
BRING'S CURVE

W. L. EDGE

1.

Five planes, no four of them concurrent, in projective space of three dimensions,
form a pentahedron P having ten edges and ten vertices; each vertex, common to
three faces, is opposite to the edge common to the remaining two. Each edge contains
three vertices and each vertex is common to three edges. The joins of any vertex to
the three on the opposite edge are diagonals of P; there are 15 of these. Any face
meets the other four in four edges forming the sides of a quadrilateral whose three
diagonals are among those of P. The plane spanned by any vertex and opposite
edge is a diagonal plane.

One can appropriate P as pentahedron of reference for five supernumerary
homogeneous co-ordinates summing identically to zero:

Jlx = x+y+z + t + u = O (1.1)

at every point of the space. Each vertex of P has its co-ordinates a permutation of
(— 1,1,0,0,0); the diagonals have equations such as

x = y+z = t+u = 0,

these three simultaneous equations being linearly dependent on only two of them
because of (1.1). Hence all 15 diagonals lie on Clebsch's diagonal surface

DiJ^x3 = x3+y3+z3 + t3 + u3 = 0.

The triad of vertices on an edge of P has a Hessian duad: the pair of points each
of which completes, with the triad, an equianharmonic tetrad. The vertices V12, V13,
V13 on t = u = 0 are (1, - 1 , 0,0,0), (0,1, -1,0,0), ( - 1 , 0,1,0,0) and are permuted
cyclically with x, y, z; this permutation is allowable because it does not violate (1.1).
The duad is the pair of points that are fixed under this permutation, namely

(1, co, co2, 0, 0) and (1, co2, co, 0, 0)

with co a complex cube root of 1; these 20 points, two on each edge of P, clearly all
lie on the quadric

Q : £ x 2 = x2+y2+z2 + t2 + u2 = 0.

Bring's curve B is the intersection of Q and D; it is a canonical curve of genus 4
[5; p. 166] and is, with Q and D, invariant under the symmetric group S?s of 120
permutations of the five co-ordinates. As will be observed from what precedes, B
can be defined geometrically without any mention of co-ordinates. There are certainly
two places where it has been noticed in the literature and some allusion to these
should now be made. Concerning Bring himself the footnote on p. 143 of [5] is
informative.
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540 W. L. EDGE

2.

Bring's curve B was encountered by Klein [5; p. 166]. The reason for its appearance
lay in the endeavour to remove the terms in X4, X3, X2 from the quintic equation

and thereby reduce the problem of solving a general quintic equation to that of solving

X5 + eX+f=0. (2.1)

If (2.1) has roots x, y, z, t, u then St = S2 = S3 = 0 where

This implies that the point (x, y, z, t, u) in our supernumerary co-ordinate system is
on B. It will be convenient, whenever the contraction is unambiguous, to denote
the point simply by its parenthesised first co-ordinate (x).

Before acknowledging the other earlier appearance of B it may be noted that the
surface Sn = 0, should it not contain the whole of B, meets B in a set of points invariant
under S?5. The expressions for the Sn are found by using the recurrence relation
consequent upon (2.1):

S n + 5 = -eSn+l-fSn n = 0 ,1,2, . . .

and they will be polynomials in e and /; moreover / must be a factor whenever n is
odd if Sn 3p 0. It is only necessary to know So, Su S2, S3, S4 in order to find all
subsequent Sn. But here

and elementary routine, or indeed the brief footnote on p. 165 of [5], gives S4 = — 4e.

The consequences are

S5 = - 5 / , S6 = S7 = 0, S8 = 4e\ ... (2.2)

every non-zero Sn being monomial until

S20 = - 4 e 5 + 5/4 = S4
5/44 + S5

4/53.

The pencil of surfaces of order 20, AS4
5 + fiS5* = 0, cuts a g\20 on B every set of

which is invariant under Sfs. Since the Jacobian set of a gN
l on a curve of genus p

consists of 2N+2p—2 points [8; p. 75] that of gj2o consists of 246 points. But these,
double points of sets of g\2o> include 24 quintuple points on S4 = 0 and 30 quadruple
points on S5 = 0; and while the exact attribution of multiplicities can be a subtle
matter these present confluences are standard ones [8; p. 77]: each of the quadruple
points contributes 3, each of the quintuple points 4, to the Jacobian set, so that there
is a residue of

246-90-96 = 60.

