(c) Springer-Verlag 1987

# On Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}(M)>0$ 

Gang Tian<br>Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

In this paper, we prove that there exists a Kähler-Einstein metric, abbreviated as K-E metric, on a $m$-dimension Fermat hypersurface with degree greater than $m-1$. In particular, a Fermat cubic surface admits such a K-E metric. By standard Implicit function theorem, it also implies that there are a lot of m dimension hypersurfaces with degree $\geqq m$, which admit K-E metrics. The problem of K-E metric on a Kähler manifold with definite first Chern class was raised by Calabi [3] thirty years ago. The most important part of the problem was solved in the famous paper of Yau [13]. But the problem is still open in case that the background manifold has positive definite $1^{\text {st }}$ Chern class. In fact, people only know a few examples of K-E manifolds with $1^{\text {st }}$ Chern class positive. As for our knowledge, all of them have automorphism groups of positive dimension. The K-E manifolds shown here only have finite automorphisms.

The idea of the proof is to introduce a global holomorphic invariant $\alpha(M)$ on a Kähler manifold $M$ with $C_{1}(M)>0$ and prove that if $\alpha(M)>\frac{m}{m+1}$, where $m=\operatorname{dim} M$, then $M$ admits a K-E metric (Theorem 2.1). Then we estimate the lower bound of $\alpha(M)$. In case that $M$ enjoys a group $G$ of symmetries, we can define $\alpha_{G}(M)$, similar to $\alpha(M)$, and have a version of Theorem 2.1 for $\alpha_{G}(M)$ (Theorem 4.1). It turns out that $\alpha_{G}(M)>\frac{m}{m+1}$ if $M$ is a hypersurface mentioned above.

The invariant $\alpha(M)$ (resp. $\alpha_{G}(M)$ ) plays a role in the study of K-E metric more and less same as the Moser-Trundinger constant does in the study of prescribed curvature problem on $S^{2}$. It would be an interesting problem to determine how large $\alpha(M)$ is. A local problem, which is relevant to $\alpha(M)$, was considered by Bombieri [2] and Skoda [11]. Precisely, they proved that given a plurisubharmonic function $\phi$, if the Lelong number of $\phi$ is small enough, then $\phi$ is locally integrable. $\alpha(M)$ is regarding to the properties of anticanonical bundle of $M$ and the families of holomorphic curves of smaller degree with respect to the polarization given by $C_{1}(M)$. We guess that $\alpha(M)$ has a lower bound only depending on the dimension $m$. It is pointed out by Professor Yau that this will result in a upper bound of $\left(-K_{M}\right)^{m}$.

The organization of this paper is as follows. In § 1, we formulate briefly the problem of K-E metric and reduce it to solving a complex Monge-Ampére equation. We state without proof some theorems on the higher order estimates derivatives of the complex Monge-Ampére equation on $M$. They are slight modifications of some results in S.-T. Yau [13]. Because of those estimates, the existence of K-E metric on $M$ is reduced to the $C^{0}$-estimate of solutions of that complex Monge-Ampere equation. In $\S 2$, the invariant $\alpha(M)$ is defined. We prove that $\alpha(M)>0$ and the Theorem 2.1, which provides a sufficient condition to assure the existence of K-E metric. In $\S 3$, we give a lower bound of $\alpha(M)$ by considering the families of holomorphic curves in $M$. In particular, if $M=C P^{2}$ $\# n \overline{C P^{2}}, 3 \leqq n \leqq 8$, we prove $\alpha(M) \geqq \frac{1}{2}$. Unfortunately, so far we are unable to provide an example where $\alpha(M)>\frac{m}{m+1}$. We guess that $C P^{2} \# 8 \overline{C P^{2}}$ is such an example for some good reasons. We would like to mention that Theorem 3.1 has its own interest, even though it is a corollary of Hörmander's $L^{2}$ estimates of the $\hat{O}$ operator. Theorem 3.1 suggests a possibility of understanding the limiting behavior of a sequence of solutions of the complex Monge-Ampere equations in $\S 1$. Such a situation is quite same as that in the study of Yamabe's equation. The difference is that we don't have a local estimate here as good as there. In $\S 4$, we consider Kähler manifolds with certain group symmetries. The constant $\alpha_{G}(M)$ is defined. We have a correspondence of Theorem 2.1, i.e. Theorem 4.1. Based on the same trick used in §3, we give an estimate of $\alpha_{G}(M)$ and prove that if $M$ is a Fermat hypersurface of dimension $m$ and degree $\geqq m$, then $\alpha_{G}(M)>\frac{m}{m+1}$. It follows the main result.

In this paper, $M$ is always a Kähler manifold, $g$ is a Kähler metric, in local coordinates, $g=\left(g_{\alpha \bar{\beta}}\right)$, where $\left(g_{\alpha \bar{\beta}}\right)$ is a positive definite hermitian form. $\omega_{g}=$ $\frac{\sqrt{-1}}{2} \sum_{\alpha, \beta=1}^{m} g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta} . \frac{1}{\pi} \omega_{g} \sim C_{1}(M)$ means that they are cohomological.

## § 1. Preliminaries

Let $(M, g)$ be a Kähler manifold with $C_{1}(M)>0, g$, as a Kähler class, represents the same cohomology class as Ricci curvature does. Then it is well known that the conjecture of Calabi can be reduced to solving the following complex Monge-Ampére equation

$$
\begin{gather*}
\operatorname{det}\left(g_{i j}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right)=\operatorname{det}\left(g_{i j}\right) e^{F-\phi} \\
\left(g_{i j}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right)>0, \quad \phi \in C^{\infty}(M, R) \tag{*}
\end{gather*}
$$

where $F \in C^{\infty}(M, R)$ is a given function.
In order to use the continuity method to solve (*), Aubin [1] introduced the following family of equations

$$
\begin{align*}
& \operatorname{det}\left(g_{i j}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right)=\operatorname{det}\left(g_{i j}\right) e^{F \sim t \phi}  \tag{*}\\
& \left(g_{i j}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right)>0, \quad \phi \in C^{\infty}(M, R)
\end{align*}
$$

Define $S=\left\{t \in[0,1] \mid(*)_{s}\right.$ is solvable for $\left.s \in[0, t]\right\}$. By Yau's solution for Calabi conjecture in case $C_{1}=0, S$ is nonempty. Aubin [1] also proved that $S$ is open by an estimate of first eigenvalue of Kähler metric ( $g_{i j}$ $\left.+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right) d z^{i} \otimes d \bar{z}^{j}$. Hence, to prove $(*)$ solvable, it suffices to show that $S$ is closed, which is equivalent to a uniform $C^{3}$ estimate of solutions of $(*)_{t}$ by the standard theory of elliptic equation (cf. [4]).

Theorem 1.1. Suppose that $\phi$ be the solution of $(*)_{t}$, then

$$
0<m+\Delta \phi \leqq C_{1} \exp \left(C\left(\phi-\left(1+\frac{t}{m-1}\right) \inf \phi\right)\right)
$$

where $C$ is the constant such that $C+\inf _{i \neq l} R_{i i l l}>1,\left\{R_{i i l l}\right\}$ is the curvature tensor of $g, C_{1}$ depends only on $\sup _{m}(-A F),\left.\sup _{M}\right|_{i \neq l}\left(R_{i i n l}\right) \mid, C \cdot m$ and $\sup _{M} F$.

Proof. A slight modification of Yau's proof in [13].
Theorem 1.2. Let $\phi$ be a solution of $(*)_{t}$, then there is an estimate of the derivatives $\phi_{i j k}$ in terms of

$$
\sum_{i, \bar{j}} g_{i j} d z^{i} \otimes d \bar{z}^{j}, \quad \sup |F|, \quad \sup |\nabla F|, \quad \sup _{M} \sup _{i}\left|F_{i \bar{i}}\right|
$$

and

$$
\sup _{M} \sup _{i, j, k}\left|F_{i j k}\right| \quad \text { and } \sup _{M}|\phi| \text {. }
$$

Proof. Same as Yau did in [13].
Remark. One can use the integral method to obtain a $C^{3}$-estimate of $\phi$ only depending up to second derivatives of $F$. See [12].

By the above theorems, one sees that the closeness of $S$ follows from the $C^{0}$-estimate of solutions of $(*)_{t}$.

## § 2. A sufficient condition for the existence of K-E metric

In case $m=1$, there is a famous inequality by Trudinger,

$$
\int_{M} e^{\alpha \phi^{2}} d v_{M} \leqq \gamma \quad \text { for each } \phi \in C^{2}(M)
$$

with

$$
\int_{M}|\nabla \phi|^{2} \leqq 1, \quad \int_{M} \phi=0
$$

where $\alpha, \gamma$ depend only on the geometry of $M$.

Moser proved that in case $M=S^{2}, \alpha=4 \pi$ is the best constant s.t. the inequality holds and applied it to the study of prescribed Gauss curvature problem on $S^{2}$.

In the following, we introduce a similar constant on Kähler manifold $(M, g)$, where $g$ is the Kähler metric.

