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In this paper, we prove that there exists a K~ihler-Einstein metric, abbreviated 
as K-E metric, on a m-dimension Fermat hypersurface with degree greater than 
m - l .  In particular, a Fermat cubic surface admits such a K-E metric. By 
standard Implicit function theorem, it also implies that there are a lot of m- 
dimension hypersurfaces with degree __>m, which admit K-E metrics. The 
problem of K-E metric on a K~ihler manifold with definite first Chern class 
was raised by Calabi [3] thirty years ago. The most important part of the 
problem was solved in the famous paper of Yau [13]. But the problem is still 
open in case that the background manifold has positive definite 1 St Chern class. 
In fact, people only know a few examples of K-E manifolds with 1 st Chern 
class positive. As for our knowledge, all of them have automorphism groups of 
positive dimension. The K-E manifolds shown here only have finite automor- 
phisms. 

The idea of the proof is to introduce a global holomorphic invariant c~(M) 
m 

on a Kiihler manifold M with C I ( M ) > 0  and prove that if e ( M ) > ~ - ,  where 

m = d i m M ,  then M admits a K-E metric (Theorem 2.1). Then we estimate the 
lower bound of c~(M). In case that M enjoys a group G of symmetries, we can 
define ~G(M), similar to c~(M), and have a version of Theorem 2.1 for c%(M) 

m 
(Theorem 4.1). It turns out that e a (M)>TV7 ,  , if M is a hypersurface mentioned 
above. 

The invariant e(M) (resp. eG(M)) plays a role in the study of K-E metric 
more and less same as the Moser-Trundinger constant does in the study of 
prescribed curvature problem on S 2. It would be an interesting problem to 
determine how large ~(M) is. A local problem, which is relevant to ~(M), was 
considered by Bombieri [2] and Skoda [11]. Precisely, they proved that given 
a plurisubharmonic function q~, if the Lelong number of ~b is small enough, 
then ~b is locally integrable, c~(M) is regarding to the properties of anti- 
canonical bundle of M and the families of holomorphic curves of smaller 
degree with respect to the polarization given by CI(M). We guess that e(M) 
has a lower bound only depending on the dimension m. It is pointed out by 
Professor Yau that this will result in a upper bound of (--KM) m. 
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The organization of this paper is as follows. In w 1, we formulate briefly the 
problem of K-E metric and reduce it to solving a complex Monge-Amp6re 
equation. We state without proof some theorems on the higher order estimates 
derivatives of the complex Monge-Amp6re equation on M. They are slight 
modifications of some results in S.-T. Yau [13]. Because of those estimates, the 
existence of K-E metric on M is reduced to the C~ of solutions of 
that complex Monge-Amp&e equation. In w 2, the invariant ~(M) is defined. We 
prove that c~(M)>0 and the Theorem 2.1, which provides a sufficient condition 
to assure the existence of K-E metric. In w 3, we give a lower bound of c~(M) by 
considering the families of holomorphic curves in M. In particular, if M = CP 2 

#enCP z, 3<n-<8,  we prove c~(M)>�89 Unfortunately, so far we are unable to 

provide an example where a ( M ) > m - ~ '  We guess that CP 2 ~ 8  CP 2 is such an 

example for some good reasons. We would like to mention that Theorem 3.1 
has its own interest, even though it is a corollary of H6rmander's L 2 estimates 
of the ~ operator. Theorem 3.1 suggests a possibility of understanding the 
limiting behavior of a sequence of solutions of the complex Monge-Amp6re 
equations in w 1. Such a situation is quite same as that in the study of Yamabe's 
equation. The difference is that we don't have a local estimate here as good as 
there. In w 4, we consider K~ihler manifolds with certain group symmetries. The 
constant e~(M) is defined. We have a correspondence of Theorem 2.1, i.e. 
Theorem 4.1. Based on the same trick used in w 3, we give an estimate of ~G(M) 
and prove that if M is a Fermat hypersurface of dimension rn and degree >m, 

m 
then a G ( M ) > ~ i - ,  1. It follows the main result. 

In this paper, M is always a K~ihler manifold, g is a K~ihler metric, in local 
coordinates, g=(g,~), where (g,~) is a positive definite hermitian form. cog= 

]/f~--1 g~lJ dz" /x d-~" - COg ~ C 1 (M) means that they are cohomological. 
2 a, f l= l  

w 1. Preliminaries 

Let (M,g) be a K~ihler manifold with C I ( M ) > O , g ,  as a K~ihler class, repre- 
sents the same cohomology class as Ricci curvature does. Then it is well 
known that the conjecture of Calabi can be reduced to solving the following 
complex Monge-Amp6re equation 

det (gu+ ~2q5 ] = d e t ( g u ) e  r - o  
Ozi?Zi/  

, 024) ~ 
g u + ~ ]  >0, cp~C~(M,  R) 

(,) 

where F ~ C ~ ( M ,  R) is a given function. 
In order to use the continuity method to solve (,), Aubin [1] introduced 

the following family of equations 
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det [ g i j + ~ ]  =det  (g/j)e ~- 'e  

(*)7 , e 2 4 ) \  
g i j + ~ ]  >0, 4)~C~(M,R). 

Define S={ te [0 ,  1]l(*)~ is solvable for se[0, t]}. By Yau's solution for 
Calabi conjecture in case C 1 =0, S is nonempty. Aubin [1] also proved that S 

is open by an estimate of first eigenvalue of K~ihler metric (g~; 
\ 

Oz~O~! dz~| Hence, to prove (*) solvable, it suffices to show that S is 

closed, which is equivalent to a uniform C 3 estimate of solutions of (*)7 by the 
standard theory of elliptic equation (cf. [4]). 

Theorem 1.1. Suppose that 4) be the solution of (*)7, then 

O<m + A4) < Cl exp (C (4)- (l +m----tT) inf4))) 

where C is the constant such that C + infRmT> 1, {Raa } is the curvature tensor 
i~:l  

of g, C 1 depends only on s u p ( - A F ) ,  sup linf(Rim)l, C. m and supF. 
m M i4:l M 

Proof A slight modification of Yau's proof in [13]. 

Theorem 1.2. Let 4) be a solution of (*)7, then there is an estimate of the 
derivatives 4)ij~ in terms of 

~gi jdz i |  j, suplFI, suplVF[, sup sup [F/~I 
z, d M i 

and 
sup suplF~jkl and supl4)l. 