This residue is, as a whole, invariant under Sf5 and suggests that a third surface of
the pencil may touch B at each of the 60 points. This will be confirmed below.

3.

The other appearance of B is in Wiman's paper [11] where he studies curves of
low genus that admit (1,1) self-transformations; for canonical curves such trans-
formations are projectivities.
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BRING'S CURVE 541

The simplest permutation of Sf5 is a transposition of two of the co-ordinates, the
other three being unpermuted. Now the difference of the two row-vectors

(x, y, z, t, u) {y, x, z, t, u),

where x and y are not both zero, is the co-ordinate vector of V12 while their sum is
that of a point in the plane x = y, say the plane n12; hence, as Wiman states, the two
points are harmonic inverses in V12 and ni2. When the points are on B their join
generates, to quote a second statement of Wiman's, a cubic cone Kl2 with vertex
V12. Thus B is, in ten different ways, in (2, 1) correspondence with a plane curve of
genus 1. Incidentally nl2 is the harmonic conjugate of the diagonal plane x+y = 0
with respect to the two faces, x = 0 and y = 0, of P through the edge opposite
to Vx 2. This harmonic inversion may be called hl2.

When B is its own harmonic inverse in a point V and a plane n the six tangents
to B at its intersections with n all pass through V. Let Jo be such an intersection, and
J a point of B " near " Jo. Then V J meets B also in J', the transform of J in the
inversion, so that the osculating plane of B at Jo, which is the limiting position as
J ->• Jo along B of the plane joining J to the tangent V Jo, has 4-point intersection
with B at Jo: this, too, is stated by Wiman [11; p. 20]. So the 60 intersections of B
with the ten planes n-tj are stalls on B. They are the 60 Weierstrass points on this
canonical curve, the number for a canonical curve of genus p being j?(p2 — 1).

The recognition of these 60 stalls raises the suspicion that they may be the residual
members of the Jacobian set of g\20, and as they form the complete intersection of
B with ten planes it might be that some surface AS4

5 + f.iS5
4 = 0 is the square of the

product of these planes; and this we now prove. A standard procedure expressing
the square of the difference-product of the roots of an equation as a polynomial in
the Sn gives, when applied to (2.1), by (2.2),

1 1 1 1 1

x y z t u

x2 y2 z2 t2 u

x3 y3 z3 t3 u

x4- y* z 4 t* M

1 X X2 X3 X4

\ y y2 y3 y*

\z z2 z3 z4

1 t t2 t3 t"

1 U U2 U3 M4

. . . S4S,

Hence the surface S4
5 = 20S5

4 is the square of the product of the ten planes ntJ

the Jacobian set is completed by the anticipated contribution.
and

4.

The equation of Kl2 is
2 2 > 3 = 3(x+);)2>2. (4.1)

For, while this surface clearly contains B and V12, the join of V12 to any other point
(x) satisfying (4.1) consists of the points obtained by varying X in (JC + A, y — X,
z, t, u); and this point satisfies (4.1) if

-y2)} = 3(x+y) {2X2+ 2X(x-y)}

which is an identity in X: the line lies wholly on the surface.
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542 W. L. EDGE

The geometry of Kl2 is indicated by that of its section by any plane not containing
Vl2, so one may use nl2 wherein

After this substitution (4.1) becomes

or
2 + t2 + u2) = 0.

This is equivalent to

5(z+t + u)3 = (z+2t+2u)(2z+t + 2u)(2z+2t + u) (4.2)

so that the diagonals
0, t = u+z = 0,

of P through Vl2 are three of the inflectional generators of Kl2. The tangent planes

= 0, 2z+t + 2u = 0,
or, alternatively,

t + u = x+y, u+z = x+y, z+t = x+y,

of K12 along these three generators must, by (4.2), each osculate B at both its inter-
sections with the generator; these are the points where this generator meets Q. The
pair on z = t + u = 0 is (1, —1,0, ±i, + i). These five unequal co-ordinates admit 120
permutations, but only 30 points occur because multiplication of each co-ordinate
by any power of i does not produce a different point. So the 30 points, one pair on
each diagonal, make up the complete intersection of B with the faces of P or, alter-
natively, with the surface S5 = 0.

