L-equivalence of K3 surfaces

Evgeny Shinder (Sheffield)

EDGE, Edinburgh
26.06.2017

Introduction: Geometric meaning of D-equivalence

Grothendieck ring of varieties and L-equivalence

Quadrics, quadric fibrations and K3 surfaces

D-equivalence

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

Examples of $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

Examples of $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

- Mukai: if A abelian variety, then $\mathcal{D}^{b}(A) \simeq \mathcal{D}^{b}(\widehat{A})$

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

Examples of $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

- Mukai: if A abelian variety, then $\mathcal{D}^{b}(A) \simeq \mathcal{D}^{b}(\widehat{A})$
- Abelian varieties [complete classification of D-equivalence by Orlov]

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

Examples of $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

- Mukai: if A abelian variety, then $\mathcal{D}^{b}(A) \simeq \mathcal{D}^{b}(\widehat{A})$
- Abelian varieties [complete classification of D-equivalence by Orlov]
- K3 surfaces [complete classification of D-equivalence by Mukai]

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

Examples of $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

- Mukai: if A abelian variety, then $\mathcal{D}^{b}(A) \simeq \mathcal{D}^{b}(\widehat{A})$
- Abelian varieties [complete classification of D-equivalence by Orlov]
- K3 surfaces [complete classification of D-equivalence by Mukai]
- Calabi-Yau threefolds [examples known by Borisov-Caldararu, Kuznetsov...]

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

Examples of $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

- Mukai: if A abelian variety, then $\mathcal{D}^{b}(A) \simeq \mathcal{D}^{b}(\widehat{A})$
- Abelian varieties [complete classification of D-equivalence by Orlov]
- K3 surfaces [complete classification of D-equivalence by Mukai]
- Calabi-Yau threefolds [examples known by Borisov-Caldararu, Kuznetsov...]
- Kuznetsov: Homological Projective Duality

D-equivalence

All varieties smooth projective over a field k of characteristic zero.

Definition

- $\mathcal{D}^{b}(X)=\mathcal{D}^{b}(\operatorname{Coh}(X))$, bounded derived category of coherent sheaves
- X and Y are called derived equivalent or D-equivalent if $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

Examples of $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$

- Mukai: if A abelian variety, then $\mathcal{D}^{b}(A) \simeq \mathcal{D}^{b}(\widehat{A})$
- Abelian varieties [complete classification of D-equivalence by Orlov]
- K3 surfaces [complete classification of D-equivalence by Mukai]
- Calabi-Yau threefolds [examples known by Borisov-Caldararu, Kuznetsov...]
- Kuznetsov: Homological Projective Duality
- Some flops [Bondal-Orlov, Bridgeland...]

D-equivalence and K-equivalence

D-equivalence and K-equivalence

D-equivalence and geometry

D-equivalence and K-equivalence

D-equivalence and geometry

- D-equivalence does not imply birational equivalence

D-equivalence and K-equivalence

D-equivalence and geometry

- D-equivalence does not imply birational equivalence
- Big question: are Hodge numbers preserved under D-equivalence?

D-equivalence and K-equivalence

D-equivalence and geometry

- D-equivalence does not imply birational equivalence
- Big question: are Hodge numbers preserved under D-equivalence?

Definition

D-equivalence and K-equivalence

D-equivalence and geometry

- D-equivalence does not imply birational equivalence
- Big question: are Hodge numbers preserved under D-equivalence?

Definition

- X and Y are called K-equivalent if there exists a Z together with birational morphisms $f: Z \rightarrow X, g: Z \rightarrow Y$ such that $f^{*}\left(K_{X}\right)=g^{*}\left(K_{Y}\right)$.

D-equivalence and K-equivalence

D-equivalence and geometry

- D-equivalence does not imply birational equivalence
- Big question: are Hodge numbers preserved under D-equivalence?

Definition

- X and Y are called K-equivalent if there exists a Z together with birational morphisms $f: Z \rightarrow X, g: Z \rightarrow Y$ such that $f^{*}\left(K_{X}\right)=g^{*}\left(K_{Y}\right)$.

Conjecture (Kawamata)

If X and Y are birational then X and Y are D-equivalent if and only if they are K-equivalent.

D-equivalence and K-equivalence

D-equivalence and geometry

- D-equivalence does not imply birational equivalence
- Big question: are Hodge numbers preserved under D-equivalence?

Definition

- X and Y are called K-equivalent if there exists a Z together with birational morphisms $f: Z \rightarrow X, g: Z \rightarrow Y$ such that $f^{*}\left(K_{X}\right)=g^{*}\left(K_{Y}\right)$.

Conjecture (Kawamata)

If X and Y are birational then X and Y are D-equivalent if and only if they are K-equivalent.

- K-equivalence \Longrightarrow D-equivalence is known in large generality

D-equivalence and K-equivalence

D-equivalence and geometry

- D-equivalence does not imply birational equivalence
- Big question: are Hodge numbers preserved under D-equivalence?

Definition

- X and Y are called K-equivalent if there exists a Z together with birational morphisms $f: Z \rightarrow X, g: Z \rightarrow Y$ such that $f^{*}\left(K_{X}\right)=g^{*}\left(K_{Y}\right)$.

Conjecture (Kawamata)

If X and Y are birational then X and Y are D-equivalent if and only if they are K-equivalent.

- K-equivalence \Longrightarrow D-equivalence is known in large generality
- For instance, it is known in dimension 3 [Bridgeland, Kawamata]

D-equivalence and moduli spaces

D-equivalence and moduli spaces

Moduli spaces

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$
- Then \mathcal{E} determines a functor $\mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ (Fourier-Mukai transform)

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$
- Then \mathcal{E} determines a functor $\mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ (Fourier-Mukai transform)

Theorem (Mukai)

Let X and Y be K3 surfaces. Then X and Y are D-equivalent if and only if Y is a 2-dimensional fine moduli space of sheaves on X :

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$
- Then \mathcal{E} determines a functor $\mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ (Fourier-Mukai transform)

Theorem (Mukai)

Let X and Y be K3 surfaces. Then X and Y are D-equivalent if and only if Y is a 2-dimensional fine moduli space of sheaves on $X: Y=M_{X}(r, H, s), H^{2}=2 r s$.

