
CONICS AND ORTHOGONAL PROJECTIVITIES 
IN A FINITE PLANE 

W. L. EDGE 

1. Introduction. The ternary orthogonal group of projectivities over a 
finite field leaves a non-singular conic x invariant, but the geometry conse­
quent thereupon does not appear to have been investigated. The group is 
isomorphic to a binary group of fractional substitutions over the same field 
and this fact may, since these binary groups and their subgroups are so well 
known, have inhibited projects to embark on a detailed description of the 
geometry of the ternary group. While, however, one may concede that no new 
intrinsic knowledge of the group can be gained, different representations of 
the same abstract group are apt to portray some of its attributes from different 
aspects and to display in different settings interrelations among its properties; 
and if one recalls the situation in the real or complex field the incentive to 
initiate some investigation becomes compelling. 

The representation, over the real or complex field, of the points of a line X 
by those of a conic T is now commonplace and goes back at least as far as 
Hesse. The involutions of pairs of points, as well as harmonic sets, seem more 
appositely carried on r than on X. The Pascal property of V is simply, in 
essence, a statement about three involutions having a pair in common; but 
although these involutions can be carried on any rational curve, and the 
Pascal property interpreted in that context, it will be generally agreed, and 
not merely on historical grounds, that the conic is the most appropriate 
setting for it. The representation, too, of harmonic pairs on X as pairs on T 
whose joins are conjugate has its advantages, and no apology is needed for 
undertaking some account of the corresponding representation when the base 
field is neither the real nor the complex field but a Galois field. 

The paper falls into three sections. In the first (§§2-9) the foundations of 
the figure are laid and its fundamental properties established. It is explained 
how the points of the plane fall into 3 disjoint classes according as they are 
exterior to, on, or interior to x; this phenomenon is known (10), but we 
proceed to discuss the pairing, on various lines, of conjugate points. This 
pairing is basically relevant, and the description of it has to take account 
of whether or not —1 is a square in the base field. The number of canonical 
triangles—triangles, that is, in reference to which x is given by equating the 
unit quadratic form to zero—is calculated. 

The second section (§§10-17) introduces the orthogonal group of pro­
jectivities and stresses the presence in it of involutions (of two kinds) and 
octahedral subgroups. The subgroup, of index 2, which subjects the points 
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of % to even permutations is the main focus of interest and a criterion is given 
for the octahedral subgroups to belong to it. They do, or do not, belong to it 
according as it permutes the canonical triangles intransitively or transitively. 
Other subgroups are found as the stabilisers of points in the plane. 

The third section (§§18-32) is devoted to a detailed description of the geo­
metry when the base field is GF(p) and p = 5, 7, 11. For these values of p, 
but not for any higher values, the orthogonal group has a representation as a 
permutation group of degree p ; such representations are found in the 3 planes. 
The geometry has many features of interest, such as the multiple perspec-
tivities between certain pairs of canonical triangles and, when p = 11, the 
distribution of the points external to % in sets of 6, the 15 joins of points of 
such a set being all skew to x and concurrent in threes at 10 different points 
all internal to x-

CONICS AND THEIR CANONICAL TRIANGLES 

2. The number q of marks in a finite field F is always a power of a prime p. 
Every non-zero mark satisfies xe_1 = 1, and there always occur primitive 
marks of which no power lower than the (q — l)th is 1. All the non-zero 
marks are powers of any primitive mark j . We suppose throughout that 
p > 2. Then j cannot be the square of any mark of F because, if j = i2, 

ji(c-i) = i«-i = 1, 

contradicting the primitiveness of j . Nor can any odd power of j be a square; 
it is impossible to extract a square root of any odd power of j without enlarging 
F. All even powers of 7, on the other hand, are clearly squares of marks of F. 
The non-zero marks are thus half of them squares and the other half non-
squares. 

The product and quotient of two non-squares are always squares. 
Take, as an example, q = p = 7. We may label the marks 

- 3 , - 2 , - 1 , 0 , 1,2,3 

and regard them as the residue classes to modulus 7. The primitive marks are 
3 and —2. The squares are 

1 = 36 = ( -2 ) 6 , - 3 = 34 = ( -2 ) 2 , 2 = 32 = ( -2 ) 4 , 

while the non-squares are 

- 1 = 33 = (_ 2 ) 3 , 3 = 3 ! = ( -2 ) 5 , - 2 = 35 = ( - 2 ) 1 . 

It is important, with a view to the geometry, to distinguish between fields 
wherein —1 is, or is not, a square. Since —1 is j * ( ( Z _ 1 ) , this power of j not being 
1 and yet a square root of 1, 

— 1 is a square whenever q = 1 (mod 4), 

— 1 is a non-square whenever q = — 1 (mod 4). 
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3. The marks of F will serve as homogeneous coordinates of points and lines 
in a plane; each point or line answers to a vector of 3 components not all of 
which are 0. There are g3 — 1 such vectors; but the q — 1 non-zero multiples 
of any given vector represent the same point, or line, so that the plane consists 
of 

(g3 - l ) / (g - 1) = q2 + q + 1 

points and of the same number of lines. When it is necessary to distinguish 
point and line the coordinates of a point may be written as a column vector 
and those of a line as a row vector. The number of points on a line and of 
lines through a point is 

(<z2 - i)/Gz - i) = ff + i. 

4. We take for granted (3, p. 158) the fact that every non-singular conic 
can, by appropriate choice of the triangle of reference, be given by equating 
to zero the unit quadratic form x2 + y2 + z2. Let us, before embarking on the 
main task of exposition, enquire into the geometrical significance of this 
canonical form. It certainly refers the conic to a self-polar triangle, but there 
is more to say than this because a conic has self-polar triangles which, when 
used as triangle of reference, do not permit this canonical form unless F is 
enlarged. The complete explanation has to take account of whether or not — 1 
is a square in F. The line x = 0 meets the conic where y2 + z2 = 0; if — 1 is a 
square this yields two intersections, whereas if —1 is not a square there are 
no intersections; and the like occurs on y = 0 and on z = 0. If we describe 
any triangle which permits the canonical form x2 + y2 -f- z2 = 0 as a canonical 
triangle and denote it by A then 

if q == 1 (mod 4) the sides of any A are all chords of the conic, 

if q == — 1 (mod 4) the sides of any A are all skew to the conic. 

The number, q(q2 — l)/24, of A is found below in §§7, 8. 
Note that there is, on any side of any A, a unique pair of points that is both 

harmonic to the vertices of A and conjugate for the conic; on x — 0 this pair 
is given by y2 = z2, and that whether x = 0 is a chord or is skew to the conic. 
The three such pairs on the sides of a A are the vertices of a quadrilateral Q 
having A for its diagonal triangle; A and Q each determine the other uniquely. 
When A is the triangle of reference the sides of Q are 

x + y + z = 0, —x + y + z = 0, x — y + z = 0, x + y — z = 0. 

