

RATIONALITY

An algebraic variety X/k is

(R) rational: if $X \sim \mathbb{P}^n$ for some n

RATIONALITY

An algebraic variety X/k is

- (R) rational: if $X \sim \mathbb{P}^n$ for some n
- (S) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n

RATIONALITY

An algebraic variety X/k is

- (R) rational: if $X \sim \mathbb{P}^n$ for some n
- (S) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n
- (U) unirational: if $\mathbb{P}^n \longrightarrow X$, for some n

CLASSICAL RESULTS

In dimensions ≤ 2 , over \mathbb{C} ,

rationality = stable rationality=unirationality

• Curves: Lüroth

• Surfaces: Castelnuovo, Enriques

This can fail over nonclosed ground-fields k.

Del Pezzo surfaces over nonclosed fields

THEOREM

Let X be a smooth del Pezzo surface over a field k.

- $deg(X) \ge 5$: If $X(k) \ne \emptyset$ then X is k-rational.
- deg(X) = 4, 3: If $X(k) \neq \emptyset$ then X is k-unirational.
- deg(X) = 2: same, with three omissions (Salgado, Testa, Varilly-Alvarado 2013)

OPEN PROBLEMS

• $k = \mathbb{F}_3$, is X/k given by

$$-w^3 = x^4 + y^3 z - yz^3$$

unirational?

OPEN PROBLEMS

• $k = \mathbb{F}_3$, is X/k given by

$$-w^3 = x^4 + y^3 z - yz^3$$

unirational?

• If $\deg(X)=1$ then $X(k)\neq\emptyset$. Is X unirational? Are k-rational points Zariski dense? (Some results by Salgado and van Luijk, 2014.)

COHOMOLOGY

Let

$$\mathrm{H}^i(G,M)$$

be the *i*-cohomology group of a finite or profinite group G, with coefficients in a G-module M. Recall:

• $H^0(G, M) = M^G$, the submodule of G-invariants

COHOMOLOGY

Let

$$\mathrm{H}^i(G,M)$$

be the *i*-cohomology group of a finite or profinite group G, with coefficients in a G-module M. Recall:

- $H^0(G, M) = M^G$, the submodule of G-invariants
- $H^1(G, M)$, twisted homomorphisms

COHOMOLOGY

Let

$$\mathrm{H}^i(G,M)$$

be the *i*-cohomology group of a finite or profinite group G, with coefficients in a G-module M. Recall:

- $H^0(G, M) = M^G$, the submodule of G-invariants
- $H^1(G, M)$, twisted homomorphisms

Obstruction to rationality

$$Br(X) = H^2_{et}(X, \mathbb{G}_m).$$

For Del Pezzo surfaces,

$$Br(X)/Br(k) = H^1(G_k, Pic(\bar{X})).$$

Computing the obstruction group

Let $X \subset \mathbb{P}^4$ be a smooth DP4. The Galois action on the 16 lines factors through the Weyl group $W(D_5)$ (a group of order 1920).

Bright, Bruin, Flynn, Logan 2007

• If the degree of the splitting field over \mathbb{Q} is > 96 then

$$\mathrm{H}^1(G_{\mathbb{Q}},\mathrm{Pic}(\bar{X}))=0.$$

Computing the obstruction group

Let $X \subset \mathbb{P}^4$ be a smooth DP4. The Galois action on the 16 lines factors through the Weyl group $W(D_5)$ (a group of order 1920).

Bright, Bruin, Flynn, Logan 2007

• If the degree of the splitting field over \mathbb{Q} is > 96 then

$$\mathrm{H}^1(G_{\mathbb{Q}},\mathrm{Pic}(\bar{X}))=0.$$

• In all other cases, the obstruction group is either

$$1, \mathbb{Z}/2\mathbb{Z}$$
, or $(\mathbb{Z}/2\mathbb{Z})^2$.

THE OBSTRUCTION GROUP

This obstruction is effectively computable for all Del Pezzo surfaces over number fields.

Obstruction to stable rationality

If X is stably rational then $H^1(G_{k'}, \text{Pic}(\bar{X})) = 0$, for all k'/k.

THE OBSTRUCTION GROUP

This obstruction is effectively computable for all Del Pezzo surfaces over number fields.

OBSTRUCTION TO STABLE RATIONALITY

If X is stably rational then $H^1(G_{k'}, Pic(\bar{X})) = 0$, for all k'/k.

CONJECTURE (COLLIOT-THÉLÈNE-SANSUC)

If $X(k) \neq \emptyset$ and this obstruction vanishes then X is stably rational.