5.

The 24 intersections of B with the quartic surface S4 = 0, since they satisfy

are the points whose co-ordinates are permutations of (1, e, e2, e3, e4) with e a complex
fifth root of 1. These five unequal co-ordinates admit 120 permutations, but they
provide five sets of co-ordinates for each of the 24 points because multiplication
of all its co-ordinates by any of the five powers of e does not change the position of the
point. It will be convenient therefore, in discussing these 24 points, to insist that the
the first co-ordinate x is always 1; the remaining four co-ordinates, when undergoing
all 24 permutations, yield the 24 distinct points.

Take then, to open the discussion, (1, e, e2, e3, e4) and associate it with the three
other points that are obtained on replacing e by e2, e3, e4. The set of four points is

a(l, e, e2, E3, e4) 5(1, e4, e3, e2, e)

b(\,e2, e4, e,e3) 5(1, e3, e, e4, e2).

It is then apparent that each of

a, b; a, B; a, b; a, B
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BRING'S CURVE 543

is a conjugate pair of points for J^x2 = 0; the four lines

ab, aB, ab, ab

are generators of Q. The 24 points are vertices of six quadrilaterals whose sides, two
in each regulus, are on Q (cf. [11; p. 21]). The diagonals of this quadrilateral of
generators, aa and bB, are polar lines for Q and are seen to lie on D. For example:
aa meets x = 0 at (0, e—e4, e2 — e3, e3 — s2, e4—e) which is on the diagonal x = y + u =
z + t = 0; similarly each of its intersections with the faces of P is on D so that, having
at least seven intersections with D, it lies on the surface.

Thus aa and bB are a pair of the double-six <5 on D residual to the 15 diagonals of
P, and each of the six quadrilaterals provides such a pair: Q is the Schur quadric for
<5 [7; p. 12 and footnote].

A further item of information can be added to Schur's footnote. He remarks
that one among the 36 double-sixes on D is isolated: the addition is that the other
35 are partitioned as 15 + 20 in the sense that no member of either set can be trans-
formed into one of the other by an operation of Sf5. On D the isolated double-six <5,
as already mentioned, includes no diagonal of P. But there are 15 double-sixes Sy

which include 8 diagonals forming four opposite pairs of 5lt and 20 double-sixes <52

that include only 6 diagonals, three in each regulus on a quadric. These are specialisa-
tions on D of the geometry on a general cubic surface and can perhaps best be
perceived from the fact that the diagonals can be labelled consistently by Schlafli's
15 symbols ci} and this indicates an alternative way of phrasing the geometrical
definition of B: take P, the diagonal surface D defined thereby, the residual double-six
on D and its Schur quadric Q.

The double-six 5, being invariant under S?5, is a Burnside double-six ([2; p. 418]
and [1; p. 168]).

6.

The tangent plane to ]£ *3 = 0 at a is
2 * 3u = 0,

and this plane is aab; hence ab, common to the tangent planes of Q and D at a, is the
tangent of B at A. Similarly ba is the tangent at b, ab that at a, and Ba that at B. That
there are 12 lines in each regulus on Q tangent to B is in accord with the Jacobian set
of the #3* cut on B by either regulus consisting of 2.3 + 2.4 —2 = 12 points.

The osculating plane of B at a is the limiting position, as a' -> a along B, of the
plane joining the tangent ab to the point a' on B " near " a. This plane meets Q in ab
and the generator of the opposite regulus through a'; its limiting position therefore
joins ab to the generator aB of the opposite regulus through a: the osculating plane of
B at a is the tangent plane of Q at a. This same coincidence occurs at all 24 points.

7.

The mention of an osculating plane is a reminder that Hesse [4; p. 283] obtained
the equation of the osculating plane of any irreducible curve that is, as B is, the
complete intersection of two surfaces. His arguments were shortened and clarified
by Clebsch [3; p. 2] and the equation Hesse obtained is reproduced in Salmon's
treatise [6; p. 328]. When Hesse's equation is worked out the osculating plane of B
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544 W. L. EDGE

at (x) is found to be

S 4 £ ; c 2 Z = -2S5ZxX (7.1)

in current co-ordinates (X). It follows that the osculating plane is the tangent plane of
<2 at those points of B for which S4 = 0, and is the tangent plane of D at those points
of B for which S5 = 0. Both these facts have been anticipated: the former at the end
of §6, the latter in §4 when one observes that the tangent plane of D at (1, —1, 0,
i, —i) is x+y = t + u. Neither of these facts affords any check on the constant
— 2 in (7.1), but such a check could be provided by using the osculating plane at
a stall.