Define $\quad P(M, g)=\left\{\phi \in C^{2}(M, R) \left\lvert\, g_{i j}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}} \geqq 0\right., \sup _{M} \phi=0\right\}$.
Lemma 2.1. Let $B_{R}(0)$ be the ball of radius $R$ in $C^{n}$, centered at $0, \lambda$, a fixed positive number, then for all plurisubharmonic function $\psi$ in $B_{R}$, with $\psi(0) \geqq-1$, $\psi(z) \leqq 0$ in $B_{R}$, one has

$$
\begin{equation*}
\int_{|z|<r} e^{-\lambda \psi(z)} d x \leqq C, \quad \text { where } r<\operatorname{Re}^{-\frac{\lambda}{2}} \tag{1}
\end{equation*}
$$

where $C$ depends on $m, \lambda, R$.
Proof. It is a modification of the Lemma 4.4 in Hömander [6].
Proposition 2.1. There exist two positive constants $\alpha$, $C$, depending only on $(M, g)$, such that

$$
\int_{M} e^{-\alpha \phi} d V_{M} \leqq C \quad \text { for each } \phi \in P(M, g)
$$

where $d V_{M}=\left(\frac{\sqrt{-1}}{2}\right)^{m} \operatorname{det}\left(g_{i j}\right) d z_{1} \wedge d \bar{z}_{1} \wedge \ldots \wedge d z_{m} \wedge d \bar{z}_{m}=\omega_{g}^{m}$.
Proof. Let $2 r$ be the injective radius of $(M, g), G(x, y)$ be the Green function of the Laplace operator $\Delta$ on $(M, g)$. May assume $\inf _{M \times M} G(x, y)=0$

$$
\begin{aligned}
& \forall \phi \in P(M, g), \quad \Delta \phi+m \geqq 0, \quad \text { i.e. }-\Delta \phi \leqq m \\
& \phi(x)=\frac{1}{V} \int_{M} \phi(y) d V_{M}(y)-\int_{M} G(x, y) \Delta \phi d V_{M}(y)
\end{aligned}
$$

then

$$
\begin{aligned}
0=\sup _{M} \phi & \leqq \frac{1}{M} \int_{M} \phi(y) d V_{M}(y)+\sup _{x \in M} \int_{M} G(x, y)(-\Delta \phi) d V_{M}(y) \\
& \leqq \frac{1}{V} \int_{M} \phi(y) d V_{M}(y)+\sup _{x \in M} \int_{M} G(x, y) d V_{M}(y) .
\end{aligned}
$$

Now we fix a $\frac{r}{4}$-net $\left\{x_{1}, \ldots, x_{N}\right\}$ of $M$, s.t. $M=\bigcup_{i=1}^{N} B_{\frac{r}{4}}\left(x_{i}\right)$, where $B_{\frac{r}{4}}\left(x_{i}\right)$ is the geodesic ball of $M$ at $x_{i}$ with radius $\frac{r}{4}$.

$$
\begin{align*}
& \forall i, b y \frac{1}{V} \int_{M} \phi(y) d V_{M}(y) \geqq-m \sup _{x \in M} \int_{M} G(x, y) d V_{M}(y)=-C_{1} \quad \text { and } \quad \phi \leqq 0 \\
& \sup _{B_{r / 4}\left(x_{i}\right)} \phi(y) \geqq \frac{-V C_{1}}{\operatorname{Vol}\left(B_{\frac{r}{4}}\left(x_{i}\right)\right)} . \tag{2}
\end{align*}
$$

Let $\psi_{i}$ be the Kähler potential of $(M, g)$ in $B_{2 r}\left(x_{i}\right)$, such that $\psi_{i}\left(x_{i}\right)=0$, put $C_{2}$ $=\sup \sup \left|\psi_{i}(x)\right|$, then

$$
x \in \frac{B_{3} r}{2}\left(x_{i}\right)
$$

by (2).

$$
\psi_{i}(x)+\phi(x) \leqq C_{2} \quad \text { in } \quad \frac{B_{3 r}}{4}\left(x_{i}\right),
$$

$$
\exists y_{i} \in B_{\frac{r}{4}}\left(x_{i}\right), \quad \text { such that } \phi\left(y_{i}\right) \geqq \frac{-V C_{1}}{\operatorname{Vol}\left(B_{\frac{r}{4}}\left(x_{i}\right)\right)}
$$

$$
\min \operatorname{Vol}\left(\operatorname{Br}_{r}\left(x_{i}\right)\right)
$$

put $\alpha=C_{2}+\frac{\min _{i} \operatorname{Vol}\left(B_{\frac{r}{4}}^{4}\left(x_{i}\right)\right)}{V C_{1}+1}$, by Lemma 2.1, one obtains

$$
\int_{B_{r / 2}\left(y_{t}\right)} e^{-\alpha\left(\psi_{2}(x)+\phi(x)-C_{2}\right)} d V_{M} \leqq C .
$$

Since $B_{\frac{r}{4}}\left(x_{i}\right) \subset B_{\frac{r}{2}}\left(y_{i}\right)$, and $M=\bigcup_{i=1}^{N} B_{\frac{r}{4}}\left(x_{i}\right)$, it follows that

$$
\int_{M} e^{-\alpha \phi} d V_{M} \leqq C, \quad C \text { depending only on }(M, g) .
$$

Now we associate a number to ( $M, g$ ). Define

$$
\alpha(M, g)=\sup \{\alpha>0 \mid \exists C>0, \text { s.t. (1) holds for all } \phi \in P\}>0 .
$$

One can easily deduce the following properties of $\alpha(M, g)$.
Proposition 2.2. (i) $\alpha(M, g)=\alpha\left(M, g^{\prime}\right)$, if $g$, $g^{\prime}$ are in the same Kühler class.
(ii) $\alpha$ is invariant under biholomorphic transformation, i.e. if $\Phi: N \rightarrow M$ biholomorphic, $\alpha(M, g)=\alpha\left(N, \Phi^{*} g\right)$.

In case that $M$ has the first Chern-class $>0$, we take $g$ in the class given by Ricci curvature, then the above proposition says that $\alpha(M)=\alpha(M, g)$ is a holomorphic invariant. One interesting question is how large $\alpha(M)$ is, and how to estimate it from below.

Example. $\quad M=C P^{m}, \quad g=(m+1)$ multiple of Fubini-study metric, i.e. ( $m$ +1) $\partial \hat{\partial} \log \left(|z|^{2}\right)$, where $z=\left[z_{0}, \ldots, z_{m}\right]$ is the homogeneous coordinates. Then $\alpha(M)=\frac{1}{m+1}$.

The following theorem is the main result of this section. It provides a sufficient condition to assure the existence of K-E metric.
Theorem 2.1. Let $(M, g)$ be a Kähler manifold, $\frac{1}{\pi} \omega_{\mathrm{g}}$ represents the first Chern class. If $\alpha(M)>\frac{m}{m+1}$, then $M$ admits a Kähler Einstein metric.

The rest of this section is devoted to the proof of this theorem.
First we introduce two functionals defined by Aubin [1],

$$
\begin{aligned}
& I(\phi)=\frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi\left(\omega_{0}^{m}-\omega^{m}\right), \\
& J(\phi)=\int_{0} \frac{I(s \phi) d s}{s}
\end{aligned}
$$

where
$\omega_{0}=g_{a \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta}, \omega=\omega_{0}+\partial \bar{\partial} \phi, V=(\sqrt{-1})^{m} \int_{M} \omega_{0}^{m}, \phi \in P(M, g), \quad$ then $\sqrt{-1} \omega \geqq 0$,

$$
\sqrt{-1} \omega_{0}>0
$$

Lemma 2.2. $\frac{m+1}{m} J(\phi) \leqq I(\phi) \leqq(m+1) J(\phi)$.
Proof.

$$
\begin{aligned}
J(\phi) & =\frac{(\sqrt{-1})^{m}}{V} \int_{0}^{1} d s \int_{M} \phi\left(\omega_{0}^{m}-\left(\omega_{0}+s \partial \bar{\partial} \phi\right)^{m}\right) \\
& =\frac{(\sqrt{-1})^{m}}{V} \int_{0}^{1} s d s \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge\left(\sum_{k=0}^{m-1} \omega_{0}^{m-k-1} \wedge \omega^{k}\left(\sum_{j=0}^{m-1}\binom{j}{k}(1-s)^{j-k} s^{k}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \binom{j}{k}=0 \quad \text { if } j<k ; \quad\binom{j}{k}=\frac{j!}{k!(j-k)!} \quad \text { if } j \geqq k, \\
& \text { for } j \geqq k, \quad \int_{0}^{1}(r-s)^{j-k} s^{k+1} d s=\frac{(j-k)!(k+1)!}{(j+2)!} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
J(\phi) & =\frac{(\sqrt{-1})^{m}}{V} \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge \sum_{k=0}^{m-1} \omega_{0}^{m-k-1} \wedge \omega^{k}\left(\sum_{j=k}^{m-1} \frac{k+1}{(j+2)(j+1)}\right) \\
& =\frac{(\sqrt{-1})^{m}}{V} \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge\left(\sum_{k=0}^{m-1} \frac{m-k}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k}\right) \\
\frac{m}{m+1} I(\phi) & =\frac{(\sqrt{-1})^{m}}{V} \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge\left(\frac{m}{m+1} \sum_{k=0}^{m-1} \omega_{0}^{m-k-1} \wedge \omega^{k}\right) \\
& =J(\phi)+\frac{(\sqrt{-1})^{m}}{V} \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge \sum_{k-1}^{m-1} \frac{k}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k} \geqq J(\phi) \\
(m+1) J(\phi) & =\frac{(\sqrt{-1})^{m}}{V} \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge \sum_{k=1}^{m-1} \frac{k}{m-1-k} \omega_{0}^{m-k-1} \wedge \omega^{k}+I(\phi) \geqq I(\phi) .
\end{aligned}
$$