STABLE RATIONALITY OF DEL PEZZO SURFACES

The only known case:

EXAMPLE

Let X be a conic bundle over \mathbb{P}^1 , over a field k, given by

$$x^{2} - ay^{2} = f(s), \quad \deg(f) = 3, \quad \operatorname{disc}(f) = a,$$

with f irreducible over k. Then X is nonrational over k, but

$$\mathrm{H}^1(G_{k'},\mathrm{Pic}(\bar{X}))=0,\quad \text{ for all } k'/k.$$

Beauville-Colliot-Thélène-Sansuc-Swinnerton-Dyer 1985:

X is stably rational

STABLE RATIONALITY OF DEL PEZZO SURFACES

Candidates, DP4:

- I_1 : $y^2 xz^2 = (x-3)(x+3)(x^3+9)$
- I_2 : $y^2 xz^2 = -(x^3 + 2apx^2 + a^2p^2x a^3q^3)(x^2 2rx + s)$, such that
 - a is not a cube,
 - $g(x) := x^3 + px + q$ is irreducible,
 - $\operatorname{disc}(g)/(r^2-s)$, $s/(r^2-s)$, and $a/\operatorname{disc}(g)$ are squares
- I_3 : $y^2 xz^2 = -(x^2 3)(x^3 + 3)$

HIGHER DIMENSIONS: INVARIANT THEORY

Data:

- G/k linear algebraic group (e.g., finite group)
- $\rho: G \to V$ faithful representation

HIGHER DIMENSIONS: INVARIANT THEORY

Data:

- G/k linear algebraic group (e.g., finite group)
- $\rho: G \to V$ faithful representation

NOETHER'S PROBLEM

Is X := V/G rational?

More generally, G acting on a variety Y, is X := Y/G, resp. $k(Y)^G$, rational?

NOETHER'S PROBLEM

Why interesting? Applications to the inverse problem of Galois theory - realizing a finite group G as the Galois group of a field extension (via Hilbert's irreducibility).

NOETHER'S PROBLEM

Why interesting? Applications to the inverse problem of Galois theory - realizing a finite group G as the Galois group of a field extension (via Hilbert's irreducibility).

Why difficult? $Gr(2, n) = SL_2 \setminus Mat_{2 \times n}$ is rational. The ring of invariants has $\binom{n}{2}$ generators and $\binom{n}{4}$ relations.

NOETHER'S PROBLEM

- If G is SL_n , Sp_n , SO_n , ... then V/G is stably rational.
- If $G = PGL_3$ then V/G is rational (Böhning-von Bothmer 2008)

NOETHER'S PROBLEM: COUNTEREXAMPLES

NONLINEAR ACTIONS: SALTMAN (1984)

Let

- $G = (\mathbb{Z}/p)^3$, p prime,
- $\bullet \ M := \operatorname{Ker}(\mathbb{Z}[G \times G] \to \mathbb{Z}[G]),$
- $X = \operatorname{Spec}(k[M]),$

Then X/G is not rational.

NOETHER'S PROBLEM: COUNTEREXAMPLES

NONLINEAR ACTIONS: SALTMAN (1984)

Let

- $G = (\mathbb{Z}/p)^3$, p prime,
- $M := \operatorname{Ker}(\mathbb{Z}[G \times G] \to \mathbb{Z}[G]),$
- $X = \operatorname{Spec}(k[M]),$

Then X/G is not rational.

LINEAR ACTIONS: BOGOMOLOV (1988)

Nontriviality of the unramified Brauer group of the function field $k(V)^G$, for some group of order p^6 . In particular, V/G is not stably rational.

Unramified cohomology and the Brauer group

Let K = k(X) be a function field over $k = \bar{k}$, $G_K := Gal(\bar{K}/K)$ its Galois group, and

$$H^i(K) := H^i(G_K, \mathbb{Z}/n)$$

its i-th Galois cohomology. For every divisorial valuation ν of K we have a natural homomorphism

$$H^i(K) \xrightarrow{\partial_{\nu}} H^{i-1}(\kappa(\nu))$$

The group

$$H_{nr}^i(K) := \cap_{\nu} \operatorname{Ker}(\partial_{\nu})$$

is a birational invariant; it vanishes for rational K. For smooth X we have

$$H_{nr}^2(K) = \operatorname{Br}(X)[n]$$

Universality

THEOREM (BOGOMOLOV-T. 2015)

Let X be a variety of dimension ≥ 2 over $k = \overline{\mathbb{F}}_p$, K = k(X), and $\ell \neq p$. Every $\alpha \in H^i_{nr}(K, \mathbb{Z}/\ell)$ is induced from an unramified class in the cohomology of a quotient

$$(\prod_{j} \mathbb{P}(V_j))/G^a,$$

for some finite ℓ -group G^a .