Incidentally, at the six stalls in nl2

so that, if x = y = 1,

z2 + t2 + u2 =z3 + t3 + u3 = - 2

and the stalls occur on permuting the unequal numbers a, /?, y in (1, 1, a, ft, y) with
a, f}, y the roots of 63 + 2Q2 + 30 + 4 = 0. They form two triangles in triple perspective
from K34, F35, F45.

The tangents of a curve of order n and genus p, without cusps, generate a scroll
R of order r = 2n+2p — 2, the number of points in the Jacobian set of a gn

l. For B,
of order 6 and genus 4, R has order 18. Its intersection with Q includes the 24 tangents
of B known to lie on Q; the residue, of order 12, is B, which is cuspidal on R, counted
twice. Since each vertex of P is the concurrence of tangents at six stalls of B, an edge
of P cannot meet any tangent of B other than those passing through the three vertices
on the edge, the ten points Ffj- are sextuple points of R.

Each tangent of an algebraic curve in [3] meets r —4 others and the locus of such
intersections, the nodal curve N of/?, has order

2(n+p-\)(n+p-3).

These are among the classical enumerative properties of algebraic curves; the last
number is the one Salmon denotes by x [6; pp. 293-299], while Semple and Roth label
it v [9; p. 86]. For B the curve N has order 126 but, as is now to be explained, is
reducible with eleven components. Ten of these are plane curves, one in each n^.

If a tangent / of B meets n^ at 0 its transform ttJ in hi} also passes through 0;
the plane curve Nu traced by 0 as the contacts (collinear with V^ on a generator of
Kij) of t and ttj trace B is the complete intersection of R with n^. Whenever a line in
TTjj meets a tangent of B it also (at least if the intersection is not one of the six stalls
in iiij) meets a second tangent at the same point; since it meets 18 tangents of B it meets
Nij in nine points, so that NtJ has order 9. But the edge of P in n^ meets no tangent
of B save those through the vertices of P on this edge, which are therefore triple
points of Nij. The points of N^ are in (1, 1) correspondence with the generators of
K(j so that Nu is an elliptic curve; it has the equivalent of 27 double points, and to
these the three triple points contribute. Of the 14 tangents of B meeting any one of its
tangents ?, 10 are the transforms of t in the inversions h^, the locus of the remaining
four intersections of t with other tangents of B is a curve No of order 126-90 = 36.
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BRING'S CURVE 545

The curve No has multiple points at the vertices of P. For through such a vertex,
saY î2> P a s s six tangents of B: these, with the two triply perspective triangles of
stalls mentioned in §9, are transposed in pairs by /*34, h35, /?45 so that nine of the pairs
of tangents through V12 are mates in the three inversions, leaving six pairs not so
linked; each Vtj is a sextuple point of JV0.

If t is among those 24 tangents of B that have been seen to lie on Q, its transforms
in the hy, meeting it at its intersections with the ten planes n^, also lie on Q and in
the opposite regulus p. There are however 12 tangents of B in p, and those two which
belong with t to one of the six quadrilaterals of §5 meet t at points, as there explained,
no two of whose co-ordinates are equal and which therefore do not lie in any plane
Ttjj. The vertices of these six quadrilaterals therefore all lie on No. Although No has
the tangents of B as quadrisecants its only intersections with a tangent t of B that is
on Q are the two vertices of the associated quadrilateral which have therefore either
both to be counted twice or else one thrice and the other once; for any tangent of
B meeting / must be in p, and there are only 12 such.

In conclusion, without pursuing the topic, one may allude to the 120 tritangent
planes of B. If c is a contact of such a plane it is on a surface XS^5 + fiSs

4 = 0 whose
120 intersections with B are all contacts of such planes. What is the binary cubic C
whose zeros X: n account for all 360 contacts ? Whatever C may be it has a Hessian
quadratic and a cubic covariant; zeros of these also correspond to surfaces meeting
B in sets of points having some invariant property.
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