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Rationality

An algebraic variety X/k is

(R) rational: if X ∼ Pn for some n

(S) stably rational: if X × Pn is rational, for some n

(U) unirational: if Pn 99K X, for some n

Introduction



Rationality

An algebraic variety X/k is

(R) rational: if X ∼ Pn for some n

(S) stably rational: if X × Pn is rational, for some n

(U) unirational: if Pn 99K X, for some n

Introduction



Rationality

An algebraic variety X/k is

(R) rational: if X ∼ Pn for some n

(S) stably rational: if X × Pn is rational, for some n

(U) unirational: if Pn 99K X, for some n

Introduction



Classical results

In dimensions ≤ 2, over C,

rationality = stable rationality=unirationality

Curves: Lüroth

Surfaces: Castelnuovo, Enriques

This can fail over nonclosed ground-fields k.
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Del Pezzo surfaces over nonclosed fields

Theorem

Let X be a smooth del Pezzo surface over a field k.

deg(X) ≥ 5: If X(k) 6= ∅ then X is k-rational.

deg(X) = 4, 3: If X(k) 6= ∅ then X is k-unirational.

deg(X) = 2: same, with three omissions (Salgado, Testa,
Varilly-Alvarado 2013)

Introduction



Open problems

k = F3, is X/k given by

−w3 = x4 + y3z − yz3

unirational?

If deg(X) = 1 then X(k) 6= ∅. Is X unirational? Are k-rational
points Zariski dense? (Some results by Salgado and van Luijk,
2014.)
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Cohomology

Let
Hi(G,M)

be the i-cohomology group of a finite or profinite group G, with
coefficients in a G-module M . Recall:

H0(G,M) = MG, the submodule of G-invariants

H1(G,M), twisted homomorphisms

Obstruction to rationality

Br(X) = H2
et(X,Gm).

For Del Pezzo surfaces,

Br(X)/Br(k) = H1(Gk,Pic(X̄)).
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Computing the obstruction group

Let X ⊂ P4 be a smooth DP4. The Galois action on the 16 lines
factors through the Weyl group W(D5) (a group of order 1920).

Bright, Bruin, Flynn, Logan 2007

If the degree of the splitting field over Q is > 96 then

H1(GQ,Pic(X̄)) = 0.

In all other cases, the obstruction group is either

1,Z/2Z, or (Z/2Z)2.
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The obstruction group

This obstruction is effectively computable for all Del Pezzo surfaces
over number fields.

Obstruction to stable rationality

If X is stably rational then H1(Gk′ ,Pic(X̄)) = 0, for all k′/k.

Conjecture (Colliot-Thélène–Sansuc)

If X(k) 6= ∅ and this obstruction vanishes then X is stably rational.
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Stable rationality of Del Pezzo surfaces

The only known case:

Example

Let X be a conic bundle over P1, over a field k, given by

x2 − ay2 = f(s), deg(f) = 3, disc(f) = a,

with f irreducible over k. Then X is nonrational over k, but

H1(Gk′ ,Pic(X̄)) = 0, for all k′/k.

Beauville–Colliot-Thélène–Sansuc–Swinnerton-Dyer 1985:

X is stably rational
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Stable rationality of Del Pezzo surfaces

Candidates, DP4:

I1: y
2 − xz2 = (x− 3)(x+ 3)(x3 + 9)

I2: y
2 − xz2 = −(x3 + 2apx2 + a2p2x− a3q3)(x2 − 2rx+ s),

such that

a is not a cube,
g(x) := x3 + px+ q is irreducible,
disc(g)/(r2 − s), s/(r2 − s), and a/disc(g) are squares

I3: y
2 − xz2 = −(x2 − 3)(x3 + 3)

Introduction



Higher dimensions: invariant theory

Data:

G/k linear algebraic group (e.g., finite group)

ρ : G→ V faithful representation

Noether’s problem

Is X := V/G rational?

More generally, G acting on a variety Y , is X := Y/G, resp. k(Y )G,
rational?
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Noether’s problem

Why interesting? Applications to the inverse problem of Galois
theory - realizing a finite group G as the Galois group of a field
extension (via Hilbert’s irreducibility).