Lemma 2.3. Let $t \rightarrow \phi_{t}$ be a curve in $\stackrel{\circ}{P}(M, g)$, then

$$
\frac{d}{d t}\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)=-\frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t}\left(\Lambda_{\phi_{t}} \dot{\phi}_{t}\right)\left(\omega_{0}+\sqrt{-1} \partial \bar{\partial} \phi_{t}\right)^{m}
$$

where $\Delta_{\phi_{t}}$ is the Laplace operator of the metric $\left(g_{\alpha \beta}+\frac{\partial^{2} \phi}{\partial z_{\alpha} \partial \bar{z}_{\beta}}\right), \dot{\phi}_{t}=\frac{d \phi_{t}}{d t}$.
Proof. At $t=t_{0}$, by Taylor expansion, $\phi_{t}=\phi_{t_{0}}+\dot{\phi}_{t_{0}} \cdot\left(t-t_{0}\right)+o\left(\left|t-t_{0}\right|\right)$.
For simplicity, we assume that $\phi=\phi_{t_{0}}, \phi=\phi_{t_{0}}$.

$$
\omega_{t}=\omega_{0}+\partial \partial \phi_{t}
$$

by the above,

$$
\begin{aligned}
I\left(\phi_{t}\right)-J\left(\phi_{t}\right)= & \frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(\partial \phi_{t} \wedge \partial \phi_{t} \wedge \sum_{k=0}^{m-1} \frac{k+1}{m+1} \omega_{0}^{m-k-1} \wedge \omega_{t}^{k}\right) \\
= & I(\phi)-J(\phi)+\frac{(\sqrt{-1})^{m}}{V}\left[\int_{M} \partial \dot{\phi} \wedge \partial \phi \wedge \sum_{k=0}^{m-1} \frac{k+1}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k}\right. \\
& +\int_{M} \partial \phi \wedge \hat{\partial} \phi \dot{\sum_{k=0}^{m-1}} \frac{k+1}{m+1} \cdot \omega_{0}^{m-k-1} \wedge \omega^{k} \\
& \left.+\int_{M} \partial \phi \wedge \partial \phi \wedge \sum_{k=1}^{m-1} \frac{k(k+1)}{m+1} \omega_{0}^{m-k-1} \wedge \partial \hat{\partial} \dot{\phi} \wedge \omega^{k-1}\right] \cdot\left(t-t_{0}\right) \\
& +o\left(\left|t-t_{0}\right|\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \left.\frac{d\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)}{d t}\right|_{t=t_{0}} \\
& =\frac{(\sqrt{-1})^{m}}{V}\left[2 \int_{M} \partial \phi \wedge \partial \dot{\phi} \wedge \sum_{k=0}^{m-1} \frac{k+1}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k}\right. \\
& \left.+\int_{M} \partial \phi \wedge \partial \phi \wedge \sum_{k=1}^{m-1} \frac{k(k+1)}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k-1} \wedge \partial \partial \dot{\phi}\right] \\
& =\frac{(\sqrt{-1})^{m}}{V}\left[-\int_{M} \phi \hat{\partial} \hat{\partial} \phi \wedge\left(\sum_{k=0}^{m-1} \frac{2(k+1)}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k}\right)\right. \\
& \left.-\int_{M} \phi \partial \partial \dot{\phi} \wedge \sum_{k=1}^{m-1} \frac{k(k+1)}{m+1}\left(\omega_{0}^{m-k-1} \wedge \partial \partial \phi \wedge \omega^{k-1}\right)\right] \\
& =\frac{-(\sqrt{-1})^{m}}{V} \int_{M} \phi \partial \hat{\partial} \dot{\phi} \wedge\left[2 \sum_{k=0}^{m-1} \frac{k+1}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k}\right. \\
& \left.+\sum_{k=1}^{m-1} \frac{k(k+1)}{m+1}\left(\omega_{0}^{m-k-1} \wedge \omega^{k}-\omega_{0}^{m-k} \wedge \omega^{k-1}\right)\right] \\
& =-\frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi \partial \partial \dot{\phi} \wedge\left[\sum_{k=0}^{m-1} \frac{2(k+1)}{m+1} \omega_{0}^{m-k-1} \wedge \omega^{k}\right. \\
& +\sum_{k=1}^{m-2}\left(\frac{k(k+1)}{m+1}-\frac{(k+1)(k+2)}{m+1}\right) \omega_{0}^{m-k-1} \wedge \omega^{k} \\
& \left.+\frac{m(m-1)}{m+1} \omega^{m-1}-\frac{2}{m+1} \omega_{0}^{m-1}\right] \\
& =-\frac{m(\sqrt{-1})^{m}}{V} \int_{M} \phi \partial \partial \phi \hat{\partial} \omega^{m-1} \\
& =-\frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi \Delta_{\phi} \dot{\phi} \omega^{m} \text {. }
\end{aligned}
$$

Now we suppose that $\phi_{t}$ be the solution of $(*)_{t}$ for $t \in S$, then

$$
\phi_{t} \in \stackrel{\circ}{P}(M, g), \quad \operatorname{det}\left(g_{i j}+\frac{\partial^{2} \phi_{t}}{\partial z_{i} \partial \bar{z}_{j}}\right)=\operatorname{det}\left(g_{i j}\right) e^{f-t \phi_{t}} .
$$

Take the differential with respect to $t$ on both sides of the above equation, one obtains

$$
\Delta_{\phi_{t}} \dot{\phi}_{t}=-t \dot{\phi}_{t}-\phi_{t}
$$

Corollary. For the family $\left\{\phi_{t}\right\}$ of solutions of $(*)_{t}, I\left(\phi_{t}\right)-J\left(\phi_{t}\right)$ is an increasing function of $t \in S$.
Proof. By Lemma 2.3,

$$
\begin{aligned}
\frac{d\left(I\left(\phi_{t}\right)-J\left(\phi_{i}\right)\right)}{d t} & =-\frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t} A_{\phi_{t}} \dot{\phi}_{t} \omega_{t}^{m} \\
& =\frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(A_{\phi_{t}} \phi_{t}+t \dot{\phi}_{t}\right)\left(A_{\phi_{t}} \dot{\phi}_{t}\right) \omega_{t}^{m}
\end{aligned}
$$

We compute the Ricci curvature of the new Kähler metric $\left(g_{i j}+\frac{\partial^{2} \phi_{t}}{\partial z_{i} \partial \bar{z}_{j}}\right)$.

$$
\begin{aligned}
\operatorname{Ric}\left(\omega_{t}\right) & =-\partial \hat{\partial} \log \operatorname{det}\left(g_{i j}+\frac{\partial^{2} \phi_{t}}{\partial z_{i} \partial \bar{z}_{j}}\right) \\
& =-\partial \hat{\partial} \log \operatorname{det}\left(g_{i j}\right)-\partial \partial \bar{\partial} F+t \partial \partial \phi_{t} \\
& =\operatorname{Ric}\left(\omega_{0}\right)-\partial \partial \hat{\partial}+t \partial \partial \phi_{t}=\omega_{0}+t \partial \partial \phi_{t}=t \omega_{t}+(1-t) \omega_{0}>t \omega_{t}
\end{aligned}
$$

By the well-known Bochner identity, one sees that the first eigenvalue of $\Delta_{\phi_{t}}$ is greater than $t$. Hence $-\Delta_{\phi_{t}}-t>0$. It follows that

$$
\frac{d\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)}{d t} \geqq 0 .
$$

Proposition 2.3. Let $\phi_{t}$ be the solution of $(*)_{t}, t \in S$, such that $t \rightarrow \phi_{t}$ is a smooth family. Then
(i) $\frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m} \leqq m \sup _{M} \phi_{t}+C$, where $C$ is a constant depending only on $(M, g)$.
(ii) $\forall \varepsilon>0, \exists$ constant $C_{\varepsilon}$, such that

$$
\sup _{M} \phi_{t} \leqq(m+\varepsilon) \frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m}+C_{\varepsilon} .
$$