M i , j , k  M 

Proof Same as Yau did in [13]. 

Remark. One can use the integral method to obtain a Ca-estimate of 4) only 
depending up to second derivatives of F. See [12]. 

By the above theorems, one sees that the closeness of S follows from the 
C~ of solutions of (*)t. 

w 2. A sufficient condition for the existence of K-E metric 

In case m = 1, there is a famous inequality by Trudinger, 

S e'O2dvu<7 for each 4)EC2(M), 
M 

with 
j" IV4)12<1, ]" 4)=0 
M M 

where a, 7 depend only on the geometry of M. 
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Moser proved that in c a s e  M = S  2, e=4rc  is the best constant s.t. the 
inequality holds and applied it to the study of prescribed Gauss curvature 
problem on S 2. 

In the following, we introduce a similar constant on K~ihler manifold 
(M, g), where g is the K/ihler metric. 

Define P ( M , g ) =  49~C=(M,R)lgu+oziOuj>O, sup49=0 . 

Lemma 2.1. Let BR(O ) be the ball of radius R in C", centered at O, 2, a f ixed 
positive number, then for all plurisubharmonic function ~ in BR, with ~,(0)>=-1, 
tp(z)<=O in BR, one has 

e-~~ where r < R e  -~  (1) 
Izl<r 

where C depends on m, 2, R. 

Proof It is a modification of the Lemma 4.4 in H6mander I-6]. 

Proposition 2.1. There exist two positive constants c~, C, depending only on (M, g), 
such that 

~ e - '4  dVM < C for each 49eP(M, g) 
M 

Proof Let 2r be the injective radius of (M, g), G(x, y) be the Green function of 
the Laplace operator A on (M, g). May assume inf G(x, y )=0  

M x M  

V 49EP(M,g), A49+m>O, i.e. -A49<=m 

49(x) = 1 s 49(y) dVM(y) -- ~M G(x, y) A 49 dVM(Y) 

then 

0=sup  49<1=M ~ 49(y) dVM(y) + supx~M M ~ G(x, y ) ( -  A 49) dVM(Y) 

1 
<--- ~ 49 (y) d V M (y) + m sup ~ 6 (x, y) d V M (y). 
- -  V M x e M  M 

r N 
Now we fix a ~ - n e t  {xl, . . . ,  Xu} of M, s.t. M =  ~) B~_(xi), where B~_(xi) is 

i=1  4- 4 
r 

the geodesic ball of M at x i with radius ~. 

1 
Vi, by ~ ~MO(y) dVM(y)>--msupx~M M ~ G(x'y) dVM(Y)=-C1 and 49<0 

- V C  1 
sup (2) 

Br/4 (X,) (]~ (y) ~ Vol (B~_(xl)) ' 
4 
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Let Oi be the K~ihler potent ial  of (M, g) in B 2 r ( x / )  , such that  Oi(xi)=0, put  C 2 

= s u p  sup IOi(x)l, then 
i x 6  B3r  (xi) 

2 
@~(x)+ch(x)< C: in B3.(x~), 

4 
by (2). 

- V C  1 
3 yi~B�88 such that  O(yi)>=Vol(B~_(xl)) 

4 

min Vol (B~(xi)) 
put a = C 2-~ i ~ , by L e m m a  2.1, one obtains  

VCI + I 

e-~(v"x)+~ dVM <= C. 
Br/2(Yz) 

N 

Since Br(x i )c  Br (y~), and M--  U Br(xl), it follows that  
4 2 i = 1  4 

S e ~4,dV M ~ C, C depending only on (M, g). [ ]  
M 

Now we associate a number  to (M, g). Define 

e(M, g ) = s u p  {c~>013 C > 0 ,  s.t. (1) holds for all ~b~P} >0.  

One can easily deduce the following propert ies  of c~(M, g). 

Proposition 2.2. (i) c~(M, g ) = ~ ( M ,  g'), /f g, g' are in the same Kiihler class. 
(ii) c~ is invariant under biholomorphic transformation, i.e. if el): N--*M biho- 

lomorphic, e(M, g) = ~(N, 4)* g). 

In case that  M has the first Chern-class > 0, we take  g in the class given by 
Ricci curvature,  then the above propos i t ion  says that  ~(M)=c~(M, g) is a 
ho lomorph ic  invariant.  One interesting question is how large c~(M) is, and how 
to est imate it f rom below. 

Example. M = C P  m, g = ( m + l )  mult iple of  Fubini-s tudy metric, i.e. (m 
+ 1) c~ log(tz[2), where z =  [z o, . . . ,  zm] is the homogeneous  coordinates.  Then 

1 
~(M) = 

m + l '  
The following theorem is the main  result of this section. It provides a 

sufficient condi t ion to assure the existence of K-E  metric. 

1 
Theorem 2.1. Let (M, g) be a KShler manifold, -COg represents the first Chern 

7~ 
m 

class. I f  ~ ( M ) > ~ ,  then M admits a Ki~hler Einstein metric. 

The rest of this section is devoted to the p roof  of this theorem. 
First we introduce two flmctionals defined by Aubin  [ l ] ,  

I(4,) ( l / / -  1)m -- V ~ ~((D~--(Din), 
M 

J((a) = ~ Us(~ ds 
o S 
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where 

~Oo =g,~ dz"/,,r ~, ~o= o)o + ac%, r = ( 1 / ~ )  ~ ~ ~ ,  4)eP(M, g), 
M 

V Z  o>O. 

then 1 , / -  leo ~0 ,  

Lemma 2.2. m+_~l J(~)<__I(~)<(m+ 1)2(4)). 
m 

Proof 
@ 7 i r ~  

J@)=  v o u 

V 0 M k = 0  -- 

where 

= 0  i f j < k ;  = k ! O - k ) !  if j>k,  

0 . - k )  ! ( k +  1) t 
for j>=k, ~(r--sy-ks~+lds= 

o 0 '+2)  ! 
Hence 

J(r = ~  
V u k=o ;=k 0 . + 2 ) ( j +  1) 

V u k- 

/ m m - 1  ) m (1 / -1 )~  ~ e ~ ^ ~ ^  | - -  Y ~o =-~-~ 
m + l  I ( ~ ) ) = - - - V - -  M = \ m + l  k~o o ,xco ~ 

=s(~)+ @ 7 7 ) "  "-~ k o,~_~_ , 
v I ~r ^ '% A Z m ~  ~ ~ 

M k- -1  

'~-~ k oo.d_k_l /xcok+l(O)>=t(~)" ( m + l ) J ( ~ b ) = ( ] / / - 1 ) "  ~ a ~ , ~ A  = 1~ m - l - k  
V U 

o 

Lemma 2.3. Let t--+ O, be a curve in P(M, g), then 

(V< r (i(4,,) -J(+,)) = ~ 4,,(a,, 6,)(O~o + 1/-2i a ~,)"  
dt V M 

8 G 8 ~ 1 '  

Proof At t = t o, by Taylor  expansion, G = 05:o + .~o' (t - to) + o(It - roD. 
For  simplicity, we assume that  ~ = Go, 4)= (kto. 