5. Let x denote the conic x2 + y2 + z2 = 0. The polar of P(a, /5, 7) is 
ax + fty + yz — 0, and passes through P if and only if P is on %; % is the 
aggregate of points that lie on their own polars. 

If the polar of P passes through P ' (a ' , f3', y') then act' + 0/3' + 77' = 0 
and the polar of Pr passes through P ; P , P ' are then conjugate with respect to %. 
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Does the polar of P meet x? At least one coordinate of P , say 7, is not zero; 
then, for points of % on the polar, 

7 2 0 2 + y2) + (ax + (3y)2 = 0, 
(7

2 + a2)x2 + 2a/3xy + (y2 + $2)y2 = 0. 

The discriminant of this quadratic is 

<x202 - (T 2 + <*2)(Y2 + 02) = - y2(a2 + 02 + 7
2 ) , 

so that the quadratic has, or has not, roots in F according as — a2 — 02 — y2 

= — 2a2 is, or is not, a square. 
If — Sa2 is a square we call the polar a c-line or chord, and say that P is 

external to x-
If 2a2 = 0, P is on x and the polar a /-line or tangent. It does not meet x 

elsewhere. 
If — Sa2 is a non-square we call the polar an 5-line; it is skew to x> and P 

internal to x-
This separation by a conic of the points of a plane into disjoint classes is 

noted by Qvist (10, pp. 9 and 19) but he does not proceed further, save to 
remark on the numbers of tangents through the points. If a tangent passes 
through P then the polar of P passes through the ''contact" of the tangent, 
and conversely; hence there pass 

two /-lines through any external point, 

one /-line through any point of x» 

no /-line through any internal point. 

We may call external points ^-points, and internal points i-points . 
Every /-line consists of q + 1 points; one is the contact, but the remaining 

q have all to be e. It follows, on polarising, that there are q + 1 lines through 
any point of x> o n e line being the tangent and the remaining q all c. Hence, 
since q chords pass through any point of x> X consists of q + 1 points. Since 
the number of c-lines is \q(q + 1) and of /-lines is q + 1, the number of 
s-lines is 

q2 + q + 1 - \q{q + 1) - (q + 1) = \q{q - 1), 

and this must also be the number of ^-points. Thus x separates the q2 + q + 1 
points of the plane into disjoint batches of 

feGz + i), q + h k(<z-i) 
and likewise the q2 + q + 1 lines into these numbers of c-lines, /-lines, s-lines, 
respectively. 

Any two /-lines intersect, and the |<z(<?+ 1) ^-points are thus accounted for. 

6. Of the q — 1 points of a c-line, not on x> half are i and half are e. For let 
(ai, 0i, Yi) and (a2, 02, Y2) be any two distinct points of x; any point on the 
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£-line which joins them is (ai + ka2l Pi + kfi2, 71 + ky2) where k runs through 
the q — 1 non-zero marks of F. This point is e or i according as 

- 2 ( a i + ^ 2 ) 2 = ~ 2k2aia2 

is, or is not, a square; it cannot be zero since the point is not on x- But when 
k runs through the q — 1 non-zero marks, — 2&2aia2 does likewise, and since, 
of these marks, \{q — 1) are squares and the others not, it follows that, 
of the q — 1 points of the c-line not on x> h(<L ~ 1) are e and the others i. 
It follows too, on polarising, that through each e-point there pass, with 2 
/-lines, \{q — 1) c-lines and | (g — 1) 5-lines. 

Since there are \{q — 1) i-points on each of the \q{q + 1) c-lines there pass, 
through each i-point, 

k(<z + i) • W - i)/k(<z - i) = W + i) 
c-lines, and so \{q + 1) s-lines too. Polarisation then discloses that, of the 
g + 1 points on any 5-line, half are e and half i. 

7. Call two points, neither of them on x> similar if they are either both e 
or both i; otherwise opposite. 

Consider the pairing, as conjugate to one another, of the q — 1 points on c 
that are not on x- Any conjugate pair is given by 

(«i ± ka2, Pi ± kp2, Ti ± &Y2) 

for some non-zero &. Now the marks ±2k2aia2 are both squares or both 
non-squares if — 1 is a square, whereas if — 1 is not a square one of the two 
marks is a square and the other not. Hence, for —1 not a square, the con­
jugates of the \{q — 1) ^-points on c are the \{q — 1) ^-points on c; conjugate 
points on c are opposite. If, however, —1 is a square conjugate points on c 
are similar; the \{q — 1) ^-points consist of \{q — 1) conjugate pairs, as do 
the \{q — 1) i-points. Let, —1 being a square, the pole of c be e0j and let e\ 
and e2 be any one of the \{q — 1) pairs of conjugate ^-points on c; then each 
vertex of the triangle e0eie2 is an e-point and the triangle, being self-polar for 
X, is a canonical triangle A. Since we may choose c, with its pole, in \q(q + 1) 
ways and, thereafter, take any of the \{q — 1) conjugate pairs of ^-points on 
c the number of A is, since each of its 3 sides may be used to begin its con­
struction, 

kte + i M G z - i ) . i = <?(<z2- i)/24, 
and each e-point is a vertex of \{q — 1) of them. The lowest value of q for 
which — 1 is a square is 5; there are then 5A whose 15 vertices account for the 
15 ^-points just once. When q = 9 there are 30A, each of the 45e-points being 
a vertex of 2 of them. 

8. The relation between conjugate points on 5 can be deduced from that on c. 
Suppose that e± and e2, two external points on 5, are conjugate; their polars 
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C\ and c2 pass through e2 and ei, respectively and meet a t i0, the pole of s. 
Hence conjugate points on c are opposite and —1 is not a square. Bu t if ei 
and i2 are conjugate points on 5 their polars C\ and s2 pass through i2 and e\ 
respectively and meet a t io\ hence conjugate points on c are similar and — 1 a 
square. I t follows tha t , when —1 is a square, conjugate points on 5 are op­
posite; the conjugates of the i(<? + 1) ^-points are the \{q + 1) ^-points. 
Bu t if — 1 is not a square conjugate points on 5 are similar; there are \{q + 1) 
conjugate pairs of i-points and \{q + 1) of ^-points. 

When — 1 is not a square each A has s-lines for its sides and i-points for its 
vertices. In order to construct a A we may choose any one of the \q(q — 1) 
s-lines as a side, and thereafter any of the \{q + 1) pairs of conjugate ^-points 
on it as vertices. Since the construction may set out from any of the 3 sides 
the number of A is 

k ( < z - i ) . i (<z + i ) . * = <z(<z2- i ) /24 , 
and each i-point is a vertex of \{q + 1) of them. The lowest value of q for 
which —1 is a non-square is 3 ; there is then a unique A and its vertices are 
the only i-points in the plane. When q = 7 there are 14A, each of the 21 
i-points being a vertex of 2 of them; when q = 11 there are 55A, each of the 
55 i-points being a vertex of 3 of them. 