Proof. By Lemma 2.3,

$$
\frac{d\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)}{d t}=-\frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t}\left(A_{\phi_{t}} \dot{\phi}_{t}\right) \omega_{t}^{m}
$$

Since $\phi_{t}$ is the solution of $(*)_{t}, \Delta_{\phi_{t}} \dot{\phi}_{t}=-t \dot{\phi}_{t}-\phi_{t}$

$$
\begin{aligned}
\frac{d\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)}{d t}= & \frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t}\left(\phi_{t}+t \dot{\phi}_{t}\right) \omega_{t}^{m} \\
= & \frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t}\left(\phi_{t}+t \dot{\phi}_{t}\right) e^{F-t \phi_{t}} \omega_{0}^{m} \\
= & \frac{(\sqrt{-1})^{m}}{V} \frac{d}{d t}\left(\int_{M}\left(-\phi_{t}\right) e^{F-t \phi_{t}} \omega_{0}^{m}\right) \\
& +\frac{(\sqrt{-1})^{m}}{V} \int \dot{\phi}_{t} e^{F-t \phi_{t}} \omega_{0}^{m}
\end{aligned}
$$

From the identity, $\int_{M} \omega_{0}^{m}=\int_{M} \omega_{t}^{m}=\int_{M} e^{F-t \phi_{t}} \omega_{0}^{m}$, we obtain

$$
\int_{M}\left(t \dot{\phi}_{t}+\phi_{t}\right) e^{F-t \phi_{t}} \omega_{0}^{m}=0, \quad \text { i.e. } \int_{M} \dot{\phi}_{t} e^{F-t \phi_{t}} \omega_{0}^{m}=-\frac{1}{t} \int_{M} \phi_{t} \omega_{t}^{m}
$$

Hence

$$
\begin{gathered}
\frac{d\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)}{d t}=\frac{1}{t} \frac{d}{d t}\left(\frac{t(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m}\right) \\
\frac{d\left[t\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)\right]}{d t}-\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)=\frac{d}{d t}\left(\frac{t(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m}\right) .
\end{gathered}
$$

Integrating it from 0 to $t$,

$$
t\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)-\int_{0}^{t}\left(I\left(\phi_{s}\right)-J\left(\phi_{s}\right)\right) d s=t \frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m}
$$

Dividing $t$ on both sides,

$$
\frac{(\sqrt{-1})^{m}}{V} \int\left(-\phi_{t}\right) \omega_{t}^{m}=\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)-\frac{1}{t} \int_{0}^{t}\left(I\left(\phi_{s}\right)-J\left(\phi_{s}\right)\right) d s
$$

by Lemma $2.2, \frac{1}{m+1} I\left(\phi_{t}\right) \leqq I\left(\phi_{t}\right)-J\left(\phi_{t}\right) \leqq \frac{m}{m+1} I\left(\phi_{t}\right)$. Since $I\left(\phi_{t}\right)-J\left(\phi_{t}\right)$ is increasing,
i.e.

$$
\begin{aligned}
\frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m} & \leqq \frac{m}{m+1} I\left(\phi_{t}\right)-\left(I\left(\phi_{0}\right)-J\left(\phi_{0}\right)\right) \\
& =\frac{m}{m+1} \frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t}\left(\omega_{0}^{m}-\omega_{i}^{m}\right)-\left(I\left(\phi_{0}\right)-J\left(\phi_{0}\right)\right)
\end{aligned}
$$

$$
\frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m} \leqq m \frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t} \omega_{0}^{m}-\left(I\left(\phi_{0}\right)-J\left(\phi_{0}\right)\right)
$$

On the other hand, put $\varepsilon^{\prime}=\frac{\varepsilon}{m-1+\varepsilon}$,

$$
\begin{aligned}
\frac{(\sqrt{-1})^{m}}{V} \int\left(-\phi_{t}\right) \omega_{i}^{m} & \geqq\left(1-\varepsilon^{\prime}\right)\left(I\left(\phi_{t}\right)-J\left(\phi_{t}\right)\right)-\frac{1}{t} \int_{0}^{t-\varepsilon^{\prime}}\left(I\left(\phi_{s}\right)-J\left(\phi_{s}\right)\right) \\
& \geqq\left(1-\varepsilon^{\prime}\right) \frac{1}{m+1} I\left(\phi_{t}\right)-\frac{1}{t} \int_{0}^{t-\varepsilon^{\prime}}\left(I\left(\phi_{s}\right)-J\left(\phi_{s}\right)\right) d s
\end{aligned}
$$

$$
\therefore \frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{\mathbf{I}} \omega_{0}^{m} \leqq(m+\varepsilon) \frac{(\sqrt{-1})^{m}}{V} \int_{M}\left(-\phi_{t}\right) \omega_{t}^{m}+\left(I\left(\phi_{t-\varepsilon^{\prime}}\right)-J\left(\phi_{t-\varepsilon^{\prime}}\right)\right)
$$

Hence, in order to prove the proposition, we only need to show that

$$
\sup _{M} \phi_{t} \leqq \frac{(\sqrt{-1})^{m}}{V} \int_{M} \phi_{t} \omega_{0}^{m}+C
$$

which appeared in the proof of Proposition 2.1 simply as an application of Green formula.
Lemma 2.4. Let $g_{t i j}=g_{i j}+\frac{\partial \phi_{t}}{\partial z_{i} \partial \bar{z}_{j}}$, then for $t \geqq \varepsilon>0$, there exists two constants $C_{1}, C_{2}$, depending on $\varepsilon$, $V$, such that $\forall f \in C^{1}(M, R)$,

$$
C_{1}\left(\int_{M}|f|^{\frac{2 m}{m-1}} d V_{t}\right)^{\frac{m-1}{m}}-C_{2} \int_{M}|f|^{2} d V_{t} \leqq \int_{M}\left|\nabla^{t} f\right|^{2} d V_{t}
$$

Proof. As we said, $\mathrm{Ric}_{g_{t}} \geqq t \geqq \varepsilon>0$, and the volume is fixed, then the lemma follows from a combination of results in Croke [7] and Li [8].

The proof of Theorem 2.1. It suffices to prove that there exists a sequence $\left\{t_{i}\right\}$, such that $t_{i} \rightarrow \bar{t} \in \bar{S} \backslash S$ as $i \rightarrow+\infty$, and $\left\|\phi_{t_{i}}\right\|_{C^{0}}$ is uniformly bounded.

May assume that $t_{i} \geqq \varepsilon>0$, since $0 \in S, S$ is open.
By the assumption, $\exists \alpha$ between $\frac{m}{m+1}$ and $\alpha(M)$, such that

$$
\int_{M} e^{-\alpha\left(\phi_{t_{\mathrm{t}}}-\sup _{M} \phi_{t_{2}}\right)} d V_{M} \leqq C
$$

i.e.

$$
\int_{M} e^{(1-\alpha) \phi_{t_{2}}-\alpha \sup _{M} \phi_{t_{2}}-F} d V_{t} \leqq C \quad \text { where } C \text { is independent of } t_{i}
$$

By the concavity of log,

$$
\begin{aligned}
& \int_{M}\left((1-\alpha) \phi_{t_{i}}-\alpha \sup _{M} \phi_{t_{i}}-F\right) \frac{\left(\sqrt{-1} \omega_{t}\right)^{m}}{V} \\
& \quad \leqq \log \left(\int_{M} e^{\left.(1-\alpha) \phi_{t_{i}-\alpha \sup _{M} \phi_{t_{i}}-F} \frac{\left(\sqrt{-1} \omega_{t}\right)^{m}}{V}\right) \leqq \log C .} .\right.
\end{aligned}
$$

Hence, $\sup _{M} \phi_{t_{t}} \leqq \frac{1-\alpha}{\alpha} \int_{M}\left(-\phi_{t_{t}}\right) \frac{\omega_{t}^{m}}{V}+C$. By the Proposition 2.3,

$$
\begin{aligned}
\int_{M}\left(-\phi_{t_{2}}\right) \frac{\left(\sqrt{-1} \omega_{t}\right)^{m}}{V} & \leqq m \sup _{M} \phi_{t_{2}}+C \\
& \leqq m \frac{1-\alpha}{\alpha} \int_{M}\left(-\phi_{t_{t}}\right) \frac{\left(\sqrt{-1} \omega_{t}\right)^{m}}{V}+C
\end{aligned}
$$

$\alpha>\frac{m}{m+1}, \quad \therefore \frac{m(1-\alpha)}{\alpha}<1, \quad$ it follows that $\int_{M}\left(-\phi_{t_{i}}\right) \frac{d V_{t}}{V} \leqq C$.