%=O9o +88G, 
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,.-1 k(k+ 1) 
+ / a ~ A a ~ A  E 

M = i  m + l  
+o(It - tol). 

by the above, 

I(cPt) -S(dpt)  = V 
k=O 

= / @ ) - a ( q ~ ) +  v k=O 

+f e o , , a ~ ^ ~  ~ k+l .~a-~-'Ao~ 
M k = O  m + l  

_ _  a /g-k- '  ^ aa~o A ~o k- ,] . ( t - to )  

It follows that 

d(I (4)t)dt- S (dpt)) t:,o 

- -  [ s "-~ k + l  O0~_k_ 1 
(V~l)mv 2 a4, A~4~A E ; ; Z  A~'~ 

k=O 

+ j" c~4, ̂  a4~ A +o  ^ A(?a 
M k = l  m + l  

V M k=O m + l  
" -*  k(k+ 1) ] -S~o~4;^ Z ( ~ - k - ' ^ 0 ~  ^~k-1) 

~t k=~ m + l  

- ( 1 / ~ - )  m [27-~ k +1 co~,_k_, 
- v MS ~ a a ~  A ~o_ 2 4 7  A o, ~ 

~1 k(k--~ 1)(( . f )n~_k_lA(D k (D~_k A (Dk_ 1) ] 
k=l m + l  

(V--1)mV [m-i:0 2(k+l )  m-k-,  cok = -  t q~0a4~A Z - -  COo A 
M k-  m + l  

.~2 [_k(k+_l) (k+ l ) (k+2) )  rO~,_k_l A~ok + 
k=l \ m + l  m + l  

re(m--l) a ) , . _ 1 _ _ _ 2  co~,_1 ] 
-f m + ~  m + l  

m(V ) m 
= -  v f ~ / ,  o, =-~ 

M 

( t / -  1) m 
=-  ~ - -  I ~a+do,=. 

M 

Now we suppose that q5 t be the solution of (*)t for teS, then 
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(ateP(M, g), det gij det(g, ; )er- toL 
i 

Take  the differential with respect to t on both  sides of the above equation, 
one obtains 

a+, 4,= -t4,-(a,. 

Corollary. For the family {(a,} of solutions of (*),, I((at)-J((at) is an increasing 
function of t~S. 

Proof By L e m m a  2.3, 

d(I((a,) -J((a,)) ( ] / ~ ) m  
dt - V f @Ac d?,09'~ 

M 

= 

.f (%~ ~, + t4,)(%~ &,) 097. 
V M 

We compute  the Ricci curvature of the new Kih le r  metric ( g i j d - ~ ] .  

t . 0 2 4), 
Ric ( % ) =  -~3a log det (glj + ~ ]  

= - ~3 a log det (gift - 0 aF  + t t3 ~ (at 

= Ric (090) - 8 a F  + t0~(at = 09 0 +tOa(at=t09 t +(1 - t )  09 0 > t % .  

By the well-known Bochner  identity, one sees that the first eigenvalue of 
A~, is greater  than t. Hence - A ~ - t > 0 .  It follows that 

d ( l  ((at ) - J ((a,)) > 0 .  
d t  

Proposition 2.3. Let (a t be the solution of (*)t, t~S, such that t-*(a t is a smooth 
family. Then 

(i) ( ~ -  1)" ~(_@)09~--<m sup (at + C, where C is a constant depending only 
V M M 

on (M, g). 

(ii) V ~ > 0, t constant C~, such that 

sup (a, < (m + ~) (]/---1-)" 
M V 

Proof By L e m m a  2.3, 

d(I((at) -J((a,)) 
dt 

Since (at is the solution of (,),, Ao, qSt= - t ~ , - ( a ,  

- -  J" (-(a,)  09F+ C .  
M 

( V -  1)" v .[ (a,(a+,~,)oF. 
M 
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d(I(O,)-J(r ( ~ - l )  m 
dt V ~ rfi,(@ +trfi,)07' 

M 

-- V f qS t (49 t+ t~ t )  eF-t4)t('Ono 
M 

-(r dtd ( ~ ( - r  

( 1 / - 1 )  ~ i qSt eF-'4'~ O~. 

F r o m  the identi ty,  I c0~' = l 07' = I ev- t4,~ o~, we ob ta in  
M M M 

I(tO,++)e ~-'*~oom=o, i.e. iq~,e~- '* ,oa=--~  f6,o7'. 
M M tM 

H e n c e  
F 

d ( l ( ( o t ) - - J ( O t )  ) 1 d (t(]//rl)m ) 
dt - t  dt 5 (-dPt)~ M 

d[t(I(4,)-J(~b,))] ( I ( r 1 6 2  I ( �9 
dt M 

In tegra t ing  it f rom 0 to t, 

t(I(@) -a((9~)) - i (I(dp~) - J ( ~ ) )  ds = t - -  
0 

(1/-m 
v ~ ( - + , ) o 7  M 

Divid ing  t on  b o t h  sides, 

1 m 
by L e m m a  2.2, ~ I((~,)<I((J,)-J((p,)< 
creasing, = m + 1 

t 
l ! (*((~s)-J(Os))ds ( ] / V  1)m I ( - r  co7' = (/(q~,) - J(q~,)) - 7  

I(~b,). Since I((~,)-J(~p,) is in- 

(1/-1)  ~ m 
V M~ (-r I((~')-(l(~P~176 

= m (1/--- 1) m ~ q ~ , ( o ~ - o T ' ) - ( I ( r 1 6 2  
i.e. m + l  V M 

(1/~ 1) m q~ - ~ )o 
~ ( - - ( o ) o 7 ' < = m -  ~ r162 ). 
M V M 

g 
On the  o the r  hand,  pu t  s' - m - 1 + s '  

t--E' (r f(-<)oT'>=(1-~'l(,i,,t-J(<t)-~ ! (.<)-J<)t 
1 i (4,)_ ~ ~ (I(Os)-J(r >=(1-~, ')  m~l o 
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�9 ( ~  1) ~ ( ~  1 )  ~ 
V ~ q~,og~<-(m+e) - -  ~ (-d?,)og'~+(I(r 

M - -  V M 

Hence, in order to prove the proposition, we only need to show that 

sup 5 +, o9~' + C 
M M 

which appeared in the proof of Proposition 2.1 simply as an application of 
Green formula. 