Counterexamples to Lüroth's problem

Major developments in 1971-72:

 \bullet Iskovskikh-Manin: quartic in \mathbb{P}^4 via birational rigidity

Counterexamples to Lüroth's problem

Major developments in 1971-72:

- Iskovskikh-Manin: quartic in \mathbb{P}^4 via birational rigidity
- ullet Clemens-Griffiths: cubic in \mathbb{P}^4 via intermediate Jacobians

Counterexamples to Lüroth's problem

Major developments in 1971-72:

- Iskovskikh-Manin: quartic in \mathbb{P}^4 via birational rigidity
- \bullet Clemens-Griffiths: cubic in \mathbb{P}^4 via intermediate Jacobians
- Artin-Mumford: conic bundles via Brauer groups

BIRATIONAL RIGIDITY

This approach stimulated major developments in algebraic geometry.

BIRATIONAL RIGIDITY

This approach stimulated major developments in algebraic geometry.

• Reid, Pukhlikov, Cheltsov: birational rigidity of many smooth and singular (high degree) Fano hypersurfaces in weighted projective spaces

BIRATIONAL RIGIDITY

This approach stimulated major developments in algebraic geometry.

- Reid, Pukhlikov, Cheltsov: birational rigidity of many smooth and singular (high degree) Fano hypersurfaces in weighted projective spaces
- Some of these are known to be unirational. **Guess:** a (very general) birationally rigid threefold is not stably rational.

Intermediate Jacobians

THEOREM

If the intermediate Jacobian $\mathrm{IJ}(X)$ of a complex threefold X is not a product of Jacobians of curves then X is nonrational.

Intermediate Jacobians

THEOREM

If the intermediate Jacobian $\mathrm{IJ}(X)$ of a complex threefold X is not a product of Jacobians of curves then X is nonrational.

Implementation:

- Cubic threefolds (Clemens–Griffiths)
- Intersection of 3 quadrics and conic bundles (Beauville)
- Certain del Pezzo surface fibrations over \mathbb{P}^1 (Alexeev, Grinenko, Cheltsov)

SPECIALIZATION METHOD

Idea (Clemens 1974): Let

$$\phi: \mathcal{X} \to B$$

be a family of Fano threefolds, with smooth generic fiber. Assume that there exists a point $b \in B$ such that the fiber

$$X := \phi^{-1}(b)$$

satisfies the following conditions:

- (S) Singularities: X has at most rational double points
- (O) Obstruction: the intermediate Jacobian $IJ(\tilde{\mathcal{X}}_0)$ (of the resolution of singularities $\tilde{\mathcal{X}}_0$) is not a product of Jacobians of curves.

Then a general fiber \mathcal{X}_b is not rational.

SPECIALIZATION METHOD

Idea (Clemens 1974): Let

$$\phi: \mathcal{X} \to B$$

be a family of Fano threefolds, with smooth generic fiber. Assume that there exists a point $b \in B$ such that the fiber

$$X := \phi^{-1}(b)$$

satisfies the following conditions:

- (S) Singularities: X has at most rational double points
- (O) Obstruction: the intermediate Jacobian $IJ(\tilde{\mathcal{X}}_0)$ (of the resolution of singularities $\tilde{\mathcal{X}}_0$) is not a product of Jacobians of curves.

Then a general fiber \mathcal{X}_b is not rational.

Implementation (Beauville 1977): nonrationality of quartic and sextic double solids

Brauer Group

THEOREM (ARTIN-MUMFORD)

Let $X \to S$ be a conic bundle over a smooth projective rational surface S with discriminant a smooth curve

$$D = \sqcup_{j=1}^r D_j \subset S,$$

and with $g(D_j) \ge 1$ for all j. Then

$$Br(X) = (\mathbb{Z}/2)^{r-1}.$$

Cycle-theoretic tools: CH₀

 $\mathrm{CH}_0(X_k)$ is the abelian group generated by zero-dimensional subvarieties $x \in X$ (e.g., points $x \in X(k)$), modulo k-rational equivalence.

Assuming $X(k) \neq \emptyset$, there is a surjective degree homomorphism

$$\mathrm{CH}_0(X_k) \to \mathbb{Z}.$$

For which X is this an isomorphism?

EXAMPLE

• X a unirational or rationally-connected variety over $k = \mathbb{C}$.

A projective X/k is universally CH₀-trivial if for all k^\prime/k

$$\operatorname{CH}_0(X_{k'}) \xrightarrow{\sim} \mathbb{Z}$$

A projective X/k is universally CH₀-trivial if for all k'/k

$$\mathrm{CH}_0(X_{k'}) \stackrel{\sim}{\longrightarrow} \mathbb{Z}$$

For example, smooth k-rational varieties are universally CH_0 -trivial.

A projective X/k is universally CH_0 -trivial if for all k'/k

$$\operatorname{CH}_0(X_{k'}) \xrightarrow{\sim} \mathbb{Z}$$

For example, smooth k-rational varieties are universally CH_0 -trivial. Unirational or rationally-connected varieties are not necessarily universally CH_0 -trivial.