9. Let ABC be any A and take e, distinct from B and C whether the vertices 
be ^-points or ^-points, on BC (there is no such e if q = 5). T h e Klines through 
e are harmonic to eBC and eA, and harmonic inversions in vertices and op­
posite sides of ABC yield a second pair of /-lines whose intersection is the 
harmonic conjugate of e in regard to B and C. These 4 /-lines form a quadri­
lateral U with ABC as diagonal triangle; U is the same as Q if p = 3, though 
not otherwise. 

When the vertices of A are e the ^-points on BC afford \{q — 5) pairs har­
monic to B and C; A gives rise to \{q — 5) U, of which it is the diagonal 
triangle, whose sides account for all q + 1 /-lines save those 6 which pass 2 
through each of A, B, C. Every A provides such a part i t ioning of the /-lines. 
T h e lowest relevant values of q are 9 (when the U are also Q) and 13. 

When the vertices of A are i the part i t ioning of /-lines is simpler; each A 
gives rise to \{q + 1) £/, the ^-points on any 5-line falling into \{q + 1) 
pairs harmonic to the vertices of any A of which this s-line is a side; these 
e-points can be paired not only in the involution I0 of pairs conjugate for x> 
b u t in \{q + 1) involutions Ik each having the vertices on 5 of a A for foci. 
No two of these \{q + 5) involutions are the same, and 70 commutes with all 
the others since the foci of any of these form a pair of I0. When q = 7 the 
pairing of the 4 ^-points is as follows: 

eu e\ and e2, e'2 in I0; 
eu e2 and e\, e'2 in Ily with foci iu i\\ 
ei, ef

2 and e\, e2 in 72, with foci i2, ir
2. 
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Here i2, i\ must be a pair of I\\ ilt i\ a pair of 72; not only do I± and I2 com­
mute with 70, they commute with each other. Their product, in either order, 
is I0 as is seen by observing the permutations imposed on the e when Ii and I2 

act in succession. 

T H E TERNARY ORTHOGONAL GROUP OF PROJECTIVITIES 

10. Suppose now that a projectivity leaves x invariant. I t must permute 
the A among themselves, so that the sides x = 0, y = 0, z = 0 of any given 
A become the sides £ = 0, rj = 0, f = 0 of (the same or) some other A. Here 
f, 77, f are linearly independent linear forms in x, y, z; and since x admits both 
the equations 

x2 + y2 + z2 = 0, e + 7]2 + f2 = 0, 

the left-hand side of either equation is a scalar multiple of the left-hand side 
of the other. Thus 

IT x\ 

V = M y 

LL -0J 
where M is a three-rowed non-singular matrix whose elements are all in F, 
and 

x'x = x2 + y2 + z2 = X(£2 + y2 + f2) = AS'H = Xx'M'Mx, 

so that 
10.1 XM'M = I, 

the unit matrix. Here X is a mark of F; indeed it is a square because, on taking 
determinants in 10.1, 

X3|M|2 = 1. 

The projectivity is, however, unaffected if M is replaced by any scalar 
multiple of itself; if H = w_ 1M with m either square root of X then, from 10.1, 

H'H = I. 

Then |H|2 = 1, and we choose m to be that square root of X for which |H| 
is + 1 ; the projectivity is imposed by an orthogonal matrix of determinant 
+ 1. Conversely: this matrix is uniquely determined. For the only matrices 
which impose the same projectivity as H imposes are those of the form wH 
with co a non-zero mark of F; the orthogonality condition demands that 
co2 = 1 and the determinantal condition that co3 = 1, which together require 
0) = 1. 

These projectivities, as likewise the unimodular orthogonal matrices that 
impose them, form a group 12(3, q): the orthogonal group in 3 variables over 
F. 
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11. Note, in passing, the involutions in 12(3, q), namely the harmonic inver­
sions whose centre and axis are pole and polar for %• Since the matrix imposing 
such an involution satisfies H2 = I as well as H'H = I it is symmetric as well 
as orthogonal. There are \q{q + 1) hyperbolic involutions whose centres are 
^-points and axes c-lines; the q — 1 points of % not on the axis are transposed 
in pairs. There are \q{q — 1) elliptic involutions whose centres are i-points 
and axes s-lines; the q + 1 points of x are transposed in pairs. One of the two 
consecutive integers \{q ± 1) is odd so that there are always in 12(3, q) involu­
tions that impose odd permutations on the points of %—the hyperbolic ones 
if q == —• 1 (mod 4), the elliptic ones if q = 1 (mod 4). 

12. The conditions, expressed by H'H = I, for 

H = 
a± a2 az 
Pi fo 03 

with all its elements in F, to be orthogonal are 

12.1 2a!2 = W 

12.2 2a2a3 = So^ai = 2aia2 = 0. 

These conditions can be interpreted geometrically when each column of H 
is regarded as the coordinate vector of a point of the plane; 12.2 then demands 
that the 3 points form a self-polar triangle for x and 12.1 that their coordinate 
vectors be normalised. It is not possible to normalize any vector unless Xa2 

is a square; hence if —1 is a square internal points, and if —1 is a non-square 
external points, cannot have their coordinates normalised. But when it is 
possible to normalise a vector it admits two normalised forms ±(QJ, /3, 7). 

If —1 is a square, each column of H is one of two normalised coordinate 
vectors of one of three mutually conjugate ^-points; that is, the columns of 
H answer one to each vertex of a A. The vertices of A can be taken in any 
order and, with this order chosen, four of the eight combinations of sign are 
permitted by the stipulation that |H| = + 1. Hence the number of such 
orthogonal matrices is 

2*4=^.31.4 = ^ - 1 ) . 

If —1 is not a square, the calculation leads to the same result; it is governed 
by the columns representing vertices of a A and is not affected by these vertices 
being e or i. The order of the group 12(3, g) is q(q2 — 1). 

The triangle of reference is itself a A, and the 24 matrices, obtained from I 
by imposing the 3! permutations on its columns and using the 4 choices of 
sign permitted for each permutation, form that subgroup of 0(3, q) for which 
the triangle of reference is invariant. It is an octahedral subgroup; indeed it 
acts as the symmetric group ©4 on the sides of the Q associated with the 
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triangle of reference, imposing all 4! permutations on them. When q = 3 this 
©4 is the whole orthogonal group; otherwise it is one among q(q2 — l ) /24 
octahedral subgroups of 12(3, q). The involutions in ©4 are those three whose 
centres are vertices of A and those six whose centres are vertices of Q. The 
former answer to the diagonal matrices diag(l, — 1 , —1), diag( —1, 1, —1), 
diag( — 1, —1,1) and the latter to the matrices 

- 1 0 0 -1 0 0 0 0 1 0 0 - 1 
0 0 1 J 0 0 - 1 1 0 - 1 0 y 0 - 1 0 
0 1 0_ 0 - 1 

"0 1 0" 

0_ _1 

0 

0 0_ 
- 1 o" 

_ - l 0 0. 