Lemma 2.4. Let g t i j = g i j - t - ~ ,  then for t ~ e > 0 ,  there exists two constants 

C1, C2, depending on e, V,, such that V f~CI (M,  R), 

2m m - 1  

Cl \M(I [ f l  ~ dl/t) m -~72 f I f  '2 d~t~- I ' V'f'2 dVt�9 
M M 

Proof As we said, Ricg<>t>e>0,  and the volume is fixed, then the lemma 
follows from a combination of results in Croke [-7] and Li [8]. 

The proof of Theorem 2.1. It suffices to prove that there exists a sequence {tl}, 
such that t i ~ t e S \ S  as i ~  + ~ ,  and N~b,,llco is uniformly bounded. 

May assume that tz>e>O, since 0eS, S is open. 
m 

By the assumption, 3 ct between and a(M), such that 
m + l  

i.e. 

e- , ~  a V M ~-~ C 
M 

e (~ -')q'"-'~,P~'"-FdVt< C 
M 

By the concavity of log, 

where C is independent of t i. 

IVY-- log,r 
ff ((1 -~)  ~b t - ~  sup ~b,.-F) 
M ~ M ~ V 

XM 

Hence, sup qS,, < 
M 

o97 
(-q~,.) ~ - +  C. By the Proposition 2.3, 

M 

m 

m + l '  

(_~b,,) ( v -  l o 9 , ) " 1 / < m  sup q~t + C 
M V M 

�9 m ( 1 - 0 t )  

C. 

(z 

1 - cx ( ] / 7 - -  1 o9,)'~ 
<m - -  S (-~bt,) ~- C 
- a M V 

dr,< 
- - <  1, it follows that S (-q~t,) C. 

M V---- 
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Proposi t ion  2.3 also implies that  sup qS,,__<C. It remains 
f@ < C .  M - i n  , ,=  

M 

For  this, we use the s tandard  iteration. Rewrite the equat ion 

a s  

to show that  

{gij ' (~2 ~)t ~ . . . .  F-t4a t det + 7 ~ - 1  = o e t  [gift e 
OZ i OZj l 

g, , j [  . c~ 2@, 
/gq + ~ / =  m 
\ O Z i O Z j /  

[ ' ~24a ~ a' A'= 
where (g 'q ) i s  the inverse of I g q + ~ ] .  Hence, qS,<m, where Ao~, set 

L ,/ 

= max  { - ~b,, 0}, then for p > 0, 

M~ p + 1 2  4p V ,O~-  dV t <m~l,  PdVt " 
( p  + , - , 

By L e m m a  2.4, 

m m - - 1  / 

C1 (~  ~/,(P+')~7-1 dV t ]~g- <mlp+ i) z 5 OP dVt + C2 .[ i/ip+' dV t 
' l  = 4p M ' u 

(4) 

m 
takePl=l,  pl=(pt_l+l) --1 for l>__2. 

m- -1  
If  there exist infinity number  of Pz, s.t. 

1 

(j" I//p'+I dVt.)P,+l < m a x  {(5 (~2 dVt,)l/2, 1} 
M M 

then sup ~9-<max {(~ j/,2 d E  ~1/2 1} by taking the limit on Pt. - -  "t- t j  , 
M M 

So we may  assume that  
1 

~ l o > l  , =  s.t. g I>Io,= (~]P'+ldVt)P,+l>_max{(S,b2dl<) ' / 2 ,  _ , , ,  ,1}. 
M M 

The inequali ty (4) implies that  for l >  1 o 

i.e. 

m - 1  

C,(~  ~P'+' + '  dVt, ) " =<(rap/(1 + V)+  Ca) ~ @P'+~ dVt, 
M M 

1 1 I 

(~ ~9 p'+'+~ dVt,lP,+,+, <_(Cpt)p,+' (~ 0 p'+~ dVt,)p,+ x 
M M 

1 o o  1 1 

supO=lim(~ OP'+ ' + l dVt ,)  p' + ' + I ~ [ I  ( C Pl)m + l ( I Om~ + l dVt,)  p '~  ' + l 
M l ~  M l=lo M 

1= l o k ~  0 
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is bounded and 

1 ~ ~M ) 1 
M d V t,)p'o +1 ~ \ ~ - 1  IfiP'~ ' d V t -[- 

<(mPto_ l+C 2 trip,o_,+ mpl ~ V)  1 = \ Ca ~ l d V  * _~ 1 p , O _ l + l  
M z C1 

1 1 
< ( D I P l ~  1 + 1 dVt )pro- 1. + 1 
= \  C, 

+ (rap,o_ , v ' 

< C max {(~ ,/12dEP/2 1}. = -i- t l !  ' 
M 

Therefore,  we always have 

supg, N C max {( 5 ~l l2dV~ "11/2 1}. ,Y G I , 
M M 

On the other  hand, ~ IV'O[2dV~<m ~ OdVt. 
M M 

The first eigenvalue of (M, At) is greater than the lower bound of Ric 
curvature, i.e. Ric(gt) _> t _> e. > 0. Hence 

S ~'2dV,<=(S ~dV,,) 2+m ~ ~,dV,<=C. 
M M M 

It follows that - i n f r  = sup ~b < C. [ ]  
M M 

w A lower bound of ~(M) 

In this section, we fix a KShler manifold (M,g)  with CI(M)>0 and 
1 --O)g~Cl(M), although almost all of  the discussions are available to the 
7[ 

general Ki~hler manifold. First we want to study the limiting behavior  of a 
sequence of functions in P(M, g). 

Theorem 3.1. Let {qSi} be a sequence of functions in P(M,g), 2 be a positive 
number. Then there exist a subsequence {ik} of {i} and a subvariety S of M with 
dim S < m - 1, such that 

(i) V z c M - S ,  3 r > 0 ,  C > 0 ,  s.t. 