A projective X/k is universally CH_0 -trivial if for all k'/k

$$\mathrm{CH}_0(X_{k'}) \stackrel{\sim}{\longrightarrow} \mathbb{Z}$$

For example, smooth k-rational varieties are universally CH_0 -trivial. Unirational or rationally-connected varieties are not necessarily universally CH_0 -trivial. Smooth projective X/k with $\mathrm{Br}(X) \neq \mathrm{Br}(k)$, or more generally, with nontrivial higher unramified cohomology, are not universally CH_0 -trivial.

This condition is difficult to check, in general. Here is a sample of results: Universal CH₀-triviality holds for

- For cubic threefolds parametrized by a countable union of subvarieties of codimension ≥ 3 of the moduli space (Voisin 2014); these should be dense in moduli
- For special cubic fourfolds with discriminant not divisible by 4 (Voisin 2014)
- For cubic fourfolds (of discriminant 8) containing a plane (Auel–Colliot-Thélène–Parimala, 2015)

A projective morphism

$$\beta: \tilde{X} \to X$$

of k-varieties is universally CH₀-trivial if for all k'/k

$$\beta_* : \mathrm{CH}_0(\tilde{X}_{k'}) \xrightarrow{\sim} \mathrm{CH}_0(X_{k'}).$$

THEOREM (COLLIOT-THÉLÈNE-PIRUTKA, 2015)

Let

$$\beta: \tilde{X} \to X$$

be a projective morphism such that for every scheme point x of X, the fiber $\beta^{-1}(x)$, considered as a variety over the residue field $\kappa(x)$, is universally CH₀-trivial. Then β is universally CH₀-trivial.

THEOREM (COLLIOT-THÉLÈNE-PIRUTKA, 2015)

Let

$$\beta: \tilde{X} \to X$$

be a projective morphism such that for every scheme point x of X, the fiber $\beta^{-1}(x)$, considered as a variety over the residue field $\kappa(x)$, is universally CH₀-trivial. Then β is universally CH₀-trivial.

For example,

$$\beta: \mathrm{Bl}_Z(X) \to X,$$

the blowup of a smooth variety X in a smooth subvariety Z, is universally CH₀-trivial.

Specialization method Voisin 2014, Colliot-Thélène-Pirutka 2015

Let

$$\phi: \mathcal{X} \to B$$

be a flat projective morphism of complex varieties with smooth generic fiber. Assume that there exists a point $b \in B$ such that the fiber

$$X := \phi^{-1}(b)$$

satisfies the following conditions:

(S) Singularities: X admits a desingularization

$$\beta: \tilde{X} \to X$$

such that the morphism β is universally CH₀-trivial;

(O) Obstruction: the group $H_{nr}^2(\mathbb{C}(X),\mathbb{Z}/2)$ is nontrivial.

Then a very general fiber of ϕ is not stably rational.

SPECIALIZATION METHOD: FIRST APPLICATIONS

Very general varieties below are not stably rational:

- Quartic double solids $X \to \mathbb{P}^3$ with ≤ 7 double points (Voisin 2014)
- Quartic threefolds (Colliot-Thélène-Pirutka 2014)
- Sextic double solids $X \to \mathbb{P}^3$ (Beauville 2014)
- Fano hypersurfaces of high degree (Totaro 2015)
- Cyclic covers $X \to \mathbb{P}^n$ of prime degree (Colliot-Thélène—Pirutka 2015)
- Cyclic covers $X \to \mathbb{P}^n$ of arbitrary degree (Okada 2016)

THEOREM (HASSETT-KRESCH-T. 2015)

Let S be a smooth projective rational surface over k, an uncountable algebraically closed field of characteristic $\neq 2$. Let \mathcal{L} be a linear system of effective divisors on S whose general member is smooth and irreducible. Let \mathcal{M} be an irreducible component of the space of reduced nodal curves in \mathcal{L} together with degree 2 étale covering. Assume that \mathcal{M} contains a cover, nontrivial over every irreducible component of a reducible curve with smooth irreducible components. Then the conic bundle over S corresponding to a very general point of \mathcal{M} is not stably rational.

THEOREM (HASSETT-KRESCH-T. 2015)

Let S be a smooth projective rational surface over k, an uncountable algebraically closed field of characteristic $\neq 2$. Let \mathcal{L} be a linear system of effective divisors on S whose general member is smooth and irreducible. Let \mathcal{M} be an irreducible component of the space of reduced nodal curves in \mathcal{L} together with degree 2 étale covering. Assume that \mathcal{M} contains a cover, nontrivial over every irreducible component of a reducible curve with smooth irreducible components. Then the conic bundle over S corresponding to a very general point of \mathcal{M} is not stably rational.

Example: A very general conic bundle $X \to \mathbb{P}^2$, with discriminant a curve of degree ≥ 6 , is not stably rational.