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$
- Then \mathcal{E} determines a functor $\mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ (Fourier-Mukai transform)

```
Theorem (Mukai)
Let \(X\) and \(Y\) be K3 surfaces. Then \(X\) and \(Y\) are \(D\)-equivalent if and only if \(Y\) is a 2-dimensional fine moduli space of sheaves on \(X: Y=M_{X}(r, H, s), H^{2}=2 r s\).
```

Non-fine moduli spaces and the Brauer class

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$
- Then \mathcal{E} determines a functor $\mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ (Fourier-Mukai transform)

Theorem (Mukai)

Let X and Y be K3 surfaces. Then X and Y are D-equivalent if and only if Y is a 2-dimensional fine moduli space of sheaves on $X: Y=M_{X}(r, H, s), H^{2}=2 r s$.

Non-fine moduli spaces and the Brauer class

- Let Y be non-fine moduli space of sheaves on X (X, Y K3 surfaces)

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$
- Then \mathcal{E} determines a functor $\mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ (Fourier-Mukai transform)

Theorem (Mukai)

Let X and Y be K3 surfaces. Then X and Y are D-equivalent if and only if Y is a 2-dimensional fine moduli space of sheaves on $X: Y=M_{X}(r, H, s), H^{2}=2 r s$.

Non-fine moduli spaces and the Brauer class

- Let Y be non-fine moduli space of sheaves on X (X, Y K3 surfaces)
- Then the universal sheaf \mathcal{E} on $X \times Y$ is an α-twisted sheaf, $\alpha \in \operatorname{Br}(Y)$

D-equivalence and moduli spaces

Moduli spaces

- Let Y be a fine moduli space of sheaves on X
- Let \mathcal{E} be the universal sheaf on $X \times Y$
- Then \mathcal{E} determines a functor $\mathcal{D}^{b}(Y) \rightarrow \mathcal{D}^{b}(X)$ (Fourier-Mukai transform)

Theorem (Mukai)

Let X and Y be K3 surfaces. Then X and Y are D-equivalent if and only if Y is a 2-dimensional fine moduli space of sheaves on $X: Y=M_{X}(r, H, s), H^{2}=2 r s$.

Non-fine moduli spaces and the Brauer class

- Let Y be non-fine moduli space of sheaves on X (X, Y K3 surfaces)
- Then the universal sheaf \mathcal{E} on $X \times Y$ is an α-twisted sheaf, $\alpha \in \operatorname{Br}(Y)$
- $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y, \alpha)$ [Mukai, Caldararu...].

Introduction: Geometric meaning of D-equivalence

Grothendieck ring of varieties and L-equivalence

Quadrics, quadric fibrations and K3 surfaces

The Grothendieck ring $K_{0}($ Var $/ k)$

The Grothendieck ring $K_{0}(V a r / k)$

Definition

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition
$K_{0}(\operatorname{Var} / k)$ is the following ring:

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition
$K_{0}(\operatorname{Var} / k)$ is the following ring:

- Generators: $[X], X / k$ quasi-projective variety

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition
$K_{0}(\operatorname{Var} / k)$ is the following ring:

- Generators: $[X], X / k$ quasi-projective variety
- Relations: $[X]=[Z]+[U]$ for any closed $Z \subset X$ with open complement U

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition

$K_{0}(\operatorname{Var} / k)$ is the following ring:

- Generators: $[X], X / k$ quasi-projective variety
- Relations: $[X]=[Z]+[U]$ for any closed $Z \subset X$ with open complement U
- Product: $[X] \cdot[Y]=[X \times Y]$

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition

$K_{0}(\operatorname{Var} / k)$ is the following ring:

- Generators: $[X], X / k$ quasi-projective variety
- Relations: $[X]=[Z]+[U]$ for any closed $Z \subset X$ with open complement U
- Product: $[X] \cdot[Y]=[X \times Y]$
- $\mathbb{L}:=\left[\mathbb{A}^{1}\right]$ - the Lefschetz class (sometimes called the Tate class)

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition

$K_{0}(\operatorname{Var} / k)$ is the following ring:

- Generators: $[X], X / k$ quasi-projective variety
- Relations: $[X]=[Z]+[U]$ for any closed $Z \subset X$ with open complement U
- Product: $[X] \cdot[Y]=[X \times Y]$
- $\mathbb{L}:=\left[\mathbb{A}^{1}\right]$ - the Lefschetz class (sometimes called the Tate class)
- $\left[\mathbb{P}^{n}\right]=\sum_{k=0}^{n}\left[\mathbb{A}^{k}\right]=\sum_{k=0}^{n} \mathbb{L}^{k}$

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition

$K_{0}(\operatorname{Var} / k)$ is the following ring:

- Generators: $[X], X / k$ quasi-projective variety
- Relations: $[X]=[Z]+[U]$ for any closed $Z \subset X$ with open complement U
- Product: $[X] \cdot[Y]=[X \times Y]$
- $\mathbb{L}:=\left[\mathbb{A}^{1}\right]$ - the Lefschetz class (sometimes called the Tate class)
- $\left[\mathbb{P}^{n}\right]=\sum_{k=0}^{n}\left[\mathbb{A}^{k}\right]=\sum_{k=0}^{n} \mathbb{L}^{k}$

Example

The Grothendieck ring $K_{0}(\operatorname{Var} / k)$

Definition

$K_{0}(\operatorname{Var} / k)$ is the following ring:

- Generators: $[X], X / k$ quasi-projective variety
- Relations: $[X]=[Z]+[U]$ for any closed $Z \subset X$ with open complement U
- Product: $[X] \cdot[Y]=[X \times Y]$
- $\mathbb{L}:=\left[\mathbb{A}^{1}\right]$ - the Lefschetz class (sometimes called the Tate class)
- $\left[\mathbb{P}^{n}\right]=\sum_{k=0}^{n}\left[\mathbb{A}^{k}\right]=\sum_{k=0}^{n} \mathbb{L}^{k}$

Example

If X and Y are related by a flop then $[X]=[Y]$.