1 0 0 J - 1 0 0 
0 0 - 1 0 0 - 1 

13. 12(3, q) acts as a permutation group on the q + 1 points of x : should 
any of its operations subject these points to an odd permutation precisely one 
half of them must do so, and those operations that impose even permutations 
will then form a normal subgroup of index 2. We have, however, already noted 
the presence, in every group 12(3, q), of involutions that impose odd permuta­
tions; hence 12(3, q) has a normal subgroup 12+ (3, q) of order \q(q2 — 1). 
Those involutions that belong to 12+(3, q) are the iq(q + 1) hyperbolic involu­
tions if q = l(mod 4), whereas they are the \q{q — 1) elliptic evolutions if 
q = — 1 (mod 4) ; in other words they are always those involutions whose 
centres are vertices of A. 

14. There is a criterion which decides whether the octahedral subgroups of 
12(3, q) are also contained in 12+(3, q) : they will not be so contained unless the 
vertices of Q are similar to those of A, for 12+(3, q) only contains either hyper­
bolic or elliptic involutions, never both. On the other hand, it does contain all 
the involutions of one of the two types. The test of — 2a2 being, or not being, 
a square establishes that the vertices of A are similar to those of Q if, and only 
if, 2 is a square; for — 2a2 is — 1 at the vertices of the triangle of reference and 
— 2 at those of its associated Q. When g is a prime p the similarity of the 
vertices requires that, in the common phraseology, 2 is a quadratic residue; 
this occurs (11, p. 110) whenever p = ± l(mod 8), but not when p = ± 3 
(mod 8). 

It is clear from §12 that 12(3, q) permutes the A transitively; a given A is 
then invariant for 

lH - 1) + g - ( 2 ^ i l = 24 

projectivities of 12(3, q) and they form one of the octahedral subgroups. 
But if 12+(3, q) permutes the A transitively only 12 of its operations leave a 
given A invariant; they form a subgroup of index 2 in an octahedral group— 
a tetrahedral group that imposes the 12 even permutations on the sides of 
the associated Q. Should, therefore, 12+ (3, q) contain the octahedral subgroups 
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it cannot act transitively on the A, which must then fall, under 12+(3, q), into 
two transitive sets of q{q2 — l ) /48 each, sets which form two systems of 
imprimitivity for 12(3, q) and which are transposed by any projectivity of 
0(3, q) that is outside 12+(3, q). 

15. The rules (see §12) by which matrices of 12(3, q) are formed show that 
the group is transitive not only on the A but also on those points that can 
serve as vertices of A; hence any such point B, and its polar b, are latent for a 
subgroup 12B, the stabiliser of B in 12(3, q), of order 

<z(<z2- i) -Mf fGz± i ) = 2 ( < Z T I ) , 

the upper or lower sign occurring according as B is e or i. 12 B includes all the 
involutions whose centres are on b\ they account for q =F 1 of its operations 
and their matrices all have the coordinate vector of B latent, with multiplier 
— 1. The other g = F l operations of 12 B form the group 12B+ for which the 
coordinate vector of B is invariant, being associated with a latent root + 1 . 
12B+ is isomorphic to the binary orthogonal group which it induces on b, and 
we now show that it is cyclic. That it is abelian follows at once from the form 
of the 2-rowed orthogonal matrices of determinant 1 (3, p. 169); it can be 
asserted to be cyclic once the presence in it is detected of an operation whose 
period is the order of 12B+. 

The binary orthogonal group consists of all matrices 

u = r u v ] 
with u2 + v2 — 1 and both u, v belonging to GF(q). Since U2 = 2wU — I it 
follows (cf. 11, p. 368) that, if h is a square root of — 1 , 

2hv\ln = {{u + hv)n - (u - hv)n}\J - {(u + hv)n~l - (u - hv)71-1}!, 

and then that XJn = I if, and only if, 

(u + hv)n = (u - hv)n = 1. 

Should B be an e then h Ç GF(q) and every U satisfies Uff_1 = I; in order to 
find U with period q — 1 it is only necessary to choose u + hv, and therewith 
its reciprocal u — hv, to be a primitive mark. 

If, however, B is an i then u ± hv do not belong to GF(q) but to a quadratic 
extension GF(q2) ; they are conjugate marks therein, each the qth power of the 
other. Hence 

(u + hv)q+1 = {u + hv)(u + hv)q = (u + hv)(u - hv) = 1, 

and every U satisfies U î + 1 = I. A matrix of period q + 1 is found by choosing 
u + hv in GF(q2) to be a primitive root of xq+1 = 1. The mark h, having served 
its purpose, falls out of the working and leaves only marks of GF(q) in the 
final result. 

Two examples may perhaps be given, with details of the calculations left 
out. 
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The quadratic X2 = X + 1 is irreducible over G F (7) and the adjunction 
of either root f extends the field to GF(72). A primitive root of xs = 1 in GF(72) 
is f2, and so we take 

u + r% = f2, « - f% = r 2 , 
which give u = v = — 2; 

U = | g ~ 2 | h a s P e r i o d 8 over G7^(7). 

The quadratic X2 = X — 1 is irreducible over G J P ( I I ) and the adjunction 
of either root 0 extends the field to G F (ll2). A primitive root of x12 = 1 in 
GF(1V) is 20 + 2 and we take 

w + (40 - 2> = 20 + 2, « - (40 - 2> = - 2 0 + 4, 

which give u = 3, v = — 5; 

"3 - 5 " 

"- [ ! has period 12 over ^ ^ ( l l ) . 
.5 3_ 

The operation of period 2 in 12B+ is manifestly the involution with B as 
centre and this, since B is vertex of a A, belongs to £2+(3,g). But not all 
operations of 125+ so belong, and hence only half of them will do so. For 12# 
certainly contains operations outside 12+(3, q), namely those centred at |(g=Fl) 
points on b opposite to vertices of A; and when all involutions centred on b 
are jettisoned from 125 to leave 12B+ only half these are outside 12+(3, q) and so 
not all the g T l operations of 12s outside 12+(3, q) are rejected. The conse­
quence is that 12+(3, q) has subgroups 12 J of order g T l and cyclic subgroups 
12j+ of order ^ ( g T l ) , and is transitive on vertices of A. 

It is perhaps not superfluous to remark that, as the involution centred at 
B imposes the identity projectivity on the points of b, the groups of pro-
jectivities on b are of orders one half those of the groups of orthogonal mat­
rices; 12J+ imposes \(q =F 1) projectivities on b and is in (2, 1) homomorphism 
with this latter group. 