THEOREM (BÖHNING-VON BOTHMER 2016)

A very general hypersurface $X \subset \mathbb{P}^2 \times \mathbb{P}^2$ of bi-degree $(2,d), d \geq 2$, is not stably rational.

THEOREM (BÖHNING-VON BOTHMER 2016)

A very general hypersurface $X \subset \mathbb{P}^2 \times \mathbb{P}^2$ of bi-degree $(2,d), d \geq 2$, is not stably rational.

Via explicit degeneration of Prym curves.

Conic bundles over higher-dimensional bases

Stable rationality fails for general varieties in the following families:

• Certain conic bundles over \mathbb{P}^3 , e.g.,

$$X \subset \mathbb{P}^2 \times \mathbb{P}^3$$

of bi-degree (2,2) (Auel–Böhning–von Bothmer–Pirutka 2016)

• Conic bundles over \mathbb{P}^{n-1} : smooth $X \subset \mathbb{P}(\mathcal{E})$, for \mathcal{E} direct sum of three line bundles, if $-K_X$ is not ample. In particular

$$X \subset \mathbb{P}^2 \times \mathbb{P}^{n-1}$$

of bi-degree $(2, d), d \ge n \ge 3$ (Ahmadinezhad-Okada 2017)

Let $X \to S$ be a very general conic bundle over a del Pezzo surface of degree 1, with discriminant $C \in |-2K_S|$. Then

- X is not birationally rigid
- IJ(X) is an elliptic curve
- X has trivial Brauer group

Let $X \to S$ be a very general conic bundle over a del Pezzo surface of degree 1, with discriminant $C \in |-2K_S|$. Then

- X is not birationally rigid
- IJ(X) is an elliptic curve
- ullet X has trivial Brauer group
- X is not stably rational

Del Pezzo fibrations

THEOREM (HASSETT-T. 2016)

A very general fibration $\pi: \mathcal{X} \to \mathbb{P}^1$ in quartic del Pezzo surfaces which is not rational and not birational to a cubic threefold is not stably rational.

Del Pezzo fibrations

THEOREM (KRYLOV-OKADA 2017)

A very general nonrational del Pezzo fibration $\pi: \mathcal{X} \to \mathbb{P}^1$ of degree 1, 2, or 3 which is not birational to a cubic threefold is not stably rational.

Similar results over higher-dimensional bases.

FANO THREEFOLDS

THEOREM (HASSETT-T. 2016)

A very general nonrational Fano threefold X over $k=\mathbb{C}$ which is not birational to a cubic threefold is not stably rational.

FANO THREEFOLDS

THEOREM (HASSETT-T. 2016)

A very general nonrational Fano threefold X over $k = \mathbb{C}$ which is not birational to a cubic threefold is not stably rational.

Generalizations by Okada to certain singular Fano varieties.

FANO THREEFOLDS: IDEA AND IMPLEMENTATION

Find suitable degenerations with mild singularities and birational to conic bundles.

Nonrational Fano threefolds with

$$\operatorname{Pic}(V) = -K_V \mathbb{Z}$$
 and $d = d(V) = -K_V^3$:

- d=2 sextic double solid
- d = 4 quartic
- d = 6 intersection of a quadric and a cubic
- d = 8 intersection of three quadrics
- d = 10 section of Gr(2,5) by two linear forms and a quadric
- d = 14 birational to a cubic threefold

FANO THREEFOLDS: IDEA AND IMPLEMENTATION

Nonrational Fano threefolds of index 2:

- $d = 1 \cdot 8$ double cover of $\mathbb{P}(1, 1, 1, 2)$ ramified in a cubic
- $d = 2 \cdot 8$ quartic double solid
- $d = 3 \cdot 8$ cubic threefold

FANO THREEFOLDS: IDEA AND IMPLEMENTATION

Nonrational Fano threefolds of index 2:

- $d = 1 \cdot 8$ double cover of $\mathbb{P}(1, 1, 1, 2)$ ramified in a cubic
- $d = 2 \cdot 8$ quartic double solid
- $d = 3 \cdot 8$ cubic threefold

Nonrational Fano threefolds of higher Picard rank:

- double cover of $\mathbb{P}^1 \times \mathbb{P}^2$ ramified in D of bi-degree (2,4)
- divisor in $\mathbb{P}^2 \times \mathbb{P}^2$ of bi-degree (2,2)
- double cover of $\mathrm{Bl}_p(\mathbb{P}^3)$
- \bullet double cover of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ ramified in D of degree (2,2,2)

FANO THREEFOLDS: DEGENERATIONS

From general quartic del Pezzo $\mathcal{X} \to \mathbb{P}^1$ to Fano threefolds V:

