(C, X) elliptic pair, $X=\mathrm{Bl}_{e} \mathbb{P}_{\Delta}$
Zariski decomposition $K_{X}+C=N+P, N=3 C_{1}+2 C_{2}, P=0$
To get minimal elliptic pair (C, Y), contract C_{1}, C_{2}.

$Z \rightarrow Y$ minimal resolution, $\rho(X)=5, \rho(Y)=3, \rho(Z)=10$
$T=$ sublattice spanned by classes of (-2) curves above singularities of Y Computation : $T=\mathbb{A}^{7}$

Example - Minimal Resolution

$Z \rightarrow Y$ minimal resolution of $Y, \mathrm{Cl}(Z)=\mathrm{Cl}(Y) \oplus T$
$T=$ sublattice spanned by classes of (-2) curves above singularities of Y
$\mathrm{Cl}_{0}(Y)=\mathrm{Cl}_{0}(Z) / T=\mathbb{E}_{8} / \mathbb{A}^{7} \cong \mathbb{Z}$
Reduced restriction map $\overline{\mathrm{res}}: \mathrm{Cl}_{0}(Y) \rightarrow \mathrm{Pic}^{0}(C) /\langle Q\rangle, Q=(1,5)$
$\overline{\operatorname{Eff}}(Y)$ is not polyhedral in characteristic $p \Leftrightarrow$
$\Leftrightarrow \overline{\operatorname{res}}(\beta) \neq 0$ for all $\beta=$ image in $\mathrm{Cl}_{0}(Y)$ of a root in $\mathbb{E}_{8} \backslash T$
If $\alpha \in \mathrm{Cl}_{0}(Y)$ generator \Longrightarrow Images of roots of \mathbb{E}_{8} are $\pm k \alpha$, for $0 \leq k \leq 3$
Computation : res $(\alpha)=P-Q$, where $P=(6,-10)$
$\overline{\operatorname{Eff}}(Y)$ not polyhedral in characteristic $p \Leftrightarrow k \bar{P} \notin\langle\bar{Q}\rangle$ for $k=1,2,3$

Example - Non-polyhedral primes

Prove that the set of primes p such that

$$
\bar{P}, 2 \bar{P}, 3 \bar{P} \notin\langle\bar{Q}\rangle \subseteq C\left(\mathbb{F}_{p}\right)
$$

has positive density.
Fix q prime. It suffices to prove that the set of primes p such that

- q divides the index of $\langle\bar{Q}\rangle \subseteq C\left(\mathbb{F}_{p}\right)$
- q does not divide the index of $\langle 6 \bar{P}\rangle \subseteq C\left(\mathbb{F}_{p}\right)$
has positive density.
Apply Chebotarev's Density theorem + a theorem of Lang-Trotter

Lang-Trotter Criterion

C elliptic curve defined over \mathbb{Q}, without complex multiplication over $\overline{\mathbb{Q}}$.
Fix q prime and let $C[q] \subset C(\overline{\mathbb{Q}})$ be the q-torsion points of C.
For $x \in C(\mathbb{Q})$, choose $x / q \in C(\overline{\mathbb{Q}})$ and consider the Galois extension of \mathbb{Q}

$$
K_{x}=\mathbb{Q}(C[q], x / q)
$$

Lang-Trotter Criterion

C elliptic curve defined over \mathbb{Q}, without complex multiplication over $\overline{\mathbb{Q}}$.
Fix q prime and let $C[q] \subset C(\overline{\mathbb{Q}})$ be the q-torsion points of C.
For $x \in C(\mathbb{Q})$, choose $x / q \in C(\overline{\mathbb{Q}})$ and consider the Galois extension of \mathbb{Q}

$$
K_{x}=\mathbb{Q}(C[q], x / q)
$$

For almost all primes q, we have $\operatorname{Gal}\left(K_{x} / \mathbb{Q}\right) \simeq G L_{2}(\mathbb{Z} / q \mathbb{Z}) \ltimes(\mathbb{Z} / q \mathbb{Z})^{2}$
For any L / \mathbb{Q} Galois, for almost all primes p, there is a Frobenius element $\sigma_{p} \in \operatorname{Gal}(L / \mathbb{Q})$ of p in L / \mathbb{Q} (well-defined up to conjugacy).