16. There is a corresponding discussion for points D, opposite to vertices 
of A, and their polars d; 12(3, q) has subgroups 12D of order 2(q db 1) and cyclic 
subgroups UD+ of order q ± 1; 12+ (3, q) has subgroups 12J of order q ± 1 and 
cyclic subgroups 12j+ of order | (g ± 1). There is a difference in that the 
"restriction" of the ternary quadratic form to the line d does not have the 
canonical form £? + £|> that it had on the side of a A, but £Î + v%\ where v 
is any fixed non-square of GF(q). When the coordinates are transformed to 
correspond thereto the binary orthogonal projectivities answer to matrices 
(3, p. 161) 

U T uvl 
\_ — vv uj 

wherein u2 + w2 = 1; but these also satisfy U2 = 2u\] — I. 
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17. The group 0+(3, q) is (3, p. 164) isomorphic to the linear fractional 
group LF(2, q), and the subgroups that have just been obtained in the ortho­
gonal representation were found in the linear fractional representation by 
Serret for the case q = p (11, pp. 375, 379, 380; results which were given also 
in the earlier editions of this treatise) and by Dickson for q a power of a prime 
(3, pp. 263-4). The 3 involutions centred at the vertices of any A are mutually 
commutative and form, with the identity, a 4-group; the orthogonal repre­
sentation thus discloses the q(q2 — l)/24 4-groups in 12+(3, q) at a glance. 
They are, of course, well known in the linear fractional representation (3, 
p. 268; 1, p. 444). Serret also obtained the p2 involutions of the group of linear 
fractional transformations, pointing out (11, p. 382) that the number in 
LF(2, p) is \p{p + 1) or \p{p - 1) according as p = 1 or - 1 (mod 4). 

T H E DETAILS OF THE GEOMETRY OVER THE SMALLER FIELDS 

18. The remaining sections of the paper are given to describing the geometry 
for the smaller fields q = 3, 5, 7, 11. The figure for q = 3 has been described 
elsewhere (4); the A and Q therein are unique, and the sides of Q are the 
tangents at the 4 points of %• Œ(3, 3) is the octahedral, 12+(3, 3) the tetrahedral, 
group and the points of x and sides of Q undergo the corresponding permuta­
tions. The subgroups Œ5, one for each vertex of A, are the dihedral subgroups 
of order 8; tlB+ the cyclic subgroups of order 4. There is only a single Oj, 
namely the 4-group that is a common subgroup of the 3 dihedral 12B, but there 
are 3 cyclic groups fij+ of order 2. 

19. Some description has also been printed (5) of the figure for q = 5, 
although in quite a different context and using a different nomenclature. 
An account of this figure from the standpoint of the present enquiry is therefore 
given now. Each of the 15 c-lines is a side of one, and only one, A; and since 
no vertex e of any A lies on x the c-lines through a point of x belong one 
to each of the 5A. The 6 points of x are separated by the sides of any A into 
3 pairs of a syntheme (i.e., 3 pairs which together account for all 6 points) and 
the 5 synthemes, one arising from each A, constitute a synthematic total T 
(i.e, 5 synthemes which together account, by 3 pairs in each, for all 15 pairs of 
the 6 points). 

Since there are 3 c-lines through each i-point the points of x fall, in 10 dis­
tinct ways, into 3 pairs which, since their joins are concurrent, are in involution 
on x- Each involution yields a syntheme, and the 10 synthemes so arising are 
those extraneous to T. We may say, with Clebsch, that the points of x form a 
hexagon endowed 10 times over with the Brianchon property. 

Clebsch (2, p. 336) establishes the existence of such hexagons in the real 
projective plane; their vertices are not then on a conic, neither will they be 
when we encounter such hexagons again below with q = 11. They arose when 
Clebsch mapped his 'diagonal' cubic surface on the plane, the surface itself 
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having arisen by making certain transformations of a quintic equation. The 
presence of such hexagons in the real plane is however visually obvious: 
they are provided by sections of the 6 diagonals of a regular icosahedron 
in Euclidean 3-space, the Brianchon points being the sections of the 10 joins 
of centroids of pairs of opposite faces. Some approach, whether deliberate or 
not, to this aspect of the matter is made by Klein (8, p. 218) but he does not 
appear to record that mere section is enough to provide the figure. The 
simplest section, by a plane perpendicular to a diagonal of the icosahedron, 
gives a hexagon consisting of the 5 vertices and the centre of a regular 
pentagon. 

20. Take now any two A; call them Ai and A2. Label the points of x A, 
B', C, A', B, C so that 

BC, CA', AB1 are sides of Ai, 

B'C, CA, A'B are sides of A2. 

Since no £-point can lie on sides of more than one A, BC and B'C meet at 
a point i\\ the remaining c through i± is AAf. Hence 

AA', BC, B'C are concurrent at iu 

BB', CA', CA are concurrent at i2, 

CC, AB', A'B are concurrent at i3; 

moreover i\, i%, i3 lie on the Pascal line s0 of the hexagon AB'CA'BC. Thus 
Ai and A2 are in fourfold perspective. Since they are both self-polar for x> 
any axis of perspective is the polar of the corresponding centre of perspective ; 
the four axes of perspective are AA', BB', CC, s0. The first three of these are 
concurrent at i0l the pole of s0; they are the c-lines which pass through i0 and 
are sides one of each of the A other than Ai and A2. Every pair of the 5A is 
in this relation of fourfold perspectivity, and each of the 10 s-lines plays the 
role of So for one pair of A The s-lines are sides of Q, and each pair of Q share 
one 5-line, namely the Pascal line of the hexagon of which their diagonal tri­
angles provide alternate sides. 

21. 12(3, 5) is of order 120 and subjects the 5A to all 5! permutations; the 
octahedral subgroup for which one A is invariant subjects the other 4A to 
all 4! permutations. 12+ (3, 5) is of order 60 and subjects the 5A to all even 
permutations; it has no octahedral subgroups and permutes the A transitively. 
The coordinate vectors of the 3 vertices of any A can therefore be displayed as 
columns of a matrix of 12+(3, 5); for instance thus: 

21.1 
I 1 0 0~ 

0 1 0 1 

Lo o i 

2 - 1 - T 
1 1 2 > 
1 2 1 

1 - 1 
-1 2 
2 - 1 

1 2 - l " "2 1 l l 
2 1 - 1 y 1 1 2 

- 1 - 1 2_ -1 2 lj 
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Indeed these matrices are symmetric and so, apart from I, represent involu­
tions; the latent column vectors associated with the latent root + 1 are found 
to be e, and so the involutions are hyperbolic and belong to 12+(3, 5). 

Each matrix affords, by the 3! permutations of its columns and the 4 per­
missible signings for each permutation, 24 matrices of 0(3, 5). If the permu­
tations are restricted to be even, the 60 matrices so arising constitute £2+(3, 5) ; 
for the 12 arising from I form the tetrahedral subgroup of Q+(3, 5) for which 
the triangle of reference is invariant and these, when they postmultiply the 
other matrices of 21.1 impose even permutations on their columns. 