- d=2: $h(\mathcal{X})=22 \Rightarrow$ sextic double solid V with 32+4 nodes
- d = 4: $h(\mathcal{X}) = 20 \Rightarrow$ quartic threefold with 16 nodes
- d = 6: $h(\mathcal{X}) = 18 \Rightarrow \text{quadric} \cap \text{cubic with } 8 \text{ nodes}$
- d = 8: $h(\mathcal{X}) = 16 \Rightarrow$ intersection of three quadrics with 4 nodes
- d = 10: $h(\mathcal{X}) = 14 \Rightarrow$ specialization of a V with 2 nodes

FANO THREEFOLDS AND DEL PEZZO FIBRATIONS

Consider the intersection of two (1,2)-hypersurfaces in $\mathbb{P}^1 \times \mathbb{P}^4$:

$$sP_1 + tQ_1 = sP_2 + tQ_2 = 0.$$

Let $v_1, \ldots, v_{16} \in \mathbb{P}^4$ denote the solutions to

$$P_1 = Q_2 = P_2 = Q_2 = 0$$

FANO THREEFOLDS AND DEL PEZZO FIBRATIONS

Consider the intersection of two (1,2)-hypersurfaces in $\mathbb{P}^1 \times \mathbb{P}^4$:

$$sP_1 + tQ_1 = sP_2 + tQ_2 = 0.$$

Let $v_1, \ldots, v_{16} \in \mathbb{P}^4$ denote the solutions to

$$P_1 = Q_2 = P_2 = Q_2 = 0$$

• Projection onto the first factor gives a degree 4 del Pezzo fibration over \mathbb{P}^1 (with 16 constant sections)

FANO THREEFOLDS AND DEL PEZZO FIBRATIONS

Consider the intersection of two (1,2)-hypersurfaces in $\mathbb{P}^1 \times \mathbb{P}^4$:

$$sP_1 + tQ_1 = sP_2 + tQ_2 = 0.$$

Let $v_1, \ldots, v_{16} \in \mathbb{P}^4$ denote the solutions to

$$P_1 = Q_2 = P_2 = Q_2 = 0$$

- Projection onto the first factor gives a degree 4 del Pezzo fibration over \mathbb{P}^1 (with 16 constant sections)
- Projection onto the second factor gives a quartic threefold

$$V := \{ P_1 Q_2 - Q_1 P_2 = 0 \} \subset \mathbb{P}^4$$

with 16 nodes $v_1, ..., v_{16}$.

FANO THREEFOLDS OF HIGHER PICARD RANK

The other families of Fano threefolds are conic bundles, but not very general, as in the theorem above. Additional work is needed.

EXAMPLE

 $X \to \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, double cover ramified in a (2,2,2) hypersurface; conic bundles over $\mathbb{P}^1 \times \mathbb{P}^1$ with discriminant of bi-degree (4,4) – not generic in its linear series!

FANO THREEFOLDS OF HIGHER PICARD RANK

The other families of Fano threefolds are conic bundles, but not very general, as in the theorem above. Additional work is needed.

EXAMPLE

 $X \to \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, double cover ramified in a (2,2,2) hypersurface; conic bundles over $\mathbb{P}^1 \times \mathbb{P}^1$ with discriminant of bi-degree (4,4) – not generic in its linear series! The corresponding K3 double cover $S \to \mathbb{P}^1 \times \mathbb{P}^1$ has Picard rank 3 and not 2.

RATIONALITY IN FAMILIES

Let $\pi: \mathcal{X} \to B$ be a family of rationally connected varieties and put

$$\operatorname{Rat}(\pi) := \{ b \in B \mid \mathcal{X}_b \text{ is rational } \}.$$

DE FERNEX-FUSI 2013

In dimension 3, $Rat(\pi)$ is a countable union of closed subsets of B.

RATIONALITY IN FAMILIES

Let $\pi: \mathcal{X} \to B$ be a family of rationally connected varieties and put

$$\operatorname{Rat}(\pi) := \{ b \in B \mid \mathcal{X}_b \text{ is rational } \}.$$

DE FERNEX-FUSI 2013

In dimension 3, $Rat(\pi)$ is a countable union of closed subsets of B.

What about higher dimensions? E.g., moduli spaces of Fano varieties?

RATIONALITY IN FAMILIES

Let $\pi: \mathcal{X} \to B$ be a family of rationally connected varieties and put

$$\operatorname{Rat}(\pi) := \{ b \in B \mid \mathcal{X}_b \text{ is rational } \}.$$

DE FERNEX-FUSI 2013

In dimension 3, $Rat(\pi)$ is a countable union of closed subsets of B.

What about higher dimensions? E.g., moduli spaces of Fano varieties?

Remark

Over number fields, $Rat(\pi)$ has been studied, in connection with specializations in Brauer-Severi fibrations (Serre's problem).

$Rat(\pi)$: HASSETT-PIRUTKA-T. 2016

 $Rat(\pi)$ and its complement can be dense on the base.

