
L-equivalence of K3 surfaces

Evgeny Shinder (Sheffield)

EDGE, Edinburgh

26.06.2017

E.Shinder (Sheffield) L-equivalence of K3 surfaces 1 / 21



Introduction: Geometric meaning of D-equivalence

Grothendieck ring of varieties and L-equivalence

Quadrics, quadric fibrations and K3 surfaces
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D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

I Db(X) = Db(Coh(X)), bounded derived category of coherent sheaves

I X and Y are called derived equivalent or D-equivalent if Db(X) ' Db(Y )

Examples of Db(X) ' Db(Y )

I Mukai: if A abelian variety, then Db(A) ' Db(Â)
I Abelian varieties [complete classification of D-equivalence by Orlov]

I K3 surfaces [complete classification of D-equivalence by Mukai]

I Calabi-Yau threefolds [examples known by Borisov-Caldararu, Kuznetsov...]

I Kuznetsov: Homological Projective Duality

I Some flops [Bondal-Orlov, Bridgeland...]
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I Abelian varieties [complete classification of D-equivalence by Orlov]

I K3 surfaces [complete classification of D-equivalence by Mukai]

I Calabi-Yau threefolds [examples known by Borisov-Caldararu, Kuznetsov...]

I Kuznetsov: Homological Projective Duality

I Some flops [Bondal-Orlov, Bridgeland...]

E.Shinder (Sheffield) L-equivalence of K3 surfaces 3 / 21



D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

I Db(X) = Db(Coh(X)), bounded derived category of coherent sheaves

I X and Y are called derived equivalent or D-equivalent if Db(X) ' Db(Y )

Examples of Db(X) ' Db(Y )

I Mukai: if A abelian variety, then Db(A) ' Db(Â)
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I Abelian varieties [complete classification of D-equivalence by Orlov]

I K3 surfaces [complete classification of D-equivalence by Mukai]

I Calabi-Yau threefolds [examples known by Borisov-Caldararu, Kuznetsov...]

I Kuznetsov: Homological Projective Duality

I Some flops [Bondal-Orlov, Bridgeland...]

E.Shinder (Sheffield) L-equivalence of K3 surfaces 3 / 21



D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

I Db(X) = Db(Coh(X)), bounded derived category of coherent sheaves

I X and Y are called derived equivalent or D-equivalent if Db(X) ' Db(Y )

Examples of Db(X) ' Db(Y )

I Mukai: if A abelian variety, then Db(A) ' Db(Â)
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D-equivalence and K-equivalence

D-equivalence and geometry
I D-equivalence does not imply birational equivalence

I Big question: are Hodge numbers preserved under D-equivalence?

Definition
I X and Y are called K-equivalent if there exists a Z together with birational

morphisms f : Z → X, g : Z → Y such that f∗(KX) = g∗(KY ).

Conjecture (Kawamata)

If X and Y are birational then X and Y are D-equivalent if and only if they are
K-equivalent.

I K-equivalence =⇒ D-equivalence is known in large generality

I For instance, it is known in dimension 3 [Bridgeland, Kawamata]
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D-equivalence and moduli spaces

Moduli spaces
I Let Y be a fine moduli space of sheaves on X

I Let E be the universal sheaf on X × Y
I Then E determines a functor Db(Y )→ Db(X) (Fourier-Mukai transform)

Theorem (Mukai)

Let X and Y be K3 surfaces. Then X and Y are D-equivalent if and only if Y is
a 2-dimensional fine moduli space of sheaves on X: Y =MX(r,H, s), H2 = 2rs.

Non-fine moduli spaces and the Brauer class
I Let Y be non-fine moduli space of sheaves on X (X, Y K3 surfaces)

I Then the universal sheaf E on X × Y is an α-twisted sheaf, α ∈ Br(Y )

I Db(X) ' Db(Y, α) [Mukai, Caldararu...].
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The Grothendieck ring K0(V ar/k)

Definition

K0(V ar/k) is the following ring:

I Generators: [X], X/k quasi-projective variety

I Relations: [X] = [Z] + [U ] for any closed Z ⊂ X with open complement U

I Product: [X] · [Y ] = [X × Y ]

I L := [A1] - the Lefschetz class (sometimes called the Tate class)

I [Pn] =
∑n
k=0[Ak] =

∑n
k=0 Lk

Example

If X and Y are related by a flop then [X] = [Y ].
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Some properties of the Grothendieck ring

Simple properties

I If X → B a Zarisky locally trivial fibration with fiber F , then

[X] = [F ] · [B]

I If Y = BlZ(X) is a blow up of a smooth Z ⊂ X, then

[Y ]− [P(NZ/X)] = [X]− [Z]

Old open question: what is the geometric meaning of [X] = [Y ]?