Some properties of the Grothendieck ring

Simple properties

Some properties of the Grothendieck ring

Simple properties

- If $X \rightarrow B$ a Zarisky locally trivial fibration with fiber F, then

$$
[X]=[F] \cdot[B]
$$

Some properties of the Grothendieck ring

Simple properties

- If $X \rightarrow B$ a Zarisky locally trivial fibration with fiber F, then

$$
[X]=[F] \cdot[B]
$$

- If $Y=B l_{Z}(X)$ is a blow up of a smooth $Z \subset X$, then

$$
[Y]-\left[\mathbb{P}\left(N_{Z / X}\right)\right]=[X]-[Z]
$$

Some properties of the Grothendieck ring

Simple properties

- If $X \rightarrow B$ a Zarisky locally trivial fibration with fiber F, then

$$
[X]=[F] \cdot[B]
$$

- If $Y=B l_{Z}(X)$ is a blow up of a smooth $Z \subset X$, then

$$
[Y]-\left[\mathbb{P}\left(N_{Z / X}\right)\right]=[X]-[Z]
$$

Old open question: what is the geometric meaning of $[X]=[Y]$?

Some properties of the Grothendieck ring

Simple properties

- If $X \rightarrow B$ a Zarisky locally trivial fibration with fiber F, then

$$
[X]=[F] \cdot[B]
$$

- If $Y=B l_{Z}(X)$ is a blow up of a smooth $Z \subset X$, then

$$
[Y]-\left[\mathbb{P}\left(N_{Z / X}\right)\right]=[X]-[Z]
$$

Old open question: what is the geometric meaning of $[X]=[Y]$?

```
Theorem (Larsen-Lunts)
We have }[X]\equiv[Y](\operatorname{mod}\mathbb{L})\mathrm{ if and only if X and Y are stably birational.
```


Some properties of the Grothendieck ring

Simple properties

- If $X \rightarrow B$ a Zarisky locally trivial fibration with fiber F, then

$$
[X]=[F] \cdot[B]
$$

- If $Y=B l_{Z}(X)$ is a blow up of a smooth $Z \subset X$, then

$$
[Y]-\left[\mathbb{P}\left(N_{Z / X}\right)\right]=[X]-[Z]
$$

Old open question: what is the geometric meaning of $[X]=[Y]$?

Theorem (Larsen-Lunts)

We have $[X] \equiv[Y](\bmod \mathbb{L})$ if and only if X and Y are stably birational.

Corollary

If X, Y are non-uniruled (e.g. K3s or Calabi-Yau) such that $[X] \equiv[Y](\bmod \mathbb{L})$ then X and Y birational.

Zero divisors in the Grothendieck ring

Zero divisors in the Grothendieck ring

It has been known for a long time that $K_{0}(\operatorname{Var} / k)$ is not a domain [Shioda, Poonen...],

Zero divisors in the Grothendieck ring

It has been known for a long time that $K_{0}(\operatorname{Var} / k)$ is not a domain [Shioda, Poonen...], e.g. elliptic curves $E^{\prime} \nsimeq E^{\prime \prime}$ which satisfy

$$
E \times E^{\prime} \simeq E \times E^{\prime \prime}
$$

for some E gives

$$
[E]\left(\left[E^{\prime}\right]-\left[E^{\prime \prime}\right]\right)=0
$$

but both terms are nonzero.

Zero divisors in the Grothendieck ring

It has been known for a long time that $K_{0}(\operatorname{Var} / k)$ is not a domain [Shioda, Poonen...], e.g. elliptic curves $E^{\prime} \nsimeq E^{\prime \prime}$ which satisfy

$$
E \times E^{\prime} \simeq E \times E^{\prime \prime}
$$

for some E gives

$$
[E]\left(\left[E^{\prime}\right]-\left[E^{\prime \prime}\right]\right)=0
$$

but both terms are nonzero.

Old question: is $\mathbb{L}=\left[\mathbb{A}^{1}\right] \in K_{0}(\operatorname{Var} / k)$ a zero-divisor?

Zero divisors in the Grothendieck ring

It has been known for a long time that $K_{0}(\operatorname{Var} / k)$ is not a domain [Shioda, Poonen...], e.g. elliptic curves $E^{\prime} \not 千 E^{\prime \prime}$ which satisfy

$$
E \times E^{\prime} \simeq E \times E^{\prime \prime}
$$

for some E gives

$$
[E]\left(\left[E^{\prime}\right]-\left[E^{\prime \prime}\right]\right)=0
$$

but both terms are nonzero.

Old question: is $\mathbb{L}=\left[\mathbb{A}^{1}\right] \in K_{0}(\operatorname{Var} / k)$ a zero-divisor?

- Galkin-S. 2014: if \mathbb{L} is not a zero divisor, then a very general complex cubic fourfold X is irrational (and a sufficient condition for irrationality in terms of the Fano variety of lines $F(X)$)

Zero divisors in the Grothendieck ring

It has been known for a long time that $K_{0}(\operatorname{Var} / k)$ is not a domain [Shioda, Poonen...], e.g. elliptic curves $E^{\prime} \not 千 E^{\prime \prime}$ which satisfy

$$
E \times E^{\prime} \simeq E \times E^{\prime \prime}
$$

for some E gives

$$
[E]\left(\left[E^{\prime}\right]-\left[E^{\prime \prime}\right]\right)=0
$$

but both terms are nonzero.

Old question: is $\mathbb{L}=\left[\mathbb{A}^{1}\right] \in K_{0}(\operatorname{Var} / k)$ a zero-divisor?