The subgroups 12 B are easily disposed of. If B is y = z = 0 the 8 matrices of 
12 B are 

1 0 0 
0 1 0 
0 0 1 

1 0 
0 - 1 
0 0 

" l 0 O l "l 0 o" 1 0 ol 
' 0 0 1 7 0 0 - 1 > 0 1 0 

.o - i oJ _o i 0_ . 0 0 - l j 

1 » 
| ' - 1 0 0" 

0 0 1 1 1 

r-i 
0 

0 0" 
0 - 1 

L 0 1 0 . L ° - 1 0_ 

- 1 0 0 
0 - 1 0 
0 0 1. 

the first 4 of which constitute 12 5 + , the first 2 12#+. The 4 diagonal matrices 
constitute 12j, and the same subgroup 12# arises for the 3 vertices of any A. 
These are the 5 4-groups in 12+(3, 5). The 15 cyclic subgroups 12 J + of order 2 
are of course generated by the hyperbolic involutions. 

22. The presence of axes of perspectivity is an immediate consequence of 
the factorisations of linear combinations of products of sides of any two A. 
For instance: the first and fifth of the matrices 21.1 provide, over G F'(5), the 
identities 

(2x + y + z) (x + 2y + z) ipc + y + 2z) + xyz 
= (2x — y — z) (2y — z — x) (2z — x — y) 

(2x + y + z) (x + 2y + z) (x + y + 2z) — xyz 
= 2(x + y + z)(x2 + y2 + z2), 

and 9 other pairs of identities arise from these by applying the orthogonal 
transformations. 

23. Suppose now that q = 7. All A and Q have ^-points for their vertices, 
but whereas the sides of A are 5 those of Q are c. 12+ (3, 7) has 14 octahedral 
subgroups, each acting as the symmetric group of 4! permutations of the sides 
of a Q. 

Consider, for the moment, some one A. There are operations of 12+(3, 7) 
that permute its vertices cyclically; they leave one side c of the associated 
Q invariant while cyclically permuting the 3 i-points thereon. They cannot, 
being of odd period, transpose the two points of x o n c\ nor can they, as not 
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imposing the identity projectivity on c, have any other latent point on c 
than these two; hence the 3 ^-points on c are also permuted cyclically. Thus, 
on any £-line, the 3 i-points form an equianharmonic tetrad with either point 
of XJ as do likewise the 3 ^-points. The two triads are analogous to a binary 
cubic and its cubic covariant, with their common Hessian pair. 

24. The stabiliser 0# of a given i-point, called for the moment B, in 0+ (3, 7) 
is of order 8. There are 2 canonical triangles A, A' with B for vertex and these 
are never transposed by any operation of 0#. A is invariant for an octahedral 
subgroup of 24 operations of 0+(3, 7), and of these 8 leave B unaltered and so 
exhaust the stabiliser. The two octahedral subgroups associated with A and 
A' have this (dihedral) stabiliser in common. It follows that any operation of 
12(3, 7) that transposes A and A' lies outside 12+(3, 7). Any two A which share 
a vertex belong to different imprimitive systems. 

It is then easy, starting from any one A (say the triangle of reference A0), 
to obtain all the A and partition them into two sets of 7. There are 3, say 
Ai, A2, A3, which share a vertex with A0 and so belong to the opposite set; 
each of them shares a vertex with two A other than A0, and the 6A so arising 
all belong to the same set as A0 and, indeed, complete it. We now display all 
14A; each of the two horizontal strata consists of a set of 7 that are permuted 
transitively by 0+(3, 7). Each stratum is an imprimitive system for 0(3, 7); 
whereas both strata are invariant for 12+(3, 7), they are transposed by those 
operations of 0(3, 7) that lie outside 0+(3, 7). 

1 0 0 
0 1 0 
0 0 1 

0 - 2 - 2 
- 2 3 - 3 
- 2 - 3 3 

0 2 - 2 
2 3 3 

- 2 3 3 

3 2 - 3 
2 0 2 

- 3 2 3 

- 1 0 0 
0 2 2 
0 2 - 2 

2 0 2 
0 - 1 0 
2 0 - 2 

- 2 2 0 
2 2 0 
0 0 - 1 

2 - 3 - 3 
- 3 2 3 
- 3 3 2 

3 - 2 3 
- 2 0 2 

3 2 3 

3 - 3 - 2 
- 3 3 - 2 
- 2 - 2 0 

3 3 2 
3 3 - 2 
2 - 2 0 

2 - 3 3 
- 3 2 - 3 

3 - 3 2 

2 3 - 3 
3 2 - 3 

- 3 - 3 2 

2 3 3 
3 2 3 
3 3 2 

Each square block provides, by permutations and signings of its columns, 24 
matrices of 0(3, 7); all 336 operations of the group are thus accounted for. 
The upper stratum provides, from its 7 blocks, the 168 matrices of 0+(3, 7); 
the unit matrix provides those 24 matrices for which the triangle of reference 
is invariant. The other octahedral subgroups occur when these 24 matrices are 
transformed, in the sense HMH - 1 , by those of the other 13 blocks. 
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25. Each block is symmetric and therefore the matrix of an involution save 
when it is the unit matrix. The involutions of 12+(3, 7) are the 21 elliptic ones; 
of these 9 are provided by the matrices given in §12. There are 12 others, of 
which 6 are furnished by the blocks precisely as displayed; the outstanding 6 
are got from these by changing the signs of those 4 marks that occur in the 
same row or column as the zero in the diagonal, these changes neither altering 
the value of the determinant nor destroying the orthogonality. The 28 hyper­
bolic involutions must be imposed by symmetric matrices, orthogonal and of 
determinant + 1 , whose columns, either themselves or their negatives, occur 
in the lower stratum. All the assemblages 

2 2 
2 - 2 

2 - 2 
-2 - 2 

-2 2 
2 2 

- 2 - 2 
- 2 2 

can play the part of that one which appears in any of its first three blocks; 
this accounts for 12 hyperbolic involutions. As for the remaining four blocks, 
not only does each provide a hyperbolic involution as it stands but it provides 
three others—by transposing any two of its three columns and multiplying 
by — 1 either the untransposed column only or all three columns, whichever 
alternative is the one to restore symmetry to the matrix. 

26. It is easy to give the explicit forms for the matrices of the stabiliser 
12 B when B is y = z = 0. There are 16 of them; those 8 of QB+ have + 1 at 
their top left-hand corner, zeros elsewhere in the top row and left-hand 
column, and the residual block one of 

1 0 - 1 0 0 1 0 - 1 2 - 2 - 2 2 2 2 - 2 - 2 
0 1 0 - 1 - 1 0 1 0 2 2 - 2 - 2 - 2 2 2 - 2 

The other 8 matrices have —1 in the top left-hand corner, and the residual 
blocks are the 8 two-rowed blocks just given but each with its bottom row 
changed in sign throughout. The 8 matrices with only 0, 1, —1 for their 
elements constitute Oj; here, in contrast to q = 3, 5, the subgroups £2j differ 
for different vertices of the same A. 