There exist smooth families of projective rationally connected fourfolds $\mathcal{X} \to B$ over $k = \mathbb{C}$ such that:

- For every $b \in B$ the fiber X_b is a quadric surface bundle over a rational surface S;
- For very general $b \in B$ the fiber \mathcal{X}_b is not stably rational;
- The set of $b \in B$ such that \mathcal{X}_b is rational is dense in B.

Two difficulties:

• Construction of special X satisfying (\mathbf{O}) and (\mathbf{S})

$Rat(\pi)$: HASSETT-PIRUTKA-T. 2016

 $Rat(\pi)$ and its complement can be dense on the base.

There exist smooth families of projective rationally connected fourfolds $\mathcal{X} \to B$ over $k = \mathbb{C}$ such that:

- For every $b \in B$ the fiber X_b is a quadric surface bundle over a rational surface S;
- For very general $b \in B$ the fiber \mathcal{X}_b is not stably rational;
- The set of $b \in B$ such that \mathcal{X}_b is rational is dense in B.

Two difficulties:

- Construction of special X satisfying (\mathbf{O}) and (\mathbf{S})
- Rationality constructions

RATIONALITY IN FAMILIES: IDEA

Consider a quadric surface bundle

$$\pi: \mathcal{Q} \to \mathbb{P}^2$$
,

with smooth generic fiber. Let $D \subset \mathbb{P}^2$ be the degeneration curve; assume that D is smooth. Then \mathcal{Q} is characterized by:

- the double cover $T \to \mathbb{P}^2$ with ramification in D
- an element $\alpha \in \operatorname{Br}(T)[2]$ (the Clifford invariant)

RATIONALITY IN FAMILIES: IDEA

Consider a quadric surface bundle

$$\pi: \mathcal{Q} \to \mathbb{P}^2$$
,

with smooth generic fiber. Let $D \subset \mathbb{P}^2$ be the degeneration curve; assume that D is smooth. Then \mathcal{Q} is characterized by:

- the double cover $T \to \mathbb{P}^2$ with ramification in D
- an element $\alpha \in Br(T)[2]$ (the Clifford invariant)

The morphism π admits a section iff α is trivial; in this case the fourfold $\mathcal Q$ is rational.

RATIONALITY IN FAMILIES: IDEA

Consider a quadric surface bundle

$$\pi: \mathcal{Q} \to \mathbb{P}^2$$
,

with smooth generic fiber. Let $D \subset \mathbb{P}^2$ be the degeneration curve; assume that D is smooth. Then \mathcal{Q} is characterized by:

- the double cover $T \to \mathbb{P}^2$ with ramification in D
- an element $\alpha \in Br(T)[2]$ (the Clifford invariant)

The morphism π admits a section iff α is trivial; in this case the fourfold \mathcal{Q} is rational.

When $deg(D) \ge 6$, Pic(T) and Br(T) can change as we vary D.

RATIONALITY IN FAMILIES: IMPLEMENTATION

We consider bi-degree (2,2) hypersurfaces

$$X \subset \mathbb{P}^2 \times \mathbb{P}^3$$
.

Projection onto the first factor gives a quadric bundle over \mathbb{P}^2 , its degeneration divisor $D \subset \mathbb{P}^2$ is an octic curve.

Note: Cubic fourfolds containing a plane give rise to quadric surface bundles with degeneration curve of degree 6.

Special fiber

Let

$$X \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[s:t:u:v]}$$

be a bi-degree (2,2) hypersurface given by

$$yzs^{2} + xzt^{2} + xyu^{2} + F(x, y, z)v^{2} = 0,$$

where

$$F(x, y, z) := x^2 + y^2 + z^2 - 2xy - 2yz - 2xz.$$

Special fiber

Let

$$X \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[s:t:u:v]}$$

be a bi-degree (2,2) hypersurface given by

$$yzs^{2} + xzt^{2} + xyu^{2} + F(x, y, z)v^{2} = 0,$$

where

$$F(x, y, z) := x^2 + y^2 + z^2 - 2xy - 2yz - 2xz.$$

The discriminant curve for the projection $X \to \mathbb{P}^2$ is given by

$$x^2y^2z^2F(x,y,z) = 0.$$

SPECIAL FIBER

 \bullet Computing $H^2_{nr}(X,\mathbb{Z}/2)$: general approach by Pirutka (2016)

Special fiber

- \bullet Computing $H^2_{nr}(X,\mathbb{Z}/2)$: general approach by Pirutka (2016)
- Desingularization: by hand; the singular locus is a union of 6 conics, intersecting transversally

RATIONALITY

It suffices to produce Hodge classes in $H^{2,2}(X,\mathbb{Z})$ intersecting the class of the fiber of $\pi: X \to \mathbb{P}^2$ in odd degree. Then the quadric over the function field $\mathbb{C}(\mathbb{P}^2)$ has a section, and X is rational.