- Galkin-S. 2014: if \mathbb{L} is not a zero divisor, then a very general complex cubic fourfold X is irrational (and a sufficient condition for irrationality in terms of the Fano variety of lines $F(X)$)
- Borisov 2014 (improved by Martin 2016): $\mathbb{L}^{6}([X]-[Y])=0$ for Calabi-Yau threefolds X and Y in the Pfaffian-Grassmannian correspondence

L-equivalence

L-equivalence

Definition

We call X and Y L-equivalent if $\mathbb{L}^{n}([X]-[Y])=0$ for some $n \geq 1$.

L-equivalence

Definition

We call X and Y L-equivalent if $\mathbb{L}^{n}([X]-[Y])=0$ for some $n \geq 1$.

Known examples

L-equivalence

Definition

We call X and Y L-equivalent if $\mathbb{L}^{n}([X]-[Y])=0$ for some $n \geq 1$.

Known examples

- Calabi-Yau threefolds: Borisov (Pfaffian-Grassmannian correspondence); Ito-Miura-Okawa-Ueda (G2 geometry)

L-equivalence

Definition

We call X and Y L-equivalent if $\mathbb{L}^{n}([X]-[Y])=0$ for some $n \geq 1$.

Known examples

- Calabi-Yau threefolds: Borisov (Pfaffian-Grassmannian correspondence); Ito-Miura-Okawa-Ueda (G2 geometry)
- K3 surfaces: Kuznetsov-S. (degrees 8 and 2); Ito-Miura-Okawa-Ueda, Hassett-Lai (degrees 12 and 12); Kuznetsov-S. (degree 16 and 4: work in progress)

L-equivalence

Definition

We call X and Y L-equivalent if $\mathbb{L}^{n}([X]-[Y])=0$ for some $n \geq 1$.

Known examples

- Calabi-Yau threefolds: Borisov (Pfaffian-Grassmannian correspondence); Ito-Miura-Okawa-Ueda (G2 geometry)
- K3 surfaces: Kuznetsov-S. (degrees 8 and 2); Ito-Miura-Okawa-Ueda, Hassett-Lai (degrees 12 and 12); Kuznetsov-S. (degree 16 and 4: work in progress)

In all these examples pairs of varieties X and Y are D-equivalent.

L-equivalence

Definition

We call X and Y L-equivalent if $\mathbb{L}^{n}([X]-[Y])=0$ for some $n \geq 1$.

Known examples

- Calabi-Yau threefolds: Borisov (Pfaffian-Grassmannian correspondence); Ito-Miura-Okawa-Ueda (G2 geometry)
- K3 surfaces: Kuznetsov-S. (degrees 8 and 2); Ito-Miura-Okawa-Ueda, Hassett-Lai (degrees 12 and 12); Kuznetsov-S. (degree 16 and 4: work in progress)

In all these examples pairs of varieties X and Y are D-equivalent.

Conjecture

D-equivalence of X and Y implies their L-equivalence.

L-equivalence

Definition

We call X and Y L-equivalent if $\mathbb{L}^{n}([X]-[Y])=0$ for some $n \geq 1$.

Known examples

- Calabi-Yau threefolds: Borisov (Pfaffian-Grassmannian correspondence); Ito-Miura-Okawa-Ueda (G2 geometry)
- K3 surfaces: Kuznetsov-S. (degrees 8 and 2); Ito-Miura-Okawa-Ueda, Hassett-Lai (degrees 12 and 12); Kuznetsov-S. (degree 16 and 4: work in progress)

In all these examples pairs of varieties X and Y are D-equivalent.

Conjecture

D-equivalence of X and Y implies their L-equivalence.
It is easy to see that L-equivalent varieties have the same Hodge numbers, so this would imply invariance of Hodge numbers under D-equivalence.

Introduction: Geometric meaning of D-equivalence

Grothendieck ring of varieties and L-equivalence

Quadrics, quadric fibrations and K3 surfaces

Warm up: elliptic curves

Warm up: elliptic curves

Construction

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ pencil of quadrics: $Q \rightarrow \mathbb{P}^{1}$

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ pencil of quadrics: $Q \rightarrow \mathbb{P}^{1}$
- $f(\lambda)=\operatorname{det}\left(Q_{\lambda}\right)$ has degree 4

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ pencil of quadrics: $Q \rightarrow \mathbb{P}^{1}$
- $f(\lambda)=\operatorname{det}\left(Q_{\lambda}\right)$ has degree 4
- $Z \subset \mathbb{P}^{1}$ four points corresponding to singular quadrics

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ pencil of quadrics: $Q \rightarrow \mathbb{P}^{1}$
- $f(\lambda)=\operatorname{det}\left(Q_{\lambda}\right)$ has degree 4
- $Z \subset \mathbb{P}^{1}$ four points corresponding to singular quadrics
- $Y \rightarrow \mathbb{P}^{1}$ double cover ramified in $Z ; Y$ is an elliptic curve.

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ pencil of quadrics: $Q \rightarrow \mathbb{P}^{1}$
- $f(\lambda)=\operatorname{det}\left(Q_{\lambda}\right)$ has degree 4
- $Z \subset \mathbb{P}^{1}$ four points corresponding to singular quadrics
- $Y \rightarrow \mathbb{P}^{1}$ double cover ramified in $Z ; Y$ is an elliptic curve.

Properties of X and Y

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ pencil of quadrics: $Q \rightarrow \mathbb{P}^{1}$
- $f(\lambda)=\operatorname{det}\left(Q_{\lambda}\right)$ has degree 4
- $Z \subset \mathbb{P}^{1}$ four points corresponding to singular quadrics
- $Y \rightarrow \mathbb{P}^{1}$ double cover ramified in $Z ; Y$ is an elliptic curve.

Properties of X and Y

- Over an algebraically closed field, X and Y are D-equivalent, L-equivalent, and in fact isomorphic.