Theorem (Larsen-Lunts)

We have [X] ≡ [Y ] (mod L) if and only if X and Y are stably birational.

Corollary

If X, Y are non-uniruled (e.g. K3s or Calabi-Yau) such that [X] ≡ [Y ] (mod L)
then X and Y birational.
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Zero divisors in the Grothendieck ring

It has been known for a long time that K0(V ar/k) is not a domain [Shioda,
Poonen...], e.g. elliptic curves E′ 6' E′′ which satisfy

E × E′ ' E × E′′

for some E gives
[E]([E′]− [E′′]) = 0

but both terms are nonzero.

Old question: is L = [A1] ∈ K0(V ar/k) a zero-divisor?

I Galkin-S. 2014: if L is not a zero divisor, then a very general complex cubic
fourfold X is irrational (and a sufficient condition for irrationality in terms of
the Fano variety of lines F (X))

I Borisov 2014 (improved by Martin 2016): L6([X]− [Y ]) = 0 for Calabi-Yau
threefolds X and Y in the Pfaffian-Grassmannian correspondence
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L-equivalence

Definition

We call X and Y L-equivalent if Ln([X]− [Y ]) = 0 for some n ≥ 1.

Known examples
I Calabi-Yau threefolds: Borisov (Pfaffian-Grassmannian correspondence);

Ito–Miura–Okawa–Ueda (G2 geometry)

I K3 surfaces: Kuznetsov-S. (degrees 8 and 2); Ito–Miura–Okawa–Ueda,
Hassett-Lai (degrees 12 and 12); Kuznetsov-S. (degree 16 and 4: work in
progress)

In all these examples pairs of varieties X and Y are D-equivalent.

Conjecture

D-equivalence of X and Y implies their L-equivalence.

It is easy to see that L-equivalent varieties have the same Hodge numbers, so this
would imply invariance of Hodge numbers under D-equivalence.
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Introduction: Geometric meaning of D-equivalence

Grothendieck ring of varieties and L-equivalence

Quadrics, quadric fibrations and K3 surfaces
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Warm up: elliptic curves

Construction
I X = Q1 ∩Q2 ⊂ P3 smooth complete intersection of two quadrics; X is an

elliptic curve.

I Qλ = λ1Q1 + λ2Q2 pencil of quadrics: Q→ P1

I f(λ) = det(Qλ) has degree 4

I Z ⊂ P1 four points corresponding to singular quadrics

I Y → P1 double cover ramified in Z; Y is an elliptic curve.

Properties of X and Y
I Over an algebraically closed field, X and Y are D-equivalent, L-equivalent,

and in fact isomorphic.

I Over non-algebraically closed field, X and Y don’t have to be isomorphic,
but are unlikely to be D-equivalent or L-equivalent either
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Homological projective duality for K3 surfaces of degree 8

Setup

I X = Q1 ∩Q2 ∩Q3 ⊂ P5, smooth complete intersection of 3 quadrics

I Qλ = λ1Q1 + λ2Q2 + λ3Q3 net of quadrics (λ ∈ P2): Q→ P2

I C = det(Qλ) ⊂ P2, a smooth sextic

I Y → P2 double covering ramified in C

I αY ∈ Br(Y ) determined by the Clifford algebra of Qλ

We have constructed: a K3 surface X of degree 8 and a K3 surface Y of degree 2
that are in a certain sense dual to each other.

Theorem (Mukai, Caldararu, Kuznetsov)

There is an equivalence Db(X) ' Db(Y, αY ). In particular, if αY = 0, then X
and Y are D-equivalent.

Mukai’s approach: Y =MX(2, H, 2), the non-fine moduli space of spinor bundles
on X and αY = 0 if and only if the moduli space is fine.
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Main Theorem

Theorem (Kuznetsov-S.)

If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that αY = 0,
then L2([X]− [Y ]) = 0. For general such X and Y we have [X] 6= [Y ].

In the rest of the talk we are proving this Theorem.
Idea: consider the universal quadric Q ⊂ P5 × P2 and compute its class [Q] in two
ways to get a relation between [X] and [Y ].