Proposition 2.3 also implies that $\sup _{M} \phi_{t_{i}} \leqq C$. It remains to show that $-\inf \phi_{t_{i}} \leqq C$.
${ }^{M}$ For this, we use the standard iteration. Rewrite the equation

$$
\operatorname{det}\left(g_{i j}+\frac{\partial^{2} \phi_{t}}{\partial z_{i} \partial \bar{z}_{j}}\right)=\operatorname{det}\left(g_{i j}\right) e^{F-t \phi_{t}}
$$

as

$$
g^{i j}\left(g_{i j}+\frac{\partial^{2} \phi_{t}}{\partial z_{i} \partial \bar{z}_{j}}\right)=m
$$

where $\left(g^{\prime i \bar{j}}\right)$ is the inverse of $\left(g_{i j}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right)$. Hence, $\Delta^{\prime} \phi_{t} \leqq m$, where $\Delta^{\prime}=\Delta_{\phi_{t}}$, set $\psi=\max \left\{-\phi_{t}, 0\right\}$, then for $p>0$,

$$
\frac{4 p}{(p+1)^{2}} \int_{M}\left|\nabla^{\prime} \psi^{\frac{p+1}{2}}\right|^{2} d V_{t_{i}} \leqq m \int_{M} \psi^{p} d V_{t_{i}} .
$$

By Lemma 2.4,

$$
\begin{equation*}
C_{1}\left(\int_{M} \psi^{(p+1) \frac{m}{m-1}} d V_{t_{1}}\right)^{\frac{m-1}{m}} \leqq \frac{m(p+1)^{2}}{4 p} \int_{M} \psi^{p} d V_{t_{1}}+C_{2} \int_{M} \psi^{p+1} d V_{t_{1}} \tag{4}
\end{equation*}
$$

take $p_{1}=1, p_{l}=\left(p_{l-1}+1\right) \frac{m}{m-1}-1$ for $l \geqq 2$.
If there exist infinity number of $p_{l}$, s.t.

$$
\left(\int_{M} \psi^{p_{l}+1} d V_{t_{t}}\right)^{\frac{1}{p_{1}+1}} \leqq \max \left\{\left(\int_{M} \phi^{2} d V_{t_{2}}\right)^{1 / 2}, 1\right\}
$$

then $\sup _{M} \psi \leqq \max \left\{\left(\int_{M} \psi^{2} d V_{t_{2}}\right)^{1 / 2}, 1\right\}$ by taking the limit on $p_{l}$.
So we may assume that

$$
\exists l_{0} \geqq 1 \text {, s.t. } \quad \forall l \geqq l_{0}, \quad\left(\int_{M} \psi^{p_{i}+1} d V_{t_{i}}\right)^{\frac{1}{p_{i}+1}} \geqq \max \left\{\left(\int_{M} \psi^{2} d V_{t_{i}}\right)^{1 / 2}, 1\right\}
$$

The inequality (4) implies that for $l \geqq l_{0}$

$$
C_{1}\left(\int_{M} \psi^{p_{l+1}+1} d V_{t_{l}}\right)^{\frac{m-1}{m}} \leqq\left(m p_{l}(1+V)+C_{2}\right) \int_{M} \psi^{p_{l}+1} d V_{t_{1}}
$$

i.e.

$$
\begin{gathered}
\left(\int_{M} \psi^{p_{l+1}+1} d V_{t_{l}}\right)^{\frac{1}{p_{l+1}+1}} \leqq\left(C p_{l}\right)^{\frac{1}{p_{l}+1}}\left(\int_{M} \psi^{p_{l}+1} d V_{t_{l}}^{\frac{1}{p_{l}+1}}\right. \\
\sup _{M} \psi=\lim _{l \rightarrow \infty}\left(\int_{M} \psi^{p_{l+1}+1} d V_{t_{l}}\right)^{\frac{1}{p_{l+1}+1}} \leqq \prod_{l=l_{0}}^{\infty}\left(C p_{l}\right)^{\frac{1}{p_{t}+1}}\left(\int_{M} \psi^{p_{l_{0}}+1} d V_{t_{l}}\right)^{\frac{1}{p_{t_{0}-1}+1}} \\
\prod_{l=l_{0}}^{\infty}\left(C p_{l}\right)^{\frac{m}{p_{l}+1}} \leqq C^{\frac{1}{p_{t_{0}}+1}} \sum_{k=0}^{\infty}\left(\frac{m-1}{m}\right)^{k} \cdot e^{\frac{1}{p_{l_{0}}+1}} \sum_{k=0}^{\infty}\left(\frac{m-1}{m}\right)^{k}\left(\log \left(p_{t_{0}}+1\right)-k \log \frac{m}{m-1}\right)
\end{gathered}
$$

is bounded and

$$
\begin{aligned}
\left(\int_{M} \psi^{p_{l_{0}}+1} d V_{t_{\mathrm{t}}}\right)^{\frac{1}{p_{l_{0}}+1}} & \leqq\left(\frac{m p_{l_{0}-1}}{C_{1}} \int_{M} \psi^{p_{l_{0}-1}} d V_{t_{2}}+\frac{C_{2}}{C_{1}} \int_{M} \psi^{p_{l_{0}-1}+1} d V_{t_{1}}\right)^{\frac{1}{p_{l_{0}-1+1}}} \\
& \leqq\left(\frac{m p_{l_{0}-1}+C_{2}}{C_{1}} \int_{M} \psi^{p_{t_{0}-1}+1} d V_{t_{\mathrm{t}}}+\frac{m p_{l_{0}-1} V}{C_{1}}\right)^{\frac{1}{p_{l_{0}-1}+1}} \\
\leqq & \left(\frac{m p_{l_{0}-1}+C_{2}}{C_{1}}\right)^{\frac{1}{p_{t_{0}-1}+1}}\left(\left(\int_{M} \psi^{p_{t_{0}-1}+1} d V_{t_{1}}\right)^{\frac{1}{p_{0}-1+1}}\right. \\
& \left.+\left(\frac{m p_{l_{0}-1} V}{C_{1}}\right)^{\frac{1}{p_{t_{0}-1}+1}}\right) \\
\leqq & C \max \left\{\left(\int_{M} \psi^{2} d V_{t_{2}}\right)^{1 / 2}, 1\right\} .
\end{aligned}
$$

Therefore, we always have

$$
\sup _{M} \psi \leqq C \max \left\{\left(\int_{M} \psi^{2} d V_{t_{2}}\right)^{1 / 2}, 1\right\}
$$

On the other hand, $\int_{M}\left|\nabla^{\prime} \psi\right|^{2} d V_{t_{i}} \leqq m \int_{M} \psi d V_{t_{i}}$.
The first eigenvalue of $\left(M, \Delta_{t}\right)$ is greater than the lower bound of Ric curvature, i.e. $\operatorname{Ric}\left(g_{t}\right) \geqq t \geqq \varepsilon>0$. Hence

$$
\int_{M} \psi^{2} d V_{t_{i}} \leqq\left(\int_{M} \psi d V_{t_{i}}\right)^{2}+\frac{m}{\varepsilon} \int_{M} \psi d V_{i} \leqq C .
$$

It follows that $-\inf _{M} \phi_{t_{t}}=\sup _{M} \psi \leqq C . \quad \square$

## §3. A lower bound of $\boldsymbol{\alpha}(M)$

In this section, we fix a Kähler manifold $(M, g)$ with $C_{1}(M)>0$ and $\frac{1}{\pi} \omega_{\mathrm{g}} \sim C_{1}(M)$, although almost all of the discussions are available to the general Kähler manifold. First we want to study the limiting behavior of a sequence of functions in $P(M, g)$.

Theorem 3.1. Let $\left\{\phi_{i}\right\}$ be a sequence of functions in $P(M, g), \lambda$ be a positive number. Then there exist a subsequence $\left\{i_{k}\right\}$ of $\{i\}$ and a subvariety $S$ of $M$ with $\operatorname{dim} S \leqq m-1$, such that
(i) $\forall z \in M-S, \exists r>0, C>0$, s.t.

$$
\int_{B_{r}(z)} e^{-\lambda \phi_{I_{k}}(w)} d V_{g}(w) \leqq C \quad \text { for all } k
$$

(ii) $\forall z \in S, \lim _{k \rightarrow+\infty} \int_{B_{r}(z)} e^{-\lambda \phi_{1_{k}}(w)} d V_{g}(w)=+\infty$ for all $r>0$.

Proof. We need the following proposition, which is basically the Theorem 5.2.4 in Hömander's book [6].

Proposition 3.1. Let $U$ be a stein manifold, then there exists an exhausting function $\rho$ satisfying; for every plurisubharmonic function $\psi$ on $U,(1,0)$-form $h$ with $\int_{U}|h|^{2} e^{-(\psi+\rho)} d V$ and $\partial \hat{\partial} h=0$, there exists a function $u$ such that $\partial \boldsymbol{\partial} u=h$

$$
\int_{U}|u|^{2} e^{(-\psi+\rho)} d V_{U} \leqq \int_{U}|h|^{2} e^{-(\psi+\rho)} d V_{U}
$$

We continue the proof of the theorem. Let $x_{i} \in M, \sup _{M} \phi_{i}(x)=\phi_{i}\left(x_{i}\right)$. Without losing generality, may assume that $x_{i} \rightarrow \bar{x} \in M$ as $i \rightarrow+\infty$. $U$ is a Zariski open neighborhood of $\bar{x}$ and $U$ is stein. Furthermore, we may assume all $x_{i}$ in $U$.