Warm up: elliptic curves

Construction

- $X=Q_{1} \cap Q_{2} \subset \mathbb{P}^{3}$ smooth complete intersection of two quadrics; X is an elliptic curve.
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}$ pencil of quadrics: $Q \rightarrow \mathbb{P}^{1}$
- $f(\lambda)=\operatorname{det}\left(Q_{\lambda}\right)$ has degree 4
- $Z \subset \mathbb{P}^{1}$ four points corresponding to singular quadrics
- $Y \rightarrow \mathbb{P}^{1}$ double cover ramified in $Z ; Y$ is an elliptic curve.

Properties of X and Y

- Over an algebraically closed field, X and Y are D-equivalent, L-equivalent, and in fact isomorphic.
- Over non-algebraically closed field, X and Y don't have to be isomorphic, but are unlikely to be D-equivalent or L-equivalent either

Homological projective duality for K3 surfaces of degree 8

Homological projective duality for K3 surfaces of degree 8
Setup

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$ net of quadrics $\left(\lambda \in \mathbb{P}^{2}\right): Q \rightarrow \mathbb{P}^{2}$

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$ net of quadrics $\left(\lambda \in \mathbb{P}^{2}\right): Q \rightarrow \mathbb{P}^{2}$
- $C=\operatorname{det}\left(Q_{\lambda}\right) \subset \mathbb{P}^{2}$, a smooth sextic

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$ net of quadrics $\left(\lambda \in \mathbb{P}^{2}\right): Q \rightarrow \mathbb{P}^{2}$
- $C=\operatorname{det}\left(Q_{\lambda}\right) \subset \mathbb{P}^{2}$, a smooth sextic
- $Y \rightarrow \mathbb{P}^{2}$ double covering ramified in C

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$ net of quadrics $\left(\lambda \in \mathbb{P}^{2}\right): Q \rightarrow \mathbb{P}^{2}$
- $C=\operatorname{det}\left(Q_{\lambda}\right) \subset \mathbb{P}^{2}$, a smooth sextic
- $Y \rightarrow \mathbb{P}^{2}$ double covering ramified in C
- $\alpha_{Y} \in \operatorname{Br}(Y)$ determined by the Clifford algebra of Q_{λ}

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$ net of quadrics $\left(\lambda \in \mathbb{P}^{2}\right): Q \rightarrow \mathbb{P}^{2}$
- $C=\operatorname{det}\left(Q_{\lambda}\right) \subset \mathbb{P}^{2}$, a smooth sextic
- $Y \rightarrow \mathbb{P}^{2}$ double covering ramified in C
- $\alpha_{Y} \in \operatorname{Br}(Y)$ determined by the Clifford algebra of Q_{λ}

We have constructed: a K3 surface X of degree 8 and a K3 surface Y of degree 2 that are in a certain sense dual to each other.

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$ net of quadrics $\left(\lambda \in \mathbb{P}^{2}\right): Q \rightarrow \mathbb{P}^{2}$
- $C=\operatorname{det}\left(Q_{\lambda}\right) \subset \mathbb{P}^{2}$, a smooth sextic
- $Y \rightarrow \mathbb{P}^{2}$ double covering ramified in C
- $\alpha_{Y} \in \operatorname{Br}(Y)$ determined by the Clifford algebra of Q_{λ}

We have constructed: a K3 surface X of degree 8 and a K3 surface Y of degree 2 that are in a certain sense dual to each other.

Theorem (Mukai, Caldararu, Kuznetsov)

There is an equivalence $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}\left(Y, \alpha_{Y}\right)$. In particular, if $\alpha_{Y}=0$, then X and Y are D-equivalent.

Homological projective duality for K3 surfaces of degree 8

Setup

- $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$, smooth complete intersection of 3 quadrics
- $Q_{\lambda}=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$ net of quadrics $\left(\lambda \in \mathbb{P}^{2}\right): Q \rightarrow \mathbb{P}^{2}$
- $C=\operatorname{det}\left(Q_{\lambda}\right) \subset \mathbb{P}^{2}$, a smooth sextic
- $Y \rightarrow \mathbb{P}^{2}$ double covering ramified in C
- $\alpha_{Y} \in \operatorname{Br}(Y)$ determined by the Clifford algebra of Q_{λ}

We have constructed: a K3 surface X of degree 8 and a K3 surface Y of degree 2 that are in a certain sense dual to each other.

Theorem (Mukai, Caldararu, Kuznetsov)

There is an equivalence $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}\left(Y, \alpha_{Y}\right)$. In particular, if $\alpha_{Y}=0$, then X and Y are D-equivalent.

Mukai's approach: $Y=M_{X}(2, H, 2)$, the non-fine moduli space of spinor bundles on X and $\alpha_{Y}=0$ if and only if the moduli space is fine.

Main Theorem

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$.

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

In the rest of the talk we are proving this Theorem.

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

In the rest of the talk we are proving this Theorem.
Idea: consider the universal quadric $Q \subset \mathbb{P}^{5} \times \mathbb{P}^{2}$ and compute its class $[Q]$ in two ways to get a relation between $[X]$ and $[Y]$.

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

In the rest of the talk we are proving this Theorem.
Idea: consider the universal quadric $Q \subset \mathbb{P}^{5} \times \mathbb{P}^{2}$ and compute its class $[Q]$ in two ways to get a relation between $[X]$ and $[Y]$.

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

In the rest of the talk we are proving this Theorem.
Idea: consider the universal quadric $Q \subset \mathbb{P}^{5} \times \mathbb{P}^{2}$ and compute its class $[Q]$ in two ways to get a relation between $[X]$ and $[Y]$.

- p is piece-wise locally trivial so can relate $[H]$ to $\left[\mathbb{P}^{5}\right]$ and $[X]$

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

In the rest of the talk we are proving this Theorem.
Idea: consider the universal quadric $Q \subset \mathbb{P}^{5} \times \mathbb{P}^{2}$ and compute its class $[Q]$ in two ways to get a relation between $[X]$ and $[Y]$.