Q
p

��

q

��
X // P5 P2 Yoo

I p is piece-wise locally trivial so can relate [H] to [P5] and [X]

I Fibers of q over λ ∈ P2 are quadrics Qλ; q is NOT locally trivial

I Use hyperbolic reduction of quadrics to relate [H] to the double cover Y
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Hyperbolic reduction

Hyperbolic reduction for a quadratic form
I Let (V, q) be a nondegenerate quadratic form

I v ∈ V isotropic vector (that is q(v) = 0)

I Let V = 〈v〉⊥/〈v〉 and let q be the induced quadratic form on V

I Then dim(V ) = dim(V )− 2 and V = V ⊥ 〈1,−1〉.
I We call (V , q) the hyperbolic reduction of (V, q)

Geometric meaning
I Let Q ⊂ P(V ) be the quadric corresponding to (V, q)

I Let x ∈ Q be the point corresponding to L = 〈v〉 ⊂ V
I Projecting from x ∈ Q is a birational map from Q to P(V/L)
I Projection contracts the set of lines on Q through x to a quadric
Q ⊂ P(V/L) corresponding to (V , q)

I We get a relation [Q] = 1 + Ldim(Q) + L[Q] ∈ K0(V ar/k).
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Quadric fibrations with a smooth section

Lemma
If Q→ S is a quadric fibration of relative dimension n and s : S → Q is a smooth
section, then

[Q] = (1 + Ln)[S] + L[Q]

where Q is the fiberwise hyperbolic reduction of Q.

Proof.
Project the quadric fibration from the section s and resolve the indeterminacy
locus of the projection.

Example

Let Q→ Pm be a linear system of quadrics in Pn+1. Let X be the base locus of
this system. Any smooth point x ∈ X determines a section of Q and the Lemma
allows us to relate [Q] and [Q].

This applies in particular to our K3 surface X = Q1 ∩Q2 ∩Q3 and gives us a
quadric fibration Q→ P2 of relative dimension 2 with the same Brauer class αY .
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Quadric fibrations of relative dimension two

Setup
I Q→ S a quadric fibration of relative dimension 2 with nodal degenerations

I Y → S discriminant double cover of Q→ S, αY ∈ Br(Y )

I Hyperbolic reduction Q (if sections exist) is canonically identified with Y

Lemma
I αY = 0 ⇐⇒ Q→ S has a rational multisection of odd degree.

I If αY = 0, then [Q] = (1 + L2)[S] + L[Y ].

Example

In the case of K3 surface X = Q1 ∩Q2 ∩Q3 ⊂ P5 vanishing αY = 0 is equivalent
to existence of a curve C ⊂ X of odd degree, and Y is the dual K3 surface of
degree 2.
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Proof of the Main Theorem

Theorem (Kuznetsov-S.)

If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that αY = 0,
then L2([X]− [Y ]) = 0. For general such X and Y we have [X] 6= [Y ].

Proof

Q
p

��

q

��
P5 P2

I p is piece-wise locally trivial: [Q] = [P5][P1] + L2[X]

I First hyperbolic reduction for q and a choice of a point x ∈ X:

[Q] = [P2](1 + L4) + L[Q]

I Second hyperbolic reduction (αY = 0): [Q] = [P2](1 + L2) + L[Y ]

I Finally: canceling matching terms gives L2[X] = L2[Y ]
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Proof continued: showing that X and Y are not always isomorphic

I Recall: αY = 0 is equivalent to existence of a curve C ⊂ X of odd degree

I This condition singles out a countable union of divisors Dd ⊂M8 in the
moduli space of K3 surfaces X of degree 8, namely: d ≡ 1 (mod 8)

I Here Dd parametrizes K3 surfaces of degree 8 and Picard rank 2 with
discriminant −d

I The condition X ' Y singles out the divisors Dd such that a2 − db2 = ±8
has a solution [Madonna-Nikulin]

I There are infinitely many d such that αY = 0 but X 6' Y : for instance take
d = k2, an odd square; and this finishes the proof!

Examples
I X contains a line =⇒ αY = 0, X ' Y (classical geometric construction!)

I X contains a conic =⇒ αY 6= 0 (and X 6' Y generically)

I X contains a twisted cubic =⇒ αY = 0, X 6' Y generically

Remark: refining the argument one can show that αY = 0 =⇒ L([X]− [Y ]) = 0.
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I There are infinitely many d such that αY = 0 but X 6' Y : for instance take
d = k2, an odd square; and this finishes the proof!

Examples

I X contains a line =⇒ αY = 0, X ' Y (classical geometric construction!)

I X contains a conic =⇒ αY 6= 0 (and X 6' Y generically)

I X contains a twisted cubic =⇒ αY = 0, X 6' Y generically

Remark: refining the argument one can show that αY = 0 =⇒ L([X]− [Y ]) = 0.
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Open questions
Some of these may be accessible

1. Can curves be L-equivalent?

2. Can abelian varieties be L-equivalent, e.g. what about A and Â?

3. Prove that D-equivalence implies L-equivalence for K3 surfaces in general

4. How to describe the kernel Ker(K0(V ar/k)→ K0(V ar/k)[L−1])? Is it
generated by [X]− [Y ] where X and Y are L-equivalent?
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THE END
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