The 4 ^-points on x = 0, being those points for which 

y = 2z, y = — 2zj 2y = z, — 2y — z, 

undergo a cyclic group of 4 permutations under 12# when B is y = z = 0. 
Thus 0+(3, 7), transitive on the 4 c-lines through an i-point as well as on the 
21 i-points, is transitive on the 28 c-lines, and the stabiliser of a given c-line 
in 12+(3, 7) is of order 6. Now any c-line is a side of 2 Q, each invariant for an 
octahedral subgroup of S2+(3, 7) imposing the 4! permutations on its sides; 
there are 3! operations of this subgroup for which c is invariant and which 
impose the 3! permutations on the remaining sides. These 3! operations 
exhaust the stabiliser: any projectivity of 12(3, 7) that transposes 2 Q that share 
a side must lie outside 12+(3, 7). The 14 Q fall, with their diagonal triangles, 
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into 2 imprimitive systems of 7, and 2 Q with a common side always belong to 
opposite systems. 

27. There is a symmetr ic (3, 3) correspondence between A in opposite 
sys tems; two A, one of each system, correspond when they share a vertex. 
There is also a symmetr ic (4, 4) correspondence between A in opposite sys tems; 
two A, one of each system, correspond when the Q associated with them share 
a side. This la t ter is of course the same as the correspondence between A 
of opposite systems t h a t do not share a ver tex; such A are in a certain geo­
metrical relation t h a t will now be obtained. 

Let c be one side of a Q\ i\, i2, i% the vertices of Q on c; i\, i'2, i'f3 its opposite 
vertices. Each pair of opposite vertices is conjugate for %• T h e diagonal 
triangle A is7*17*27*3 where7*1 is common to i2 if % and i'\ i$, and so on. T h e polars 
7*i i'i,J2 if2j 7*3 i'z of i i , i2, is are concurrent a t e, the pole of c; the intersection 
ei of c and 71 i \ is the point on c conjugate to ii, and likewise for e2 and e%. 
T h e s-lines through 71 join it to the i on 7*27*3 and so meet c a t z'i, i2, u, e\. 
T h u s 7*1 e2 and 7*1 e3 are c-lines as, likewise, are 7*2 e%, j 2 e^ 7*3 £i, 7*3 e2, and the 
only c-lines through, say, ei are £17*2, #17*3, iii&z. 

Take , now, the other Q of which c is a side; it also has i\, i2, i% for vertices 
b u t has another diagonal triangle &1&2&3; and the only c-lines th rough e\ are 
eik2, eikz, i\i2iz. This implies, since ki, like 7*1, is on ee\, t h a t 7*17*273 and kik2kz 
are in perspective from e\. Similarly they are in perspective from e2 and e$. 
And they are manifestly in perspective from e. 

T w o A, in opposite systems and not sharing a vertex, are therefore in 
quadruple perspective. Their centres of perspective are all ^-points and 
the polar of one of them contains the other three and is the common side of 
the two Q associated with these A. 

Ju s t as for q = 5, so for q — 7; the axes of perspect ivi ty of two A can be 
displayed as factors of linear combinat ions of the products of their sides. 
T h e simplest such identities occur when one A is the triangle of reference 
and the other, to be selected from the lower s t r a tum b u t not to be any of the 
first three blocks therein, is the A answering to the last block, since the product 
of its three sides is a symmetr ic function of the coordinates. T h e identities, 
over G F(7), are 

(2x + 3y + Sz) (Sx + 2y + 3s) (Sx + Sy + 2z) - xyz 
= 2 (2x — y — z) (2y — z — x) (2z — x — y), 

(2x + Sy + Sz) (Sx + 2y + Sz) (Sx + Sy + 2z) + xyz 
= — S(x + y + z) (x2 + y2 + z2 + yz + zx + xy). 

T h e centres of perspect ivi ty of these two triangles are then (1 , 1, 1) and the 
three ^-points 

( 2 , - 1 , - 1 ) , ( - 1 , 2 , - 1 ) , ( - 1 , - 1 , 2 ) 

on its polar. T h e Q associated wi th these A are t h a t whose sides are 
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x + y + z = 0, y + z — x — 0, z + x — y = 0, x + y — z = 0, 

and that whose sides are 

x + y + z = 0, y + z + 2x = 0, z + x + 2y = 0, x + y + 2z = 0. 

Each of the 28 £-lines is a common side of two Q, whose diagonal triangles are 
in quadruple perspective in the manner described above; there are 28 pairs of 
identities of which the pair displayed is one, and the other 27 pairs are derivable 
from this one pair by applying the orthogonal transformations. 

28. The symmetrical (3, 3) correspondence between two sets of 7 objects 
must occur in any representation of Œ+(3, 7). For Klein's representation as a 
group of ternary substitutions over the complex field there occur (9a, p. 715; 
7, p. 443) two sets of 7 conies; every conic of either set meets Klein's non-
singular plane quartic in the 8 contacts of 4 bitangents, and the 7 sets of 4 
bitangents answering to the 7 conies of either set account for all 28 bitangents. 
Each bitangent belongs to one, and only one, quadruple of either set (9a, 
p. 712) and a symmetrical correspondence between the two sets of 7 conies 
is set up if conies, one in each set, correspond when the quadruples do not have 
a bitangent in common. 

But perhaps the representation of 12+(3, 7) that most simply displays the 
(3, 3) correspondence (although the two sets do not now consist of like objects) 
is the group of 168 projectivities of the 7-point plane cô, a point and line corres­
ponding when they are incident. In w each of the 7 lines contains 3 points and 
each of the 7 points lies on 3 lines. 

29. It was announced by Galois (6, p. 412) that LF(2, q) has a permutation 
representation of degree q for q = 5, 7, 11; this is never so if q > 11. The 
isomorphic group Œ+(3, q) must therefore also admit such a representation 
in the finite plane; one has already been encountered for g = 5, 7, when the 
q objects permuted are canonical triangles: for q = 5 the whole set, for q — 7 
the members of either imprimitive system. And so the question is clamant: 
what geometrical entities supply a representation of ft+(3, 11) as a permuta­
tion group of degree 11? 

In the finite plane corresponding to q = 11 there are, as we shall see, 
Clebsch hexagons; hexagons, that is, endowed in 10 ways with the Brianchon 
property of concurrence of 3 diagonals. Given the conic x there are 22 Clebsch 
hexagons ^ all of whose vertices are e-points and diagonals s-lines; each of 
the 66 e-points is a vertex of 2 ^ t h a t belong one to each of 2 imprimitive 
systems of 11 ^ Either system supplies a representation of 12+(3, 11) as a 
permutation group of degree 11. The operations of 0(3, 11) that are outside 
fi+(3, 11) transpose the 2 systems. 