- p is piece-wise locally trivial so can relate $[H]$ to $\left[\mathbb{P}^{5}\right]$ and $[X]$
- Fibers of q over $\lambda \in \mathbb{P}^{2}$ are quadrics $Q_{\lambda} ; q$ is NOT locally trivial

Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

In the rest of the talk we are proving this Theorem.
Idea: consider the universal quadric $Q \subset \mathbb{P}^{5} \times \mathbb{P}^{2}$ and compute its class $[Q]$ in two ways to get a relation between $[X]$ and $[Y]$.

- p is piece-wise locally trivial so can relate $[H]$ to $\left[\mathbb{P}^{5}\right]$ and $[X]$
- Fibers of q over $\lambda \in \mathbb{P}^{2}$ are quadrics $Q_{\lambda} ; q$ is NOT locally trivial
- Use hyperbolic reduction of quadrics to relate $[H]$ to the double cover Y

Hyperbolic reduction

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.
- We call (\bar{V}, \bar{q}) the hyperbolic reduction of (V, q)

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.
- We call (\bar{V}, \bar{q}) the hyperbolic reduction of (V, q)

Geometric meaning

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.
- We call (\bar{V}, \bar{q}) the hyperbolic reduction of (V, q)

Geometric meaning

- Let $Q \subset \mathbb{P}(V)$ be the quadric corresponding to (V, q)

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.
- We call (\bar{V}, \bar{q}) the hyperbolic reduction of (V, q)

Geometric meaning

- Let $Q \subset \mathbb{P}(V)$ be the quadric corresponding to (V, q)
- Let $x \in Q$ be the point corresponding to $L=\langle v\rangle \subset V$

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.
- We call (\bar{V}, \bar{q}) the hyperbolic reduction of (V, q)

Geometric meaning

- Let $Q \subset \mathbb{P}(V)$ be the quadric corresponding to (V, q)
- Let $x \in Q$ be the point corresponding to $L=\langle v\rangle \subset V$
- Projecting from $x \in Q$ is a birational map from Q to $\mathbb{P}(V / L)$

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.
- We call (\bar{V}, \bar{q}) the hyperbolic reduction of (V, q)

Geometric meaning

- Let $Q \subset \mathbb{P}(V)$ be the quadric corresponding to (V, q)
- Let $x \in Q$ be the point corresponding to $L=\langle v\rangle \subset V$
- Projecting from $x \in Q$ is a birational map from Q to $\mathbb{P}(V / L)$
- Projection contracts the set of lines on Q through x to a quadric $\bar{Q} \subset \mathbb{P}(V / L)$ corresponding to (\bar{V}, \bar{q})

Hyperbolic reduction

Hyperbolic reduction for a quadratic form

- Let (V, q) be a nondegenerate quadratic form
- $v \in V$ isotropic vector (that is $q(v)=0$)
- Let $\bar{V}=\langle v\rangle^{\perp} /\langle v\rangle$ and let \bar{q} be the induced quadratic form on \bar{V}
- Then $\operatorname{dim}(\bar{V})=\operatorname{dim}(V)-2$ and $V=\bar{V} \perp\langle 1,-1\rangle$.
- We call (\bar{V}, \bar{q}) the hyperbolic reduction of (V, q)

Geometric meaning

- Let $Q \subset \mathbb{P}(V)$ be the quadric corresponding to (V, q)
- Let $x \in Q$ be the point corresponding to $L=\langle v\rangle \subset V$
- Projecting from $x \in Q$ is a birational map from Q to $\mathbb{P}(V / L)$
- Projection contracts the set of lines on Q through x to a quadric $\bar{Q} \subset \mathbb{P}(V / L)$ corresponding to (\bar{V}, \bar{q})
- We get a relation $[Q]=1+\mathbb{L}^{\operatorname{dim}(Q)}+\mathbb{L}[\bar{Q}] \in K_{0}(\operatorname{Var} / k)$.

Quadric fibrations with a smooth section

Quadric fibrations with a smooth section

Lemma

If $Q \rightarrow S$ is a quadric fibration of relative dimension n and $s: S \rightarrow Q$ is a smooth section, then

$$
[Q]=\left(1+\mathbb{L}^{n}\right)[S]+\mathbb{L}[\bar{Q}]
$$

where \bar{Q} is the fiberwise hyperbolic reduction of Q.

Quadric fibrations with a smooth section

Lemma

If $Q \rightarrow S$ is a quadric fibration of relative dimension n and $s: S \rightarrow Q$ is a smooth section, then

$$
[Q]=\left(1+\mathbb{L}^{n}\right)[S]+\mathbb{L}[\bar{Q}]
$$

where \bar{Q} is the fiberwise hyperbolic reduction of Q.

Proof.

Project the quadric fibration from the section s and resolve the indeterminacy locus of the projection.

Quadric fibrations with a smooth section

Lemma

If $Q \rightarrow S$ is a quadric fibration of relative dimension n and $s: S \rightarrow Q$ is a smooth section, then

$$
[Q]=\left(1+\mathbb{L}^{n}\right)[S]+\mathbb{L}[\bar{Q}]
$$

where \bar{Q} is the fiberwise hyperbolic reduction of Q.

Proof.

Project the quadric fibration from the section s and resolve the indeterminacy locus of the projection.

Example

Let $Q \rightarrow \mathbb{P}^{m}$ be a linear system of quadrics in \mathbb{P}^{n+1}. Let X be the base locus of this system. Any smooth point $x \in X$ determines a section of Q and the Lemma allows us to relate $[Q]$ and $[\bar{Q}]$.

Quadric fibrations with a smooth section

Lemma

If $Q \rightarrow S$ is a quadric fibration of relative dimension n and $s: S \rightarrow Q$ is a smooth section, then

$$
[Q]=\left(1+\mathbb{L}^{n}\right)[S]+\mathbb{L}[\bar{Q}]
$$

where \bar{Q} is the fiberwise hyperbolic reduction of Q.

Proof.

Project the quadric fibration from the section s and resolve the indeterminacy locus of the projection.