Why difficult? Gr(2, n) = SL2\Mat2×n is rational. The ring of
invariants has

(
n
2

)
generators and

(
n
4

)
relations.
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Noether’s problem

If G is SLn, Spn, SOn, ... then V/G is stably rational.

If G = PGL3 then V/G is rational (Böhning–von Bothmer
2008)
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Noether’s problem: counterexamples

Nonlinear actions: Saltman (1984)

Let

G = (Z/p)3, p prime,

M := Ker(Z[G×G]→ Z[G]),

X = Spec(k[M ]),

Then X/G is not rational.

Linear actions: Bogomolov (1988)

Nontriviality of the unramified Brauer group of the function field
k(V )G, for some group of order p6. In particular, V/G is not stably
rational.
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Unramified cohomology and the Brauer group

Let K = k(X) be a function field over k = k̄, GK := Gal(K̄/K) its
Galois group, and

H i(K) := H i(GK ,Z/n)

its i-th Galois cohomology. For every divisorial valuation ν of K we
have a natural homomorphism

H i(K)
∂ν−→ H i−1(κ(ν))

The group
H i
nr(K) := ∩νKer(∂ν)

is a birational invariant; it vanishes for rational K. For smooth X
we have

H2
nr(K) = Br(X)[n]

Introduction



Universality

Theorem (Bogomolov–T. 2015)

Let X be a variety of dimension ≥ 2 over k = F̄p, K = k(X), and
` 6= p. Every α ∈ H i

nr(K,Z/`)) is induced from an unramified class
in the cohomology of a quotient

(
∏
j

P(Vj))/G
a,

for some finite `-group Ga.

Introduction



Counterexamples to Lüroth’s problem

Major developments in 1971-72:

Iskovskikh-Manin: quartic in P4 via birational rigidity

Clemens-Griffiths: cubic in P4 via intermediate Jacobians

Artin-Mumford: conic bundles via Brauer groups

The 1970s



Counterexamples to Lüroth’s problem
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Birational rigidity

This approach stimulated major developments in algebraic
geometry.

Reid, Pukhlikov, Cheltsov: birational rigidity of many smooth
and singular (high degree) Fano hypersurfaces in weighted
projective spaces

Some of these are known to be unirational. Guess: a (very
general) birationally rigid threefold is not stably rational.

The 1970s
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Intermediate Jacobians

Theorem

If the intermediate Jacobian IJ(X) of a complex threefold X is not
a product of Jacobians of curves then X is nonrational.

Implementation:

Cubic threefolds (Clemens–Griffiths)

Intersection of 3 quadrics and conic bundles (Beauville)

Certain del Pezzo surface fibrations over P1 (Alexeev,
Grinenko, Cheltsov)

The 1970s
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Specialization method

Idea (Clemens 1974): Let

φ : X → B

be a family of Fano threefolds, with smooth generic fiber. Assume
that there exists a point b ∈ B such that the fiber

X := φ−1(b)

satisfies the following conditions:

(S) Singularities: X has at most rational double points

(O) Obstruction: the intermediate Jacobian IJ(X̃0) (of the
resolution of singularities X̃0) is not a product of Jacobians of
curves.

Then a general fiber Xb is not rational.

Implementation (Beauville 1977): nonrationality of quartic
and sextic double solids

The 1970s
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Brauer group

Theorem (Artin-Mumford)

Let X → S be a conic bundle over a smooth projective rational
surface S with discriminant a smooth curve

D = trj=1Dj ⊂ S,

and with g(Dj) ≥ 1 for all j. Then

Br(X) = (Z/2)r−1.

The 1970s



Cycle-theoretic tools: CH0

CH0(Xk) is the abelian group generated by zero-dimensional
subvarieties x ∈ X (e.g., points x ∈ X(k)), modulo k-rational
equivalence.

Assuming X(k) 6= ∅, there is a surjective degree homomorphism

CH0(Xk)→ Z.

For which X is this an isomorphism?

Example

X a unirational or rationally-connected variety over k = C.

New developments



CH0-triviality

A projective X/k is universally CH0-trivial if for all k′/k

CH0(Xk′)
∼−→ Z

For example, smooth k-rational varieties are universally
CH0-trivial. Unirational or rationally-connected varieties are not
necessarily universally CH0-trivial. Smooth projective X/k with
Br(X) 6= Br(k), or more generally, with nontrivial higher
unramified cohomology, are not universally CH0-trivial.