S e-~4%(w)dVg(w) <C for all k. 
Br (z) 

(ii) Vz~S, lim S e-~*'~~ = + ~  for all r>O. 
k ~  + oo Br(z) 

Proof We need the following proposit ion,  which is basically the Theorem 5.2.4 
in H6mander ' s  book  [6]. 
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Proposit ion 3.1. Let U be a stein manifold, then there exists an exhausting 
function p satisfying; for  every plurisubharmonic function ~ on U, (1, O)-form h 
with ~ Ihl 2 e-~*+~ dV  and a h = 0 ,  there exists a function u such that Ou=h 

U 

[ul 2 d -*+p) d V v < y Ih[ z e-~*+"~ d V  v. 
U U 

We continue the proof  of the theorem. Let x i e M ,  sup qSi(x)= qSi(x 3. Without  
~t 

losing generality, may  assume that  x~+Y~eM as i ~  + o r .  U is a Zariski  open 
ne ighborhood of 2 and U is stein. Fur thermore ,  we may  assume all x~ in U. 

Let 0 be the K~ihler potent ial  of  g in U with 0 ( ~ ) = - � 8 9  i.e. 0V0=o)g. 
Choose R 1 >0 ,  s.t. -1_-<0(~)=<0 in B2a,(~ ). 

Fo r  i large enough, B~R,(Xi)cB2R,(~2), B , , ( 2 ) c B ~ ( x l )  where r I is given in 
L e m m a  2.1. 

By L e m m a  2.1, there exists a constant  C independent  of i, 

e-Z(~ for all i. (5) 
B~ ~ (x) 

Let r / be  the cut-off function in B~(~). 
Take  e > 0 ,  s.t. ( c~ -2 )0+r l  log lz i"  is p lur i subharmonic  in U, where z is the 

local coordinate  near  ff with z = 0 at  2. 
By (5), if h=#r / ,  then 0 h = 0  and 

[hi 2 e -~'~ l~176 v < C 
U 

where C is independent  of i. 
By Proposi t ion 3.1, 3 u~, s.t. ~u~ = h  and 

luzl 2 e -~'~ '~ z4" +P) dVv < y Ihl 2 e -~'~ ~~ a*' +") dVv < C. 
U U 

Since q5 i < 0, 

lUg] 2 e - ( '~  l~ v <= C. 
U 

It follows that  ug(~)=0, V i. 
Define f i = t / - u i ,  then ~ f i = 0  in U, f i (2 )=  1. 

J" If~l 2 e -('~176 d V  U < C. (6) 
U 

Moreover ,  by (5), 

tfi[ 2 e -~=~ dVv<= C. (7) 
U 

Hence, there exists a subsequence {ik} of {i}, such that  f k ~ f  in L]oc(U), then 
~f  = 0, f(X) = 1. 

Put  S 1 = {ze U \ f ( z )  =0} w ( M \ U ) ,  then dim S 1 < m  - 1, S 1 is a subvariety.  

V z e M \ S 1 ,  z e U ,  f ( z )4:0 ,  then 3 x > 0 ,  k o > 0 ,  s.t. 

V k > k o ,  wcB,(z) ,  ]fk(w)]>�89 
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By (7), 
2C sup (,o+o)(w) 

= < ~  for i>io, 
Utz) l- B~(z) 

i.e. z~M satisfies the property stated in (i). 
If 3 z~S1, s.t. (ii) does not hold at z, by taking the subsequence, we may 

assume that 3 r>0,  C>0,  s.t. ~ e-ZO~(z)dVv < C for all k. 
Br(z) 

Replacing {i} by {ik} , repeat the above procedure, one finds a subvariety S~ 
s.t. it enjoys the same property as S 1 does and does not contain a point z~S~. 
Put S2=St2oS1, then S 2 is a subvariety. $2~$1,  and every point z in M - S  2 

satisfies (i). Continuing such arguments, one obtains a filtration of S~ by 
subvarieties SN~ S N_ ~ ~ ... ~ $ 2 ~ S  ~. Since the length of such a filtration must 
be finite, one will finally find the subvariety S as required in the statement of 
the theorem. 

Remark. This theorem suggests to us that even if the solutions q~, of (% do not 
converge as t ~ t ,  q~t-sup~bt still converge outside a subvariety, then the 

M 
limiting function would be a solution of the degenerate complex Monge- 

l , ~ 2 ~  
Ampere equation det ~ g o + ~  =0  and provide certain special structures 

on M, such as holomorphic foliations, etc. This situation is quite the same as 
that in the study of harmonic mappings and Yamabe problem (cf. [9, 10]). The 
difficulty here is that the local estimate of complex Monge-Amp6re equation is 
missing. Moreover, the limiting function only satisfies a degenerate elliptic 
equation so that it is much harder to study its behavior. 

Lemma 3.1. Let fl>0. For each e>0, 6>0,  R>0 ,  there exist ?=?(e,R),  C 
= C(6, fl), such that V subharmonicfunction ~ in BR(O)~I121, satisfying t)<=O and 

A~ dz<__fl, where dz stands for the volume form of r  
Izl<R 

Then 
e - ( ~  -~)q'(z) dz<_ CR 2 e-( '  + ~'(~ - ~) r176 

02~ 
Proof Note the Laplace here is the real one, i.e. A r  ~ .  By Green 
formula, 

R e - l z l  2 

2rc~(z)= ~ log / [ z - ~ ]  \ A~(~)d~+ ~ R i z _ r  2 ~P(Od~. 

In particular, 

Since 

d 1 
B~(O) OBR(O) 

1 
r  A~>O, 0<2rcR ~ (-~k(0) d ( <  -~(0).  

OBR (0) 
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Put 

#=5~s f (AO). -6 dr ~ - ~  
Igl<R 

By the convexity of exp, 

A t p d { < 2 - 2 ~ < 2 -  
gl<R 

Take r = 

Therefore 

exp 2re ~ log 7~ At) 
[s R - 

=exp I ~ R - p l o g  ~-(1_ (7-6)2~pAtpd 

: - .  

eR 
, then for [zl<r 

1 +]//1 +e 

- IJ=R RR2-1zl2If--z[2 O(() d( <2re(1 +e) ~,(0). 

. I z - r  I - .  
e-(~f --'~)~ -'qOt~ i~I< ' ~ - ~  dz 

[zl<r I~1- -<R = 

R 

< R2 e-(1 + ~)(7-'0 q'(~ f z-r 
- -  Ir <1 I~1~ 1 - z ( [  

= C(g) R 2 e -~1 +')(7 -~) oto). 