Example

Let $Q \rightarrow \mathbb{P}^{m}$ be a linear system of quadrics in \mathbb{P}^{n+1}. Let X be the base locus of this system. Any smooth point $x \in X$ determines a section of Q and the Lemma allows us to relate $[Q]$ and $[\bar{Q}]$.

This applies in particular to our K3 surface $X=Q_{1} \cap Q_{2} \cap Q_{3}$ and gives us a quadric fibration $\bar{Q} \rightarrow \mathbb{P}^{2}$ of relative dimension 2 with the same Brauer class α_{Y}.

Quadric fibrations of relative dimension two

Quadric fibrations of relative dimension two

Setup

Quadric fibrations of relative dimension two

Setup

- $Q \rightarrow S$ a quadric fibration of relative dimension 2 with nodal degenerations

Quadric fibrations of relative dimension two

Setup

- $Q \rightarrow S$ a quadric fibration of relative dimension 2 with nodal degenerations
- $Y \rightarrow S$ discriminant double cover of $Q \rightarrow S, \alpha_{Y} \in \operatorname{Br}(Y)$

Quadric fibrations of relative dimension two

Setup

- $Q \rightarrow S$ a quadric fibration of relative dimension 2 with nodal degenerations
- $Y \rightarrow S$ discriminant double cover of $Q \rightarrow S, \alpha_{Y} \in \operatorname{Br}(Y)$
- Hyperbolic reduction \bar{Q} (if sections exist) is canonically identified with Y

Quadric fibrations of relative dimension two

Setup

- $Q \rightarrow S$ a quadric fibration of relative dimension 2 with nodal degenerations
- $Y \rightarrow S$ discriminant double cover of $Q \rightarrow S, \alpha_{Y} \in \operatorname{Br}(Y)$
- Hyperbolic reduction \bar{Q} (if sections exist) is canonically identified with Y

Lemma

Quadric fibrations of relative dimension two

Setup

- $Q \rightarrow S$ a quadric fibration of relative dimension 2 with nodal degenerations
- $Y \rightarrow S$ discriminant double cover of $Q \rightarrow S, \alpha_{Y} \in \operatorname{Br}(Y)$
- Hyperbolic reduction \bar{Q} (if sections exist) is canonically identified with Y

Lemma

- $\alpha_{Y}=0 \Longleftrightarrow Q \rightarrow S$ has a rational multisection of odd degree.

Quadric fibrations of relative dimension two

Setup

- $Q \rightarrow S$ a quadric fibration of relative dimension 2 with nodal degenerations
- $Y \rightarrow S$ discriminant double cover of $Q \rightarrow S, \alpha_{Y} \in \operatorname{Br}(Y)$
- Hyperbolic reduction \bar{Q} (if sections exist) is canonically identified with Y

Lemma

- $\alpha_{Y}=0 \Longleftrightarrow Q \rightarrow S$ has a rational multisection of odd degree.
- If $\alpha_{Y}=0$, then $[Q]=\left(1+\mathbb{L}^{2}\right)[S]+\mathbb{L}[Y]$.

Quadric fibrations of relative dimension two

Setup

- $Q \rightarrow S$ a quadric fibration of relative dimension 2 with nodal degenerations
- $Y \rightarrow S$ discriminant double cover of $Q \rightarrow S, \alpha_{Y} \in \operatorname{Br}(Y)$
- Hyperbolic reduction \bar{Q} (if sections exist) is canonically identified with Y

Lemma

- $\alpha_{Y}=0 \Longleftrightarrow Q \rightarrow S$ has a rational multisection of odd degree.
- If $\alpha_{Y}=0$, then $[Q]=\left(1+\mathbb{L}^{2}\right)[S]+\mathbb{L}[Y]$.

Example

In the case of K 3 surface $X=Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{5}$ vanishing $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree, and Y is the dual K3 surface of degree 2.

Proof of the Main Theorem

Proof of the Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual $K 3$ surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

Proof of the Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual $K 3$ surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

Proof

Proof of the Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual K3 surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

Proof

- p is piece-wise locally trivial: $[Q]=\left[\mathbb{P}^{5}\right]\left[\mathbb{P}^{1}\right]+\mathbb{L}^{2}[X]$

Proof of the Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual $K 3$ surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

Proof

- p is piece-wise locally trivial: $[Q]=\left[\mathbb{P}^{5}\right]\left[\mathbb{P}^{1}\right]+\mathbb{L}^{2}[X]$
- First hyperbolic reduction for q and a choice of a point $x \in X$:

$$
[Q]=\left[\mathbb{P}^{2}\right]\left(1+\mathbb{L}^{4}\right)+\mathbb{L}[\bar{Q}]
$$

Proof of the Main Theorem

Theorem (Kuznetsov-S.)
If X and Y are dual $K 3$ surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

Proof

- p is piece-wise locally trivial: $[Q]=\left[\mathbb{P}^{5}\right]\left[\mathbb{P}^{1}\right]+\mathbb{L}^{2}[X]$
- First hyperbolic reduction for q and a choice of a point $x \in X$:

$$
[Q]=\left[\mathbb{P}^{2}\right]\left(1+\mathbb{L}^{4}\right)+\mathbb{L}[\bar{Q}]
$$

- Second hyperbolic reduction $\left(\alpha_{Y}=0\right):[\bar{Q}]=\left[\mathbb{P}^{2}\right]\left(1+\mathbb{L}^{2}\right)+\mathbb{L}[Y]$

Proof of the Main Theorem

Theorem (Kuznetsov-S.)

If X and Y are dual $K 3$ surfaces of degree 8 and 2 respectively such that $\alpha_{Y}=0$, then $\mathbb{L}^{2}([X]-[Y])=0$. For general such X and Y we have $[X] \neq[Y]$.