Let $\theta$ be the Kähler potential of $g$ in $U$ with $\theta(\bar{x})=-\frac{1}{2}$, i.e. $\partial \partial \theta=\omega_{g}$. Choose $R_{1}>0$, s.t. $-1 \leqq \theta(\bar{x}) \leqq 0$ in $B_{2 R_{1}}(\bar{x})$.

For $i$ large enough, $B_{\frac{3}{2} R_{1}}\left(x_{i}\right) \subset B_{2 R_{1}}(\bar{x}), B_{r_{1}}(\bar{x}) \subset B_{\frac{3}{2} r_{1}}\left(x_{i}\right)$ where $r_{1}$ is given in Lemma 2.1.

By Lemma 2.1, there exists a constant $C$ independent of $i$,

$$
\begin{equation*}
\int_{B_{r_{1}}(\bar{x})} e^{-\lambda\left(\theta+\phi_{i}\right)} d V_{U} \leqq C \quad \text { for all } i \tag{5}
\end{equation*}
$$

Let $\eta$ be the cut-off function in $B_{r_{1}}(\bar{x})$.
Take $\alpha>0$, s.t. $(\alpha-\lambda) \theta+\eta \log |z|^{m}$ is plurisubharmonic in $U$, where $z$ is the local coordinate near $\bar{x}$ with $z=0$ at $\bar{x}$.

By (5), if $h=\hat{\partial} \eta$, then $\hat{\partial} h=0$ and

$$
\int_{U}|h|^{2} e^{-\left(\alpha \theta+\eta \log |z|^{m}+\lambda \phi_{i}+\rho\right)} d V_{U} \leqq C
$$

where $C$ is independent of $i$.
By Proposition 3.1, $\exists u_{i}$, s.t. $\hat{\partial} u_{i}=h$ and

$$
\int_{U}\left|u_{i}\right|^{2} e^{-\left(\alpha \theta+\eta \log |z|^{m}+\lambda \phi_{i}+\rho\right)} d V_{U} \leqq \int_{U}|h|^{2} e^{-\left(\alpha \theta+\eta \log |z|^{m}+\lambda \phi_{i}+\rho\right)} d V_{U} \leqq C .
$$

Since $\phi_{i} \leqq 0$,

$$
\int_{U}\left|u_{i}\right|^{2} e^{-\left(\alpha \theta+\eta \log |z|^{m}+\rho\right)} d V_{U} \leqq C .
$$

It follows that $u_{i}(\bar{x})=0, \forall i$.
Define $f_{i}=\eta-u_{i}$, then $\delta f_{i}=0$ in $U, f_{i}(\bar{x})=1$.

$$
\begin{equation*}
\int_{U}\left|f_{i}\right|^{2} e^{-(\alpha \theta+\rho)} d V_{U} \leqq C . \tag{6}
\end{equation*}
$$

Moreover, by (5),

$$
\begin{equation*}
\int_{U}\left|f_{i}\right|^{2} e^{-\left(\alpha \theta+\lambda \phi_{i}+\rho\right)} d V_{U} \leqq C . \tag{7}
\end{equation*}
$$

Hence, there exists a subsequence $\left\{i_{k}\right\}$ of $\{i\}$, such that $f_{i_{k}} \rightarrow f$ in $L_{\text {loc }}^{2}(U)$, then $\hat{\sigma} f=0, f(\bar{x})=1$.

Put $S_{1}=\{z \in U \backslash f(z)=0\} \cup(M \backslash U)$, then $\operatorname{dim} S_{1} \leqq m-1, S_{1}$ is a subvariety.

$$
\begin{array}{cl}
\forall z \in M \backslash S_{1}, z \in U, f(z) \neq 0, & \text { then } \exists x>0, k_{0}>0, \quad \text { s.t. } \\
\forall k \geqq k_{0}, \quad w \in B_{r}(z), \quad\left|f_{i_{k}}(w)\right| \geqq \frac{1}{2}|f(z)|>0 .
\end{array}
$$

By (7),

$$
\int_{B_{r}(z)} e^{-\lambda \phi_{i_{k}}} d V_{U} \leqq \frac{2 C}{|f(z)|^{2}} e^{\sup _{B_{r}(z)}(\alpha \theta+\rho)(w)} \quad \text { for } i \geqq i_{0}
$$

i.e. $z \in M$ satisfies the property stated in (i).

If $\exists z \in S_{1}$, s.t. (ii) does not hold at $z$, by taking the subsequence, we may assume that $\exists r>0, C>0$, s.t. $\int_{B_{r}(z)} e^{-\lambda \phi_{i_{k}}(z)} d V_{U} \leqq C$ for all $k$.

Replacing $\{i\}$ by $\left\{i_{k}\right\}$, repeat the above procedure, one finds a subvariety $S_{2}^{\prime}$ s.t. it enjoys the same property as $S_{1}$ does and does not contain a point $z \in S_{1}$. Put $S_{2}=S_{2}^{\prime} \cap S_{1}$, then $S_{2}$ is a subvariety. $S_{2} \mp S_{1}$, and every point $z$ in $M-S_{2}$ satisfies (i). Continuing such arguments, one obtains a filtration of $S_{1}$ by subvarieties $S_{N} \subsetneq S_{N-1} \subsetneq \ldots \subsetneq S_{2} \subsetneq S_{1}$. Since the length of such a filtration must be finite, one will finally find the subvariety $S$ as required in the statement of the theorem.

Remark. This theorem suggests to us that even if the solutions $\phi_{t}$ of $(*)_{t}$ do not converge as $t \rightarrow \bar{t}, \phi_{t}-\sup _{M} \phi_{t}$ still converge outside a subvariety, then the limiting function would be a solution of the degenerate complex MongeAmpére equation $\operatorname{det}\left(g_{i j}+\frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}\right)=0$ and provide certain special structures on $M$, such as holomorphic foliations, etc. This situation is quite the same as that in the study of harmonic mappings and Yamabe problem (cf. [9, 10]). The difficulty here is that the local estimate of complex Monge-Ampere equation is missing. Moreover, the limiting function only satisfies a degenerate elliptic equation so that it is much harder to study its behavior.

Lemma 3.1. Let $\beta>0$. For each $\varepsilon>0, \delta>0, R>0$, there exist $\gamma=\gamma(\varepsilon, R), C$ $=C(\delta, \beta)$, such that $\forall$ subharmonic function $\psi$ in $B_{R}(0) \subset \mathbb{C}^{1}$, satisfying $\psi \leqq 0$ and $\int_{|z|<R} \Delta \psi d z \leqq \beta$, where $d z$ stands for the volume form of $\mathbb{C}^{1}$.

Then

$$
\int_{|z| \leqq r} e^{-\left(\frac{4 \pi}{\beta}-\delta\right) \psi(z)} d z \leqq C R^{2} e^{-(1+\varepsilon)\left(\frac{4 \pi}{\beta}-\delta\right) \psi(0)} .
$$

Proof. Note the Laplace here is the real one, i.e. $\Delta \psi=4 \frac{\partial^{2} \psi}{\partial z \partial \bar{z}}$. By Green formula,

$$
2 \pi \psi(z)=\int_{B_{R}(0)} \log \left(\frac{|z-\zeta|}{\left|R-\frac{z \zeta}{R}\right|}\right) \Delta \psi(\zeta) d \zeta+\int_{\partial B_{R}(0)} \frac{R^{2}-|z|^{2}}{R|z-\zeta|^{2}} \psi(\zeta) d \zeta
$$

In particular,

$$
-2 \pi \psi(0)=\int_{B_{R}(0)}\left(-\log \frac{|\zeta|}{R}\right) \Delta \psi(\zeta) d \zeta+\frac{1}{R} \int_{\partial B_{R}(0)}(-\psi(\zeta)) d \zeta .
$$

Since

$$
\psi \leqq 0, \quad \Delta \psi \geqq 0, \quad 0 \leqq \frac{1}{2 \pi R} \int_{\partial B_{R}(0)}(-\psi(\zeta)) d \zeta \leqq-\psi(0) .
$$

Put

$$
\mu=\frac{1}{2 \pi} \int_{|\zeta|<R}(\Delta \psi) \cdot\left(\frac{4 \pi}{\beta}-\delta\right) d \zeta=\left(\frac{2}{\beta}-\frac{\delta}{2 \pi}\right) \int_{|\zeta|<R} \Delta \psi d \zeta \leqq 2-\frac{\delta \beta}{2 \pi}<2 .
$$