Lemma 3.2. Bm-R~ 1 X BR~ ~ C m- 1 x C 1. Let 

S o = {r CZ(B~; 1 x BR~)IV zeB"~ 21. Cz = r ") 

is subharmonic, r ~ A~(Oz(w)dw<=fl}. 
BR 2 

For each e, 6>0,  there exist r 2 = r 2 ( g  , R2)>0 , C= C(6, fl), such that V (o~Sp, 

~ e-(7-~)r CR~ ~ e-('+~)(7-o)*(~'W'dzdw. 
Izl<Rx ---- r2 2 Izl<R~ 
Iwl <r2 r2~ Iwl < 2r2 

Proof. Let r be given in Lemma 3.1 for R = ~ - .  r /---~min r, , 

V(z, Wo)eB'~[ 1 x B~2, Iwol <2r2, by the assumption on ~b and Lemma 3.1, 

then 
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e - ( ~  -~) r w) d w ~  CR 2 e-(l+e)(7 -~)4'( . . . .  ) 
] w - w o l < r  

. .  

In particular 

Jzr 2 ~ e-(~-a)g'(~'~)dw<=CR 2 ~ e-(l+a(~-a)o(~'W)dw. 
[w[ <r2 r2--<[wl =< 2 r2  

Integrating it on z, we are done. 

Theorem 3.2. Let the Ki~hler manifold (M,g) have N families of  curves {C~}, 
{C2}, .. . ,  {C~}, where a~CP m- 1 is the parameter, and N subvarieties S 1 . . . . .  S s 
such that 

(i) S 1 c~ . . .  ~ S  N - - 0 ,  

(ii) N - S ~ = U ( C ~ c ~ ( M - S j ) ) ,  C~c~C}c~(M-S~)=O and C ~ n ( M - S j )  is 
Gt 

smooth for each ~. 
(iii) V z E M -  ~i S,, {T~ C~,, [ C~ ez} spans T~ M;  Vz~S,,  either 

{T~ C~ [z~C~ c~(M --Sj)} 

spans TzM , or there exists C j s.t. z eC  j ~(M--Sj), C~j ~Si={ f in i te  points}. 
r 3 ~ r 

(iv) V i, a, 4VOlg(C~)<fl. 

4n 
Then ~ (M) > ~ - .  

Proof. Fix an arbitrary ~>0. Set 61 = ~ .  We will prove that 
m 

r4n 6~ r 
I dye< C, V ~beP(Y, g) (8) 
M 

4~ 
where C is independent of ~b. Clearly, it implies: ~(M)>__T-, since b is arbi- 
trary. P 

To prove (8) it suffices to show that for any sequence {Oi}~P(M,g), there 
is a subsequence {~bi~ } and a constant C such tha t  (8) holds for ~blk. 

_ 6  
Put l - r e .  Applying Theorem 3.1, one m a y  assume that there be sub- 

varieties Eo,. . . ,Em, s.t. Vz~Ez, lim I e-(~--a'Or =+~176  for all r > 0  
k ~  + oo B . ( z )  

4.~z 1 z Vz~M\EI ,  3 r > 0 ,  C>0,  s.t. ~ e-(T-~ ' )r  forall k. 
B~(z) 

Obviously E o ~_... ~_E m, dim E o < m - 1 .  That (8) holds for all qS~ is equiva- 
lent to that  Em=O. Since d i m E o < m - 1 ,  it suffices to prove that dimE~_~ 
- dim Et > 1. 
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T a k e  a smooth  point  zoeE~_~, by (i), 3j ,  s.t. z o e M - S j ,  let C~ pass through 
Z 0 �9 

If C~, is t ransversal  to El_ ~ at z0, then by (ii) we can find a special 
coordinate  chart  B ~-  ~ x B ~  ~ M s.t. 

Zo=(O, 0 ) , E~_ I ~ ( B ~ l x B R ~ ) c B ~ - l x { O } ~  
and 

N o w  
V zeB"~; 1, z x Bg~ ~ C j 

gz  
for certain ~ e  CP"-  1 

(4+AwOil(z ,w))dw=2 ~ (2cog+OgqSik)(w)<2 ~ (2~Og+C?gqSj(w) 
z x B R  2 z x B R  2 C2~z 

= 4  f COg=4VOlg(C~z)< ft. 
c~  z 

By L e m m a  2.2 with e =  61/t 4~-16~/ / '  6=leSt' one sees that  zo6E ~. T o  show 

that d i m  E l_ 1 -  dim E, > 1, it suffices to show that for each smooth  point  z o of 
E~_I, there is a point z close to z o such tha t  z6Et_ 1 - E  I. We assume that it 
doesn' t  hold a n d  will derive a contradict ion.  By our  assumption,  there is a 
smooth  point zoeEt_l ,  a ne ighborhood U of z o in E~_I, s.t. U=E~. By the 
above arguments ,  {T~ C j ' , i z e C ~ n ( M - S ) }  cannot span T~M for every z~U. 

N 

Hence, u c U s  ~. Let  zoeSg, then 3 J s.t. C~oC~S~={finite points, C ~ z  o ' z 
i = 1  

zoeC ~ n ( M - S 3 .  Shrinking U if necessary, we m a y  assume that  U ~ M - S j ,  
and ~ '~ eU ,  3 C~, passing through z and intersecting S~ at finite points�9 Since 
U=E~, the above  arguments  imply  that C j is tangential  to E l 1 at zeU,  so 
UnC~ =El 1. Since C~ nS i={ f in i t e  points}, 3 z l e E t _ l n U ,  ziPS i. Replac- 
�9 z o  - z o 

mg z 0 by  z 1, U by  Uc~(M-SI)  and repeat ing the above  arguments ,  we will find 
zzEUC'~Et_I, z2r  , (i4=i'). In  this way, after finite times, we will finally 

N 
find a point zN6UwE~_ 1, zNq~ u Sg. A contradiction.  Therefore,  d imEt_  ~ 
- d i m  E l > 1. W e  are done. i_ l 

1 
Corol lary  1. Under the assumptions of Theorem 3.2 and C I ( M ) > 0 ,  -cog is 

m + l  47c 
cohomological to C~(M), (*)t is solvable for t < - -  

m // 

Proof I t  follows from Theo rem 3.2 and the proof  of  Theorem 2.1. 