Proof

- p is piece-wise locally trivial: $[Q]=\left[\mathbb{P}^{5}\right]\left[\mathbb{P}^{1}\right]+\mathbb{L}^{2}[X]$
- First hyperbolic reduction for q and a choice of a point $x \in X$:

$$
[Q]=\left[\mathbb{P}^{2}\right]\left(1+\mathbb{L}^{4}\right)+\mathbb{L}[\bar{Q}]
$$

- Second hyperbolic reduction $\left(\alpha_{Y}=0\right):[\bar{Q}]=\left[\mathbb{P}^{2}\right]\left(1+\mathbb{L}^{2}\right)+\mathbb{L}[Y]$
- Finally: canceling matching terms gives $\mathbb{L}^{2}[X]=\mathbb{L}^{2}[Y]$

Proof continued: showing that X and Y are not always isomorphic

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree - This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K 3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree - This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant -d

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree
- This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant -d
- The condition $X \simeq Y$ singles out the divisors \mathcal{D}_{d} such that $a^{2}-d b^{2}= \pm 8$ has a solution [Madonna-Nikulin]

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree
- This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant -d
- The condition $X \simeq Y$ singles out the divisors \mathcal{D}_{d} such that $a^{2}-d b^{2}= \pm 8$ has a solution [Madonna-Nikulin]
- There are infinitely many d such that $\alpha_{Y}=0$ but $X \not 千 Y$: for instance take $d=k^{2}$, an odd square; and this finishes the proof!

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree
- This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant -d
- The condition $X \simeq Y$ singles out the divisors \mathcal{D}_{d} such that $a^{2}-d b^{2}= \pm 8$ has a solution [Madonna-Nikulin]
- There are infinitely many d such that $\alpha_{Y}=0$ but $X \not 千 Y$: for instance take $d=k^{2}$, an odd square; and this finishes the proof!

Examples

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree
- This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant -d
- The condition $X \simeq Y$ singles out the divisors \mathcal{D}_{d} such that $a^{2}-d b^{2}= \pm 8$ has a solution [Madonna-Nikulin]
- There are infinitely many d such that $\alpha_{Y}=0$ but $X \not 千 Y$: for instance take $d=k^{2}$, an odd square; and this finishes the proof!

Examples

- X contains a line $\Longrightarrow \alpha_{Y}=0, X \simeq Y$ (classical geometric construction!)

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree
- This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant -d
- The condition $X \simeq Y$ singles out the divisors \mathcal{D}_{d} such that $a^{2}-d b^{2}= \pm 8$ has a solution [Madonna-Nikulin]
- There are infinitely many d such that $\alpha_{Y}=0$ but $X \not 千 Y$: for instance take $d=k^{2}$, an odd square; and this finishes the proof!

Examples

- X contains a line $\Longrightarrow \alpha_{Y}=0, X \simeq Y$ (classical geometric construction!)
- X contains a conic $\Longrightarrow \alpha_{Y} \neq 0$ (and $X \not \approx Y$ generically)

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree
- This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant-d
- The condition $X \simeq Y$ singles out the divisors \mathcal{D}_{d} such that $a^{2}-d b^{2}= \pm 8$ has a solution [Madonna-Nikulin]
- There are infinitely many d such that $\alpha_{Y}=0$ but $X \not \not Y$: for instance take $d=k^{2}$, an odd square; and this finishes the proof!

Examples

- X contains a line $\Longrightarrow \alpha_{Y}=0, X \simeq Y$ (classical geometric construction!)
- X contains a conic $\Longrightarrow \alpha_{Y} \neq 0$ (and $X \not \approx Y$ generically)
- X contains a twisted cubic $\Longrightarrow \alpha_{Y}=0, X \not \approx Y$ generically

Proof continued: showing that X and Y are not always isomorphic

- Recall: $\alpha_{Y}=0$ is equivalent to existence of a curve $C \subset X$ of odd degree
- This condition singles out a countable union of divisors $\mathcal{D}_{d} \subset \mathcal{M}_{8}$ in the moduli space of K3 surfaces X of degree 8 , namely: $d \equiv 1(\bmod 8)$
- Here \mathcal{D}_{d} parametrizes K3 surfaces of degree 8 and Picard rank 2 with discriminant -d
- The condition $X \simeq Y$ singles out the divisors \mathcal{D}_{d} such that $a^{2}-d b^{2}= \pm 8$ has a solution [Madonna-Nikulin]
- There are infinitely many d such that $\alpha_{Y}=0$ but $X \not \not Y$: for instance take $d=k^{2}$, an odd square; and this finishes the proof!

Examples

- X contains a line $\Longrightarrow \alpha_{Y}=0, X \simeq Y$ (classical geometric construction!)
- X contains a conic $\Longrightarrow \alpha_{Y} \neq 0$ (and $X \not \approx Y$ generically)
- X contains a twisted cubic $\Longrightarrow \alpha_{Y}=0, X \not \approx Y$ generically

Remark: refining the argument one can show that $\alpha_{Y}=0 \Longrightarrow \mathbb{L}([X]-[Y])=0$.

Open questions

Some of these may be accessible

Open questions

Some of these may be accessible

1. Can curves be L-equivalent?

Open questions

Some of these may be accessible

1. Can curves be L-equivalent?
2. Can abelian varieties be L-equivalent, e.g. what about A and \widehat{A} ?

Open questions

Some of these may be accessible

1. Can curves be L-equivalent?
2. Can abelian varieties be L-equivalent, e.g. what about A and \widehat{A} ?
3. Prove that D-equivalence implies L-equivalence for K 3 surfaces in general

Open questions

Some of these may be accessible

1. Can curves be L-equivalent?
2. Can abelian varieties be L-equivalent, e.g. what about A and \widehat{A} ?
3. Prove that D-equivalence implies L-equivalence for K 3 surfaces in general
4. How to describe the kernel $\operatorname{Ker}\left(K_{0}(\operatorname{Var} / k) \rightarrow K_{0}(\operatorname{Var} / k)\left[\mathbb{L}^{-1}\right]\right)$? Is it generated by $[X]-[Y]$ where X and Y are L-equivalent?

THE END