By the convexity of exp,

$$
\begin{aligned}
& \exp \left(-\frac{\left(\frac{4 \pi}{\beta}-\delta\right)}{2 \pi} \int_{|\zeta|<R} \log \frac{|z-\zeta|}{\left|R-\frac{z \bar{\zeta}}{R}\right|} \Delta \psi d \zeta\right) \\
& \quad=\exp \left(\int_{|\zeta|<R}-\mu \log \frac{|z-\zeta|}{\left|R-\frac{z \bar{\zeta}}{R}\right|} \frac{\left(\frac{4 \pi}{\beta}-\delta\right) \Delta \psi d \zeta}{2 \pi \mu}\right) \\
& \\
& \leqq \frac{4 \pi-\delta \beta}{2 \pi \beta \mu} \int_{|\zeta|<R}\left(\frac{|z-\zeta|}{\left.\left\lvert\, R-\frac{z \bar{\zeta}}{R \mid}\right.\right)^{-\mu} \Delta \psi d \zeta .}\right.
\end{aligned}
$$

Take $r=\frac{\varepsilon R}{1+\sqrt{1+\varepsilon}}$, then for $|z|<r$

$$
\left|-\int_{|\zeta|=R} \frac{R^{2}-|z|^{2}}{R|\zeta-z|^{2}} \psi(\zeta) d \zeta\right| \leqq 2 \pi(1+\varepsilon) \psi(0)
$$

Therefore

$$
\begin{aligned}
\int_{|z|<r} e^{-\left(\frac{4 \pi}{\beta}-\delta\right) \psi(z)} d z & \left.\leqq e^{-(1+\varepsilon)\left(\frac{4 \pi}{\beta}-\delta\right) \psi(0)} \max _{|\zeta| \leqq R} \int_{|z| \leqq r} \right\rvert\, \frac{z-r}{R-\left.\frac{z \bar{\zeta}}{R}\right|^{-\mu} d z} \\
& \leqq R^{2} e^{-(1+\delta)\left(\frac{4 \pi}{\beta}-\delta\right) \psi(0)} \max _{|\zeta| \leqq 1} \int_{|\zeta| \leqq 1}\left|\frac{z-\zeta}{1-z \bar{\zeta}}\right|^{-\mu} d z \\
& =C(\mu) R^{2} e^{-(1+\varepsilon)\left(\frac{4 \pi}{\beta}-\delta\right) \psi(0)} .
\end{aligned}
$$

Lemma 3.2. $B_{R_{1}}^{m-1} \times B_{R_{2}} \subset C^{m-1} \times \mathbb{C}^{1}$. Let

$$
\begin{aligned}
& S_{\beta}=\left\{\phi \in C^{2}\left(B_{R_{1}}^{m-1} \times B_{R_{2}}\right) \mid \forall z \in B_{R_{1}}^{m-1} \cdot \phi_{z}=\phi(z, \cdot)\right. \\
&\text { is subharmonic, } \left.\phi \leqq 0, \int_{B_{R_{2}}} \Delta_{w} \phi_{z}(w) d w \leqq \beta\right\} .
\end{aligned}
$$

For each $\varepsilon, \delta>0$, there exist $r_{2}=r_{2}\left(\varepsilon, R_{2}\right)>0, C=C(\delta, \beta)$, such that $\forall \phi \in S_{\beta}$,

$$
\iint_{\substack{z\left|<R_{1}\\\right| w \mid<r_{2}}} e^{-\left(\frac{4 \pi}{\beta}-\delta\right) \phi(z, w)} d z d w \leqq \frac{C R_{2}^{2}}{r_{2}^{2}} \iiint_{\substack{|z|<R_{1} \\ r_{2} \leqq|w| \leqq 2 r_{2}}} e^{-(1+\varepsilon)\left(\frac{4 \pi}{\beta}-\delta\right) \phi(z, w)} d z d w .
$$

Proof. Let $r$ be given in Lemma 3.1 for $R=\frac{R_{2}}{2} . r_{2}=\frac{1}{4} \min \left\{r, \frac{R}{4}\right\}$, then $\forall\left(z, w_{0}\right) \in B_{R_{1}}^{m-1} \times B_{R_{2}},\left|w_{0}\right|<2 r_{2}$, by the assumption on $\phi$ and Lemma 3.1,

$$
\begin{aligned}
& \quad \int_{\left|w-w_{0}\right|<r} e^{-\left(\frac{4 \pi}{\beta}-\delta\right) \phi(z, w)} d w \leqq C R_{2}^{2} e^{-(1+\varepsilon)\left(\frac{4 \pi}{\beta}-\delta\right)_{\phi\left(z, w_{0}\right)}} \\
& \therefore \int_{|w|<r_{2}} e^{-\left(\frac{4 \pi}{\beta}-\delta\right) \phi(z, w)} d w \leqq C R_{2}^{2} e^{-(1+\varepsilon)\left(\frac{4 \pi}{\beta}-\delta\right) \phi\left(z, w_{0}\right)}
\end{aligned}
$$

In particular

$$
\pi r_{2}^{2} \int_{|w|<r_{2}} e^{-\left(\frac{4 \pi}{\beta}-\delta\right) \phi(z, w)} d w \leqq C R_{2}^{2} \int_{r_{2} \leqq|w| \leqq 2 r_{2}} e^{-(1+\varepsilon)\left(\frac{4 \pi}{\beta}-\delta\right) \phi(z, w)} d w .
$$

Integrating it on $z$, we are done.
Theorem 3.2. Let the Kähler manifold $(M, g)$ have $N$ families of curves $\left\{C_{\alpha}^{1}\right\}$, $\left\{C_{\alpha}^{2}\right\}, \ldots,\left\{C_{\alpha}^{N}\right\}$, where $\alpha \in C P^{m-1}$ is the parameter, and $N$ subvarieties $S_{1}, \ldots, S_{N}$ such that
(i) $S_{1} \cap \ldots \cap S_{N}=\emptyset$,
(ii) $N-S_{j}=\bigcup_{\alpha}\left(C_{\alpha}^{j} \cap\left(M-S_{j}\right)\right), \quad C_{\alpha}^{j} \cap C_{\beta}^{j} \cap\left(M-S_{j}\right)=\emptyset \quad$ and $\quad C_{\alpha}^{j} \cap\left(M-S_{j}\right) \quad$ is smooth for each $\alpha$.
(iii) $\forall z \in M-\bigcup_{i} S_{i},\left\{T_{z} C_{\alpha_{i}}^{j}, \mid C_{\alpha_{j}}^{j} \in z\right\}$ spans $T_{z} M ; \forall z \in S_{i}$, either

$$
\left\{T_{z} C_{\alpha_{J}}^{j} \mid z \in C_{\alpha_{J}}^{j} \cap\left(M-S_{j}\right)\right\}
$$

spans $T_{z} M$, or there exists $C_{\alpha_{j}}^{j}$, s.t. $z \in C_{\alpha_{j}}^{j} \cap\left(M-S_{j}\right), C_{\alpha_{j}}^{j} \cap S_{i}=\{$ finite points $\}$.
(iv) $\forall i, \alpha, 4 \operatorname{Vol}_{g}\left(C_{\alpha}^{i}\right) \leqq \beta$.

Then $\alpha(M) \geqq \frac{4 \pi}{\beta}$.
Proof. Fix an arbitrary $\delta>0$. Set $\delta_{1}=\frac{\delta}{m}$. We will prove that

$$
\begin{equation*}
\int_{M} e^{-\left(\frac{4 \pi}{\beta}-\delta\right) \phi} d V_{M} \leqq C, \quad \forall \phi \in P(M, g) \tag{8}
\end{equation*}
$$

where $C$ is independent of $\phi$. Clearly, it implies: $\alpha(M) \geqq \frac{4 \pi}{\beta}$, since $\delta$ is arbitrary.

To prove (8) it suffices to show that for any sequence $\left\{\phi_{i}\right\} \subset P(M, g)$, there is a subsequence $\left\{\phi_{i_{k}}\right\}$ and a constant $C$ such that (8) holds for $\phi_{i_{k}}$.

Put $\delta_{1}=\frac{\delta}{m}$. Applying Theorem 3.1, one may assume that there be subvarieties $E_{0}, \ldots, E_{m}$, s.t. $\forall z \in E_{l}, \lim _{k \rightarrow+\infty} \int_{B_{r}(z)} e^{-\left(\frac{4 \pi}{\beta}-\delta_{1} l\right) \phi_{l_{k}(z)}} d V_{M}=+\infty$ for all $r>0$

$$
\forall z \in M \backslash E_{l}, \quad \exists r>0, C>0, \quad \text { s.t. } \quad \int_{B_{r}(z)} e^{-\left(\frac{4 \pi}{\beta}-\delta_{1} l\right) \phi_{k}(z)} d V_{M} \leqq C \quad \text { for all } k .
$$

Obviously $E_{0} \supseteq \ldots \supseteq E_{m}, \operatorname{dim} E_{0} \leqq m-1$. That (8) holds for all $\phi_{i_{k}}$ is equivalent to that $E_{m}=\emptyset$. Since $\operatorname{dim} E_{0} \leqq m-1$, it suffices to prove that $\operatorname{dim} E_{l-1}$ $-\operatorname{dim} E_{l} \geqq 1$.

Take a smooth point $z_{0} \in E_{l-1}$, by (i), $\exists j$, s.t. $z_{0} \in M-S_{j}$, let $C_{\alpha}^{j}$ pass through $z_{0}$.