In case m = 2 ,  any irreducible K~ihler manifold with C 1 > 0  mus t  be of  

form C p 2 # n C P  2 (n<8),  i.e. the manifolds p roduced  by blowing up CP 2 at n 
generic points, where the "gener ic"  actually means that  no three points  are 
colinear, and n o  six points  are in one quadra t ic  curve in CP 2. This is the 
consequence of  classification theory  of algebraic surfaces (Griffith and  Harris  
[53). 

Corol lary 2. Let M = CP 2 ~ n CP 2, 3 < n < 8, then c~(M) >�89 In particular, (*)t is 
solvable for t < 3. 
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Proof Suppose that  M be the blowing-up of C P  2 at x I . . . .  , x, ,  and F1, .. . ,/7, 
be the exceptional divisors. 

{ Ci,} = {quadratic image in M of lines in CP 2 passing through xi}, Si = U Fi" 
It is trivial to verify that  assumptions (i), (ii), (iii) are satisfied, j . i  
Now C I ( M ) = p * ( 3 H ) - [ F 1 ] - . . . - [ F , ] ,  where p:M--*CP 2 is the natural  

projection, H is the hyperplane line bundle of C P  2. 

Because 
1 
- w g ~ C I ( M ) , V o l , ( C ~ ) =  ~ og,=n ~ Cx(M ) 

C~ i C% 

= n C I ( M ) .  [C/ ]  (Griffith and Harris [5], p. 141) 

= n C 1 (M). (p* (H) - [-F/]) = 2 n. 

. ' . f l= 8n. The corollary follows. 

Remark. One can prove that outside a finite set of points in CPZ# 8 CP 2, for 
~ <  1, e - ' r  has locally uniform bounds for each r  g). Moreover ,  one can 

locate that  finite set. We know that  CP 2 # 8 C P  2 has a pensil of elliptic curves 
having intersection number  one with each exceptional divisor, only singular 
curves in the pensil is either a rational curve with an ordinary node, or a 
rat ional curve with a cusp. The finite set consists of those cusps. 

w 4. Kiihler-Einstein metrics on Fermat hypersurfaces 

m 
So far, we have not  known an example with ~ ( M ) > ~ - ,  but  if we restrict q~ 

to a proper  subset P~ of P(M, g) and define ~s(M) with respect to P~ as we do 
m 

for P(M, g), ~s(M) might be greater  than A natural  subset P~ is PG(M, g) 
r e + l "  

= { r 1 6 2  is invariant under  G}, where G is a compact  subgroup in 
1 

Aut(M). - ~ g ~  CI(M), we may assume that  g is invariant under  G. Then we 
have n 

m 
Theorem 4.1. (M,g), G stated as above. I f  ~ a ( M ) > ~ - ~ ,  then M admits a 
Kiihler-Einstein metric. 

Proof Same as Theorem 2.1. 

The  following theorem gives an estimate of ~a(M). 

Theorem 4.2. Let (M, g), G as above. Furthermore, assume that (M, g) have N 
C 1 families of curves { ~} . . . . .  {C~n}, ~6CP m-l, and N subvarieties S 1 . . . . .  S n sat- 

isfying (i), (ii), (iii) in Theorem 3.2 and (iv)': Let Gj c G be the subgroup preserv- 
ing the fibration of M - S j  by {C~c~(M-Sj)}, then Si is invariant under G j, 

4Volg(C~) __< fl V ~ C p m _ ~  
ord (G j) 

where o rd (Gj )=  min ]Gj[ Then, -z-4n 
~M-s j  IStabz c Gi[ ' c~6(M) > /S ' 
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Proof  Almost  same as the proof  of Theorem 3.2. We adapt  the notat ions there, 
zoeEz-1,  a smooth point�9 We may find j such that zor  j, Zo~ C~o. 

B m - i x  BR 2 is taken exactly as in the If CJ, o is transversal to E~_I at z o, g, 
p roof  of Theorem 3.2�9 

Put [Gj[ , # > o r d G j .  By (iv)', one can choose R1, R 2 so small that 
# = I Stabzol 

atB"-I~ n~ x B R ~ ) n B ~  1 x B~2=O for at least p elements a of Gj. 
Since COg, ~bi~ are invariant under G, 

V z ~ B ' ~  -1, S (4+Aw(ai~)dw= [. (2c~g+0~bi~) 
Z X BR2 Z X BR 2 

< 2  - 4 4Volg(C{o ) <ft.  
= #  ~ o ( 2 % + 0 0 q ~ J < o r d ( G r )  ~o c~  ord(Gj) 

f l (~ l  6 by 161, zoCE z, the rest is same as in By Lem ma  3.2 with e by fl, 
the p roof  of Theorem 3.2. 4z~ -161 

Now we consider Fermat  hypersurfaces 

Xm, p={[Zo, ,Zm+I]ECpm+I[  P P =0},  p < m + l ,  ... Zo+Z~ + . . . + z ~ +  1 

g = (m + 2 - p )  multiple of the restriction of Fubini-study metric of CP m+ 1 

i.e. 
( m + 2 _ p ) ~ l o g ( l z o l 2 +  ..+[Zm + 2 �9 11 ) lxm, p. 

G: the group generated by permutat ions 

air: [Zo . . . .  , z i, . . . ,  zj, . . . ,  zm+ 1] -~ [Zo, -.., zj . . . . .  zi, ..., Zm+ 1] 

and 

where 
Zk: [Zo, "" ,  ZR . . . . .  Zm+ 1] ~ [Z0 . . . . .  ep Zk, ..., Zm+ 1] 

e p = e x p \  p ).  

O<=i , j<m+l ,  

6) (i) 
S i j = X m ,  p O { [ z  0 . . . . .  0 ... 0 ... z , ,+I]~CP re+a, 

[0, 1, a k+�89 0 . .0] ,  k = 0 ,  1 , . . . , p - I } .  

C~J= the closure of 

{ [ Z o  " "  Zi �9149 Z r " "  Zm+ 1 ]  ~ X m ,  p - S i j  [ [ z 0  . . .  z i  . . .  z j . . .  Zm+ 1 ]  = ~ E  CP m- 1}, 

where [%,  .. . ,  am- 1] = ~6 c p m -  l 
Obviously, 

ij  - -  O1 C,-aoi 'a l j (C,  ) 
Si j=aoi .  air(Sol), dim S i j = m - 2 .  