New developments
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CH0-triviality

This condition is difficult to check, in general. Here is a sample of
results: Universal CH0-triviality holds for

For cubic threefolds parametrized by a countable union of
subvarieties of codimension ≥ 3 of the moduli space (Voisin
2014); these should be dense in moduli

For special cubic fourfolds with discriminant not divisible by 4
(Voisin 2014)

For cubic fourfolds (of discriminant 8) containing a plane
(Auel–Colliot-Thélène–Parimala, 2015)

New developments



CH0-triviality

A projective morphism
β : X̃ → X

of k-varieties is universally CH0-trivial if for all k′/k

β∗ : CH0(X̃k′)
∼−→ CH0(Xk′).

New developments



CH0-triviality

Theorem (Colliot-Thélène–Pirutka, 2015)

Let
β : X̃ → X

be a projective morphism such that for every scheme point x of X,
the fiber β−1(x), considered as a variety over the residue field κ(x),
is universally CH0-trivial. Then β is universally CH0-trivial.

For example,
β : BlZ(X)→ X,

the blowup of a smooth variety X in a smooth subvariety Z, is
universally CH0-trivial.

New developments
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Specialization method
Voisin 2014, Colliot-Thélène–Pirutka 2015

Let
φ : X → B

be a flat projective morphism of complex varieties with smooth
generic fiber. Assume that there exists a point b ∈ B such that the
fiber

X := φ−1(b)

satisfies the following conditions:

(S) Singularities: X admits a desingularization

β : X̃ → X

such that the morphism β is universally CH0-trivial;

(O) Obstruction: the group H2
nr(C(X),Z/2) is nontrivial.

Then a very general fiber of φ is not stably rational.
New developments



Specialization method: First applications

Very general varieties below are not stably rational:

Quartic double solids X → P3 with ≤ 7 double points
(Voisin 2014)

Quartic threefolds (Colliot-Thélène–Pirutka 2014)

Sextic double solids X → P3 (Beauville 2014)

Fano hypersurfaces of high degree (Totaro 2015)

Cyclic covers X → Pn of prime degree
(Colliot-Thélène–Pirutka 2015)

Cyclic covers X → Pn of arbitrary degree (Okada 2016)

New developments



Conic bundles over rational surfaces

Theorem (Hassett-Kresch-T. 2015)

Let S be a smooth projective rational surface over k, an
uncountable algebraically closed field of characteristic 6= 2. Let L be
a linear system of effective divisors on S whose general member is
smooth and irreducible. Let M be an irreducible component of the
space of reduced nodal curves in L together with degree 2 étale
covering. Assume that M contains a cover, nontrivial over every
irreducible component of a reducible curve with smooth irreducible
components. Then the conic bundle over S corresponding to a very
general point of M is not stably rational.

Example: A very general conic bundle X → P2, with discriminant
a curve of degree ≥ 6, is not stably rational.

New developments
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Conic bundles over rational surfaces

Theorem (Böhning–von Bothmer 2016)

A very general hypersurface X ⊂ P2 × P2 of bi-degree (2, d), d ≥ 2,
is not stably rational.

Via explicit degeneration of Prym curves.

New developments
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Conic bundles over higher-dimensional bases

Stable rationality fails for general varieties in the following families:

Certain conic bundles over P3, e.g.,

X ⊂ P2 × P3

of bi-degree (2, 2) (Auel–Böhning–von Bothmer–Pirutka 2016)

Conic bundles over Pn−1: smooth X ⊂ P(E), for E direct sum
of three line bundles, if −KX is not ample. In particular

X ⊂ P2 × Pn−1

of bi-degree (2, d), d ≥ n ≥ 3 (Ahmadinezhad–Okada 2017)

New developments



Conic bundles over rational surfaces

Let X → S be a very general conic bundle over a del Pezzo surface
of degree 1, with discriminant C ∈ | − 2KS |. Then

X is not birationally rigid

IJ(X) is an elliptic curve

X has trivial Brauer group

X is not stably rational

New developments
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Del Pezzo fibrations

Theorem (Hassett-T. 2016)

A very general fibration π : X → P1 in quartic del Pezzo surfaces
which is not rational and not birational to a cubic threefold is not
stably rational.