30. Take %> x2 + y2 + z2 = 0, and the triangle of reference A. Suppose 
that an 5-line meets both y = 0 and z = 0 in points e neither of which is a 
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vertex of Q; such points are (c, 0, 1) and (b, 1, 0) with b, c both marks of 
G F (11) and both b2 and c2 neither 0 nor 1. Moreover, the points being e, 
neither b2 + 1 nor c2 + 1 can be a square. Since, in GF'(11), 

1, 4 , - 2 , 5, 3 are the squares, 
and — 1 , —4, 2, —5, —3 the non-squares, 

b2 and c2 can only be —2 or 5. But the join 

x = by + cz 

is not an 5-line unless b2 + c2 + 1 is a square; this prevents &2 + c2 from 
being —4 or —1 and forces it to be 3; b2 and c2 are, in either order, the two 
marks —2 and 5, squares of ± 3 and ± | . This yields 2 quadrangles whose 4 
vertices are e and 6 joins 5, two of the joins being y = 0 and 2 = 0; one has 
vertices ( ± 3 , 1 , 0 ) and (1,0, ± 3 ) ; the other has vertices (1, ± 3 , 0) and 
( ± 3 , 0 , 1 ) . 

Consider now the first of these quadrangles. Through each vertex pass, in 
addition to its joins to the other vertices, 2 further s-lines; the 8 s-lines so 
arising are found to meet 4 at each of 2 ^-points on x = 0 and these 8 s-lines, 
with x = 0 and the 6 joins of the quadrangle, are the 15 joins of 6 e-points, 
namely of 

3 1 0 - 3 1 0 
30.1 1 0 3 1 0 - 3 

0 3 1 0 - 3 1 . 

Verification is immediate. And the 15 s-lines are sides of the following 5A: 

A0: xyz = 0 
Ai: ( 5x - 4;y - 2s) ( - 2 x + 5y - 4s) ( - 4 * - 2y + 5s) = 0 

30.2 A2: ( 5x + Ay + 2z) (-2x - 5y + 4z) ( - 4 x + 2y - 5s) = 0 
A3: l-5x - Ay + 2z) ( 2x + by + Az) ( Ax - 2y - 5s) = 0 
A4: ( - 5 * + Ay - 2s) ( 2x - 5;y - 4s) ( Ax + 2y + 5s) = 0. 

Denote by ^ t h e hexagon whose vertices are 30.1. Each Aj in 30.2 answers 
to a syntheme of vertices of ^ ; the 5 synthemes, one for each Ajf constitute a 
synthematic total T. Each of the 10 synthemes extraneous to T provides 3 
pairs whose joins concur: ^ h a s the Clebsch property. The concurrencies are 
all at points i, and normalized coordinate vectors for them are 

0 5 3 0 - 5 3-2 2 2 2 
30.3 3 0 5 3 0 - 5 2-2 2 2 

5 3 0 - 5 3 0 2 2 - 2 2 . 

Each of these points is the concurrence of sides of 3 of the 5 A;-; and each of 
these 3 sides is an axis of perspective of the 2 remaining Ay. The triple per-
spectivity of A0 and Ai accords with the identity, over GF(11), 

(5x — Ay — 2z)( — 2x + by — Az) ( — Ax — 2y + 5s) + xyz 
= A(5x + Ay + 2s) (2x + 5y + Az) (Ax + 2y + 5s). 
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Other identities derived from this by imposing the orthogonal transformations 
exhibit other pairs of canonical triangles in triple perspective. 

One may, in passing, note the relation between the Q associated with such 
triangles; they are found to have a common side, the line on which the 3 
centres of perspective of their diagonal triangles lie, and their 2 sets of 3 
vertices thereon account for all e-points on the side. 

31. The elliptic involution centred at a vertex of A0 leaves A0 invariant while 
transposing the other Aj as two pairs; the analogous situation holds for the 
involution centred at any vertex of any Ay, and the A,- thus undergo the 15 
even permutations of period 2 of the alternating group SU- The 15 involutions 
all belong to £2+(3, 11) and generate a subgroup thereof; this is icosahedral, 
being isomorphic to Sis because any projectivity which imposes the identity 
permutation of the A5 must impose it on the points 30.3 (each of which is 
determined by those 3 Aj whose sides intersect there) and so be the identity 
projectivity. 

^ i s not invariant for the whole group 12+(3, 11), it is changed to other 
hexagons by the involutions centred at the points 30.3 ; the subgroup for which 
it is invariant is thus a maximal icosahedral subgroup of order 60, and ^ i s 
one of 

660 ^ 60 = 11 

Clebsch hexagons permuted transitively by Œ+(3, 11). The other 10 ^ are 
obtained at once by imposing the involutions centred at the points 30.3; 
taking, for example, the last of these points x = y — z we have 

" - 4 - 1 - 2 - 2 - 5 5" 
- 2 - 4 - 1 5 - 2 - 5 

. - I - 2 - 4 - 5 5 -2m 

The vertices of the 11 ^account for all 66 ^-points, and the A^ which belong 
5 to each ^account for all 55A. 

4 - 3 - 3 1 I 3 1 0 - 3 1 0 
3 - 4 - 3 1 0 3 1 0 - 3 
3 - 3 - 4 o 3 1 0 - 3 1 

32. The 11 ^ o n l y provide one half of the figure; there is a second set of 11 
Clebsch hexagons 3) equally well supplying a permutation representation. 
These are obtained by starting, instead of from 30.1, from 

1 3 0 1 - 3 0 
3 0 1 - 3 0 1 
0 1 3 0 1 - 3 

which affords, by a synthematic total of its vertices, the 5 A got by transposing 
y and z throughout 30.2. This transposition is effected by using the involution 
whose matrix is 

- 1 0 0" 
0 0 1 
0 1 0 
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its centre (0, 1, 1) is an £-point so that it is hyperbolic and, although belonging 
to 12(3, 11), it does not belong to 0+ (3, 11). Thus 12(3, 11) is transitive on 22 
Clebsch hexagons ^ a n d ^ ; these form imprimitive systems for 12(3, 11) and 
each set of 11 is a transitive set for 12+(3, 11). 

Each e-point is a vertex of a single ^ a n d a single ^ ; there is a symmetrical 
(6, 6) correspondence between the ^ a n d -^ wherein corresponding hexagons 
share a vertex. Alternatively, one may use the symmetrical (5, 5) corres­
pondence wherein corresponding hexagons do not have a vertex in common. 
These correspondences between 2 sets of 11 objects will occur in other re­
presentations of 12+(3, 11). Klein, in 1879, found a representation as a group 
of quinary linear substitutions over the complex field, and when the 5 variables 
on which the substitutions operate are used as homogeneous coordinates in 
[4] there do occur two sets of 11 quadrics with each quadric of either set 
linearly dependent on 5 of the other (9b, p. 429). 
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