We claim that { C~}, Sir satisfy the assumptions (ii), (iii), (iv) of Theorem 4.2. 
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It is clear that  .0 Sij=O' i.e. (i) is satisfied. For  (ii), 
l. J 

X m ,  p - S i j  = {[-Zo . . . . .  Zm+ 1] @Xm, p l [Zo . . . .  , Zi ""  Zj ""  Zm+ 1] 

e C P  m - l ,  Izil2 +lzjl2 ~O} 
C~ ) n (X~, v - SO, : ( ~ C ~ m -  1 ij 

(i) (j) 
ij ij k+�89 C = m C p = { [ 0 ,  . . . . . .  , 0 , 1 ,  , e  v , . . . ,O]}=S~j, c~:l:fl. 

i j_  , t, zl, . Z j ,  O ~ j t , . . .  ~m_lt][ C ~ - { [ ~ o t  . . . .  ~i-1 .- , 

(~+...+ ~ 1)t~ p ~ = 0 } .  ~ m -  -}- Zi "}- Zj 

Hence, if ~ + . . .  + c~_ 1 :#= 0,  C ij is smooth.  If  

P 
gg-{-  . . .  -[- 0~m_ l p  = 0 ,  C~ j =  U {[%t ,  .. . ,  O ; i_ l t ,  Zi, . . . ,  Zj ,  O ~ j _ l t  , . . . ,  O~ m_  l t ] }  

k = l  

is a union of p rational curves with a singular point  

(i) (j) 

[-0{0' ~ i '  " ' ' '  O{i-- 1' O, O{ i . . . . .  O{j_2, O, ~j_ 1 ' ' "  O~m-1]~S i j "  

Therefore, (ii) is verified. 
For  (iii), take [z o, . . . ,  zm+ 1] in X=, p, may  assume that 

[Zo . . . . .  Zm+ 1] = [1, Z1, . . . ,  Zi, 0 . . . . .  0 ] ,  

where i > l ,  zj4=0 for l < j < i ,  in particular, zl=#0, so [z o . . . .  ,Z~+I]~:Slk for 
_ ~ - p = + l  Wo}, for k_>2. Define Hok={[Wo, . . . ,Wm+lJeC IWk=Z k 

k>2,  C lk Hol , 
- -  [z0, ~1 . . .zk . . . Z m + l ] = X m ,  p ('~ \ l = 2  

l~=k 

Xm, S~ Hok ={[t,  ZxS, Z2t . . . .  ,zm+lt]}c~X,.,v 
k 

={tP(1 + z ~ + . . .  + z ~ + l ) + z ~  sP=0} 

= {z~ (s~ - t ~ ) :  0}  

ira+ 1 
by z, 4=0, X,.,pc~ \k~= 2 Hog ] = {p  finite points} 

{ m§ 
is one, so (T t . . . . . . . . . . .  lXm. p)~ \k~=2Hok] ={0}, 

clg span {T[= o . . . . . . .  ~ [zo, el 
2 < k < m + l  

= span {T~Xm,/~  
2 - < k < m + l  

=TzXm, p. 

Hence, (iii) is satisfied. 

and multiplicity at [z o . . . .  , zm+ 1] 

it follows that 

�9 -. Z,k .-- zm+ 1]} 

m+i \] 
t ~ = 2 H ~  
l:r 
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N o w  we consider (iv)'. Gij = {aij, ri, r j}, obviously, Gij preserves C~ j and S O. 
For  the estimate of ord (Gi), because of symmetry,  we may assume i =  0, j = 1. 
Take zeXm, p - S o l  , z = [ z  o . . . . .  Zm+l]. 3zi+O, for i > 2 ,  we may assume z i=l ,  
then z~z~[Zo, . . . , zm+l]=[z o . . . .  ,Zm+l]=Z if and only if k -=0(modp) ,  

/ - 0 r o o d ( p )  when ZoZ~#O, hence ]G~ =p2  for such z. 
If z 0 =0 ,  z I = 1, then IStabzl 

'[Zo, ~.+1] = z  0"01 T 1 . . .  

hence 

if and only if k =- 0 (mod 2) 

l =- 0 (mod 3) 

IGoll 
- - > 2 p .  
IStabzl 

If z l = 0 ,  z 0 = l ,  we have also IG011 >2p .  
[Stabzl = 

Therefore ord (G o ~) >__ 2p. 

Theorem 4.3. I f  m+ 1 >=p>=m, then Xm, p admits a KFthler-Einstein metric. 

m 
Proof  By Theorem 4.1, we only need to show that c%(Xm, p ) > - - .  

m + l  

Using the notat ions of above, 

Volg(C2)=  ~ (.Og=TC(Cl(Xm, p). C~) 
c;~ 

= ( m + 2 - - p ) p ~  

... f l _  4VOlg (C2) __<4{m + 2-p)~z 
2p 2 

m 4~ 2 2 
- - <  - - -  is equivalent to say p > m - - -  i.e. p > m. 
m + l  fl m + 2 - p  m 

Now this theorem follows from Theorem 4.2. [ ]  

Corollary. For m+ 1 >p>m,  there exists an open subset U,,,v in the moduli space 
of m-dimension hypersurfaces with degree p in CP m+l, such that any M~U,,,p 
admits a K-E metric. 

Proof It follows from the previous theorem and the application of  Implicit 
function theorem to the equation (.) in Sect. 1. 

Note  that the existence of  K-E metric on a m-dimensional hypersurface of 
degree p > m + 2  follows from [13]. 
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Oblatum 15-VIII-1986 

Note added in proof 

Various estimates of the lower bound of the holomorphic invariant ct(M) are given by S.T. Yau 
and me in a joint paper, which is to appear in Comm. in Math. Phys. These estimates are applied 
there to produce K/ihler-Einstein metrics on complex surfaces with C 1 >0 ,  for example, we prove 
that there are K~ihler-Einstein structures with C 1 > 0  on any manifold of differential type C P  2 

# n C P  2 (3 =< n =< 8). We were also informed that Prof. Y.T. Siu had independently produced results 
on the existence of Kghler-Einstein metrics on certain K~ihler manifolds with C~ >0.  His approach 
in completely different from ours. 

Note that the proof of Theorem 2.1 also implies: if ct(M) has a lower bound depending only on 
the dimension of M, then there is a constant C(m) such that each compact K~ihler manifold with 
C I > 0  admits a K/ihler metric with Ricei curvature > C ( m ) .  An upper bound of C I ( M )  m will 
follow from this and a volume comparison. This is pointed out to us by Yau 