New developments



Del Pezzo fibrations

Theorem (Krylov-Okada 2017)

A very general nonrational del Pezzo fibration π : X → P1 of degree
1, 2, or 3 which is not birational to a cubic threefold is not stably
rational.

Similar results over higher-dimensional bases.

New developments



Fano threefolds

Theorem (Hassett-T. 2016)

A very general nonrational Fano threefold X over k = C which is
not birational to a cubic threefold is not stably rational.

Generalizations by Okada to certain singular Fano varieties.

New developments



Fano threefolds

Theorem (Hassett-T. 2016)

A very general nonrational Fano threefold X over k = C which is
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Generalizations by Okada to certain singular Fano varieties.
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Fano threefolds: idea and implementation

Find suitable degenerations with mild singularities and birational
to conic bundles.

Nonrational Fano threefolds with

Pic(V ) = −KV Z and d = d(V ) = −K3
V :

d = 2 sextic double solid

d = 4 quartic

d = 6 intersection of a quadric and a cubic

d = 8 intersection of three quadrics

d = 10 section of Gr(2, 5) by two linear forms and a quadric

d = 14 birational to a cubic threefold

New developments



Fano threefolds: idea and implementation

Nonrational Fano threefolds of index 2:

d = 1 · 8 double cover of P(1, 1, 1, 2) ramified in a cubic

d = 2 · 8 quartic double solid

d = 3 · 8 cubic threefold

Nonrational Fano threefolds of higher Picard rank:

double cover of P1 × P2 ramified in D of bi-degree (2, 4)

divisor in P2 × P2 of bi-degree (2, 2)

double cover of Blp(P3)

double cover of P1 × P1 × P1 ramified in D of degree (2, 2, 2)

New developments
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Fano threefolds: degenerations

From general quartic del Pezzo X → P1 to Fano threefolds V :

d = 2: h(X ) = 22⇒ sextic double solid V with 32+4 nodes

d = 4: h(X ) = 20⇒ quartic threefold with 16 nodes

d = 6: h(X ) = 18⇒ quadric ∩ cubic with 8 nodes

d = 8: h(X ) = 16⇒ intersection of three quadrics with 4 nodes

d = 10: h(X ) = 14⇒ specialization of a V with 2 nodes

New developments



Fano threefolds and del Pezzo fibrations

Consider the intersection of two (1, 2)-hypersurfaces in P1 × P4:

sP1 + tQ1 = sP2 + tQ2 = 0.

Let v1, . . . , v16 ∈ P4 denote the solutions to

P1 = Q2 = P2 = Q2 = 0

Projection onto the first factor gives a degree 4 del Pezzo
fibration over P1 (with 16 constant sections)

Projection onto the second factor gives a quartic threefold

V := {P1Q2 −Q1P2 = 0} ⊂ P4

with 16 nodes v1, . . . , v16.

New developments
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Fano threefolds of higher Picard rank

The other families of Fano threefolds are conic bundles, but not
very general, as in the theorem above. Additional work is needed.

Example

X → P1 × P1 × P1, double cover ramified in a (2, 2, 2) hypersurface;
conic bundles over P1 × P1 with discriminant of bi-degree (4, 4) –
not generic in its linear series!

The corresponding K3 double cover
S → P1 × P1 has Picard rank 3 and not 2.

New developments
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Rationality in families

Let π : X → B be a family of rationally connected varieties and put

Rat(π) := { b ∈ B | Xb is rational }.

de Fernex–Fusi 2013

In dimension 3, Rat(π) is a countable union of closed subsets of B.

What about higher dimensions? E.g., moduli spaces of Fano
varieties?

Remark

Over number fields, Rat(π) has been studied, in connection with
specializations in Brauer-Severi fibrations (Serre’s problem).

New developments
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Rat(π): Hassett-Pirutka-T. 2016

Rat(π) and its complement can be dense on the base.

There exist smooth families of projective rationally connected
fourfolds X → B over k = C such that:

For every b ∈ B the fiber Xb is a quadric surface bundle over a
rational surface S;

For very general b ∈ B the fiber Xb is not stably rational;

The set of b ∈ B such that Xb is rational is dense in B.

Two difficulties:

Construction of special X satisfying (O) and (S)

Rationality constructions

New developments



Rat(π): Hassett-Pirutka-T. 2016

Rat(π) and its complement can be dense on the base.