The corresponding Noether-Lefschetz locus is dense in the usual topology of the moduli space.

STABLE RATIONALITY IN FAMILIES

Idea: Make the function field of \mathcal{X}_b the groundfield of a stably rational but not rational DP4 (conic bundle with 4 degenerate fibes).

- If $k(\mathcal{X}_b)$ fails universal CH₀-triviality, then the total space fails stable rationality.
- When $k(\mathcal{X}_b)$ is rational, the total space is stably rational.

STABLE RATIONALITY IN FAMILIES

Idea: Make the function field of \mathcal{X}_b the groundfield of a stably rational but not rational DP4 (conic bundle with 4 degenerate fibes).

- If $k(\mathcal{X}_b)$ fails universal CH₀-triviality, then the total space fails stable rationality.
- When $k(\mathcal{X}_b)$ is rational, the total space is stably rational.

How to show that it is not rational?

OTHER APPLICATIONS

THEOREM (HASSETT-PIRUTKA-T. 2017)

Let $X \subset \mathbb{P}^7$ be a very general intersection of three quadrics. Then X is not stably rational. Rational X are dense in moduli.

OTHER APPLICATIONS

THEOREM (HASSETT-PIRUTKA-T. 2017)

Let $X \subset \mathbb{P}^7$ be a very general intersection of three quadrics. Then X is not stably rational. Rational X are dense in moduli.

Idea: Such X admit a fibration $X \to \mathbb{P}^2$, with generic fiber a quadric surface and octic discriminant.

• $\dim = 1$ - nonrational

- \bullet dim = 1 nonrational
- $\dim = 2$ rational

- \bullet dim = 1 nonrational
- $\dim = 2$ rational
- $\bullet \mbox{ dim} = 3$ nonrational, are there any stably rational examples?

- \bullet dim = 1 nonrational
- \bullet dim = 2 rational
- \bullet dim = 3 nonrational, are there any stably rational examples?
- $\dim = 4$ periodicity??

 ${\mathcal M}$ - 20-dim moduli space of cubic fourfolds

 ${\mathcal M}$ - 20-dim moduli space of cubic fourfolds two distinguished divisors

• $C_{14} \subset \mathcal{M}$ - cubic fourfolds containing a normal quartic scroll

 ${\mathcal M}$ - 20-dim moduli space of cubic fourfolds two distinguished divisors

• $C_{14} \subset \mathcal{M}$ - cubic fourfolds containing a normal quartic scroll all rational

 ${\cal M}$ - 20-dim moduli space of cubic fourfolds two distinguished divisors

- $C_{14} \subset \mathcal{M}$ cubic fourfolds containing a normal quartic scroll all rational
- $C_8 \subset \mathcal{M}$ a countable dense subset of these cubics is rational (Tregub 1984, Hassett 1999)

Dimension 4

 ${\cal M}$ - 20-dim moduli space of cubic fourfolds two distinguished divisors

- $C_{14} \subset \mathcal{M}$ cubic fourfolds containing a normal quartic scroll all rational
- $C_8 \subset \mathcal{M}$ a countable dense subset of these cubics is rational (Tregub 1984, Hassett 1999)

Unirational parametrizations:

• all admit unirational parametrizations of degree 2

Dimension 4

 ${\cal M}$ - 20-dim moduli space of cubic fourfolds two distinguished divisors

- $C_{14} \subset \mathcal{M}$ cubic fourfolds containing a normal quartic scroll all rational
- $C_8 \subset \mathcal{M}$ a countable dense subset of these cubics is rational (Tregub 1984, Hassett 1999)

Unirational parametrizations:

- all admit unirational parametrizations of degree 2
- (Hassett-T. 2001) Cubic fourfolds with an odd degree unirational parametrization are dense in moduli

SPECIAL CUBIC FOURFOLDS

Addington-Hassett-T.-Várilly-Alvarado 2016

The locus of rational cubic fourfolds in C_{18} – special cubic fourfolds of discriminant 18 – is dense.

Special cubic fourfolds

Addington-Hassett-T.-Várilly-Alvarado 2016

The locus of rational cubic fourfolds in \mathcal{C}_{18} – special cubic fourfolds of discriminant 18 – is dense.

Idea: Every $X \in \mathcal{C}_{18}$ admits a fibration $X \to \mathbb{P}^2$ with general fiber a degree 6 Del Pezzo surface. A multisection of degree coprime to 3 forces rationality. The locus of such cubics is dense in \mathcal{C}_{18} .

Remark

Something like this should work for 6-dimensional cubics.

SUMMARY

• There are many instances of fascinating interactions between arithmetic and geometric properties of higher-dimensional algebraic varieties.

SUMMARY

- There are many instances of fascinating interactions between arithmetic and geometric properties of higher-dimensional algebraic varieties.
- Rationality and stable rationality of cubic hypersurfaces remain a major challenge.