Lang-Trotter (1976): q divides the index of $\langle\bar{x}\rangle \subseteq C\left(\mathbb{F}_{p}\right) \Leftrightarrow$
\Leftrightarrow the Frobenius element $\sigma_{p}=\left(\gamma_{p}, \tau_{p}\right) \in \mathrm{GL}_{2}(\mathbb{Z} / q \mathbb{Z}) \ltimes(\mathbb{Z} / q \mathbb{Z})^{2}$
with γ_{p} with 1 as an eigenvalue, and either $\gamma_{p}=1$, or $\tau_{p} \in \operatorname{Im}\left(\gamma_{p}-1\right)$.

NON-POLYHEDRAL PRIMES

C elliptic curve defined over \mathbb{Q}, without complex multiplication over $\overline{\mathbb{Q}}$. For $x, y \in C(\mathbb{Q})$, let $K_{x, y}=\mathbb{Q}(C[q], x / q, y / q)$ (Galois extension of $\left.\mathbb{Q}\right)$.
The Frobenius element σ_{p} of p in $K_{x, y} / \mathbb{Q}$ is

$$
\sigma_{p}=\left(\gamma_{p}, \tau_{p}, \tau_{p}^{\prime}\right) \in \operatorname{Gal}\left(K_{x, y} / \mathbb{Q}\right) \simeq \mathrm{GL}_{2}(\mathbb{Z} / q \mathbb{Z}) \ltimes\left((\mathbb{Z} / q \mathbb{Z})^{2}\right)^{2}
$$

where $\left(\gamma_{p}, \tau_{p}\right) \in \operatorname{Gal}\left(K_{x} / \mathbb{Q}\right),\left(\gamma_{p}, \tau_{p}^{\prime}\right) \in \operatorname{Gal}\left(K_{y} / \mathbb{Q}\right)$ (Frobenius elements).
By Lang-Trotter, the set of primes p such that

- q divides the index of $\langle\bar{x}\rangle \subseteq C\left(\mathbb{F}_{p}\right)$
- q does not divide the index of $\langle\bar{y}\rangle \subseteq C\left(\mathbb{F}_{p}\right)$
is the set of primes p such that:
γ_{p} has 1 as an eigenvalue, $\tau_{p} \in \operatorname{Im}\left(\gamma_{p}-1\right), \tau_{p}^{\prime} \notin \operatorname{Im}\left(\gamma_{p}-1\right)$
This condition is closed under conjugacy (and such elements exist).

NON-POLYHEDRAL PRIMES

The set of non-polyhedral primes $p<2000$ for our running example of a good polygon:

$$
\begin{gathered}
7,11,41,67,173,307,317,347,467,503,523,571,593,631,677,733, \\
797,809,811,827,907,937,1019,1021,1087,1097,1109,1213,1231, \\
1237,1259,1409,1433,1439,1471,1483,1493,1567,1601,1619,1669, \\
1709,1801,1811,1823,1867,1877,1933,1951,1993
\end{gathered}
$$

This gives 18% of the primes under 2000 .

Further Examples

There are:

- 135 toric surfaces corresponding to good polygons with volume ≤ 49;
- Infinite sequences of good pentagons with all primes polyhedral;
- Infinite sequences of good heptagons. For all but finitely many, the set of non-polyhedral primes has positive density.

An infinite sequence of pentagons

Polygon Δ is a pentagon with vertices

$$
\begin{gathered}
(0,0), \quad(2 k, 0), \quad(2 k+4,1), \quad(2 k+2,2 k+4), \quad(2 k+1,2 k+3) \\
\operatorname{Vol}(\Delta)=(2 k+4)^{2}, \quad\left|\partial \Delta \cap \mathbb{Z}^{2}\right|=2 k+4
\end{gathered}
$$

Then Δ is good for every $k \geq 1$.

An infinite sequence of pentagons

Equation of C is:

$$
\begin{gathered}
\left(u v+2 x_{0}^{k+2}\right)\left(u-2 x_{0}^{k+1}\right)^{2 k+3}-2 u^{k+1}\left(v+x_{0}\right)^{k+2}\left(u-2 x_{0}^{k+1}\right)^{k+2}- \\
-u^{2 k+1}\left(v+x_{0}\right)^{2 k+3}\left(u v+u\left(x_{0}-x_{1}\right)+2 x_{1} x_{0}^{k+1}\right)=0,
\end{gathered}
$$

where

$$
x_{0}=2(k+1)(3 k+2), \quad x_{1}=2(k+1)(3 k+4)
$$

An infinite sequence of pentagons

The curve C has Weierstrass equation

$$
\begin{gathered}
y^{2}=x\left(x^{2}+a x+b\right), \quad \text { where } \\
a=-\left(12 k^{2}+24 k+11\right), \quad b=4(k+1)^{2}(3 k+2)(3 k+4) .
\end{gathered}
$$