There exist smooth families of projective rationally connected
fourfolds X → B over k = C such that:

For every b ∈ B the fiber Xb is a quadric surface bundle over a
rational surface S;

For very general b ∈ B the fiber Xb is not stably rational;

The set of b ∈ B such that Xb is rational is dense in B.

Two difficulties:

Construction of special X satisfying (O) and (S)

Rationality constructions

New developments



Rationality in families: idea

Consider a quadric surface bundle

π : Q → P2,

with smooth generic fiber. Let D ⊂ P2 be the degeneration curve;
assume that D is smooth. Then Q is characterized by:

the double cover T → P2 with ramification in D

an element α ∈ Br(T )[2] (the Clifford invariant)

The morphism π admits a section iff α is trivial; in this case the
fourfold Q is rational.

When deg(D) ≥ 6, Pic(T ) and Br(T ) can change as we vary D.

New developments
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Rationality in families: implementation

We consider bi-degree (2, 2) hypersurfaces

X ⊂ P2 × P3.

Projection onto the first factor gives a quadric bundle over P2, its
degeneration divisor D ⊂ P2 is an octic curve.

Note: Cubic fourfolds containing a plane give rise to quadric
surface bundles with degeneration curve of degree 6.

New developments



Special fiber

Let
X ⊂ P2

[x:y:z] × P3
[s:t:u:v]

be a bi-degree (2, 2) hypersurface given by

yzs2 + xzt2 + xyu2 + F (x, y, z)v2 = 0,

where
F (x, y, z) := x2 + y2 + z2 − 2xy − 2yz − 2xz.

The discriminant curve for the projection X → P2 is given by

x2y2z2F (x, y, z) = 0.

New developments
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Special fiber

Computing H2
nr(X,Z/2): general approach by Pirutka (2016)

Desingularization: by hand; the singular locus is a union of 6
conics, intersecting transversally

New developments
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Rationality

It suffices to produce Hodge classes in H2,2(X,Z) intersecting the
class of the fiber of π : X → P2 in odd degree. Then the quadric
over the function field C(P2) has a section, and X is rational.

The corresponding Noether-Lefschetz locus is dense in the usual
topology of the moduli space.

New developments



Stable rationality in families

Idea: Make the function field of Xb the groundfield of a stably
rational but not rational DP4 (conic bundle with 4 degenerate
fibes).

If k(Xb) fails universal CH0-triviality, then the total space fails
stable rationality.

When k(Xb) is rational, the total space is stably rational.

How to show that it is not rational?

New developments
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Other applications

Theorem (Hassett–Pirutka–T. 2017)

Let X ⊂ P7 be a very general intersection of three quadrics. Then
X is not stably rational. Rational X are dense in moduli.

Idea: Such X admit a fibration X → P2, with generic fiber a
quadric surface and octic discriminant.

New developments
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Smooth cubic hypersurfaces X3 ⊂ Pn

dim = 1 - nonrational

dim = 2 - rational

dim = 3 - nonrational, are there any stably rational examples?

dim = 4 - periodicity??

New developments
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Dimension 4

M - 20-dim moduli space of cubic fourfolds

two distinguished divisors

C14 ⊂M - cubic fourfolds containing a normal quartic scroll all
rational

C8 ⊂M - a countable dense subset of these cubics is rational
(Tregub 1984, Hassett 1999)

Unirational parametrizations:

all admit unirational parametrizations of degree 2

(Hassett-T. 2001) Cubic fourfolds with an odd degree
unirational parametrization are dense in moduli

New developments
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Special cubic fourfolds

Addington–Hassett–T.–Várilly-Alvarado 2016

The locus of rational cubic fourfolds in C18 – special cubic fourfolds
of discriminant 18 – is dense.

Idea: Every X ∈ C18 admits a fibration X → P2 with general fiber
a degree 6 Del Pezzo surface. A multisection of degree coprime to 3
forces rationality. The locus of such cubics is dense in C18.

Remark

Something like this should work for 6-dimensional cubics.

New developments
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Summary

There are many instances of fascinating interactions between
arithmetic and geometric properties of higher-dimensional
algebraic varieties.

Rationality and stable rationality of cubic hypersurfaces
remain a major challenge.

New developments
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