If $C_{\alpha_{3}}^{j}$ is transversal to $E_{l-1}$ at $z_{0}$, then by (ii) we can find a special coordinate chart $B_{R_{1}}^{m-1} \times B_{R_{2}} \subset M$ s.t.

$$
z_{0}=(0,0), \quad E_{l_{-1}} \cap\left(B_{R_{1}}^{m-1} \times B_{R_{2}}\right) \subset B_{R_{1}}^{m-1} \times\{0\}
$$

and

$$
\forall z \in B_{R_{1}}^{m-1}, \quad z \times B_{R_{2}} \subset C_{\alpha_{z}}^{j} \quad \text { for certain } \alpha_{z} \in C P^{m-1}
$$

Now

$$
\begin{aligned}
\int_{z \times B_{R_{2}}}\left(4+\Delta_{w} \phi_{i_{1}}(z, w)\right) d w & =2 \int_{z \times B_{R_{2}}}\left(2 \omega_{g}+\partial \partial \phi_{i_{k}}\right)(w) \leqq 2 \int_{C_{\alpha_{z}}^{j}}\left(2 \omega_{g}+\partial \partial \phi_{i_{k}}\right)(w) \\
& =4 \int_{C_{\alpha_{z}}^{\prime}} \omega_{g}=4 \operatorname{Vol}_{g}\left(C_{\alpha_{z}}^{j}\right) \leqq \beta
\end{aligned}
$$

By Lemma 2.2 with $\varepsilon=\frac{\delta_{1} \beta}{4 \pi-l \delta_{1} \beta}, \delta=l \delta_{1}$, one sees that $z_{0} \notin E_{l}$. To show that $\operatorname{dim} E_{l-1}-\operatorname{dim} E_{l} \geqq 1$, it suffices to show that for each smooth point $z_{0}$ of $E_{l-1}$, there is a point $z$ close to $z_{0}$ such that $z \in E_{l-1}-E_{l}$. We assume that it doesn't hold and will derive a contradiction. By our assumption, there is a smooth point $z_{0} \in E_{l-1}$, a neighborhood $U$ of $z_{0}$ in $E_{l-1}$, s.t. $U \subset E_{l}$. By the above arguments, $\left\{T_{z} C_{\alpha}^{j} \mid z \in C_{\alpha_{j}}^{j} \cap\left(M-S_{j}\right)\right\}$ cannot span $T_{z} M$ for every $z \in U$. Hence, $U \subset \bigcup_{i=1}^{N} S_{i}$. Let $z_{0} \in S_{i}$, then $\exists C_{\alpha_{z_{0}}}^{j}$, s.t. $C_{\alpha_{z_{0}}}^{j} \cap S_{i}=\{$ finite points, $z_{0} \in C_{\alpha_{z_{0}}}^{j} \cap\left(M-S_{j}\right)$. Shrinking $U$ if necessary, we may assume that $U \subset M-S_{j}$, and $\forall z \in U, \exists C_{\alpha_{z}}^{J}$ passing through $z$ and intersecting $S_{i}$ at finite points. Since $U \subset E_{l}$, the above arguments imply that $C_{\alpha_{z}}^{j}$ is tangential to $E_{l-1}$ at $z \in U$, so $U \cap C_{\alpha_{z_{0}}}^{j} \subset E_{i-1}$. Since $C_{\alpha_{z_{0}}}^{j} \cap S_{i}=\{$ finite points $\}, \exists z_{1} \in E_{l-1} \cap U, z_{1} \notin S_{i}$. Replacing $z_{0}$ by $z_{1}, U$ by $U \cap\left(M-S_{i}\right)$ and repeating the above arguments, we will find $z_{2} \in U \cap E_{l-1}, \quad z_{2} \notin S_{i} \cup S_{i^{\prime}},\left(i \neq i^{\prime}\right)$. In this way, after finite times, we will finally find a point $z_{N} \in U \cup E_{l-1}, \quad z_{N} \notin \bigcup_{i=1}^{N} S_{i}$. A contradiction. Therefore, $\operatorname{dim} E_{l-1}$
$-\operatorname{dim} E_{l} \geqq 1$. We are done.

Corollary 1. Under the assumptions of Theorem 3.2 and $C_{1}(M)>0, \frac{1}{\pi} \omega_{\mathrm{g}}$ is cohomological to $C_{1}(M),(*)_{t}$ is solvable for $t<\frac{m+1}{m} \cdot \frac{4 \pi}{\beta}$.
Proof. It follows from Theorem 3.2 and the proof of Theorem 2.1.
In case $m=2$, any irreducible Kähler manifold with $C_{1}>0$ must be of form $C P^{2} \# n \overline{C P^{2}}(n \leqq 8)$, i.e. the manifolds produced by blowing up $C P^{2}$ at $n$ generic points, where the "generic" actually means that no three points are colinear, and no six points are in one quadratic curve in $C P^{2}$. This is the consequence of classification theory of algebraic surfaces (Griffith and Harris [5]).

Corollary 2. Let $M=C P^{2} \# n \overline{C P^{2}}, 3 \leqq n \leqq 8$, then $\alpha(M) \geqq \frac{1}{2}$. In particular, $(*)_{t}$ is solvable for $t<\frac{3}{4}$.

Proof. Suppose that $M$ be the blowing-up of $C P^{2}$ at $x_{1}, \ldots, x_{n}$, and $F_{1}, \ldots, F_{n}$ be the exceptional divisors.
$\left\{C_{\alpha}^{i}\right\}=$ \{quadratic image in $M$ of lines in $C P^{2}$ passing through $\left.x_{i}\right\}, \quad S_{i}=\bigcup_{j \neq i} F_{j}$.
It is trivial to verify that assumptions (i), (ii), (iii) are satisfied.
Now $C_{1}(M)=p^{*}(3 H)-\left[F_{1}\right]-\ldots-\left[F_{n}\right]$, where $p: M \rightarrow C P^{2}$ is the natural projection, $H$ is the hyperplane line bundle of $C P^{2}$.

Because

$$
\begin{aligned}
\frac{1}{\pi} \omega_{\mathrm{g}} & \sim C_{1}(M), \operatorname{Vol}_{\mathrm{g}}\left(C_{\alpha}^{i}\right)=\int_{C_{\alpha_{i}}} \omega_{g}=\pi \int_{C_{\alpha_{1}}} C_{1}(M) \\
& =\pi C_{1}(M) \cdot\left[C_{\alpha}^{i}\right] \quad \text { (Griffith and Harris [5], p. 141) } \\
& =\pi C_{1}(M) \cdot\left(p^{*}(H)-\left[F_{i}\right]\right)=2 \pi .
\end{aligned}
$$

$\therefore \beta=8 \pi$. The corollary follows.
Remark. One can prove that outside a finite set of points in $C P^{2} \# 8 \overline{C P^{2}}$, for $\alpha<1, e^{-\alpha \phi}$ has locally uniform bounds for each $\phi \in P(M, g)$. Moreover, one can locate that finite set. We know that $C P^{2} \# 8 \overline{C P^{2}}$ has a pensil of elliptic curves having intersection number one with each exceptional divisor, only singular curves in the pensil is either a rational curve with an ordinary node, or a rational curve with a cusp. The finite set consists of those cusps.

## § 4. Kähler-Einstein metrics on Fermat hypersurfaces

So far, we have not known an example with $\alpha(M)>\frac{m}{m+1}$, but if we restrict $\phi$ to a proper subset $P_{s}$ of $P(M, g)$ and define $\alpha_{s}(M)$ with respect to $P_{s}$ as we do for $P(M, g), \alpha_{s}(M)$ might be greater than $\frac{m}{m+1}$. A natural subset $P_{s}$ is $P_{G}(M, g)$ $=\{\phi \in P(M, g) \mid \phi$ is invariant under $G\}$, where $G$ is a compact subgroup in $\operatorname{Aut}(M) . \frac{1}{\pi} \omega_{\mathrm{g}} \sim C_{1}(M)$, we may assume that $g$ is invariant under $G$. Then we have

Theorem 4.1. $(M, g)$, $G$ stated as above. If $\alpha_{G}(M)>\frac{m}{m+1}$, then $M$ admits a Kähler-Einstein metric.

Proof. Same as Theorem 2.1.
The following theorem gives an estimate of $\alpha_{G}(M)$.
Theorem 4.2. Let $(M, g), G$ as above. Furthermore, assume that $(M, g)$ have $N$ families of curves $\left\{C_{\alpha}^{1}\right\}, \ldots,\left\{C_{\alpha}^{N}\right\}, \alpha \in C P^{m-1}$, and $N$ subvarieties $S_{1}, \ldots, S_{N}$ satisfying (i), (ii), (iii) in Theorem 3.2 and (iv)': Let $G_{j} \subset G$ be the subgroup preserving the fibration of $M-S_{j}$ by $\left\{C_{\alpha}^{j} \cap\left(M-S_{j}\right)\right\}$, then $S_{j}$ is invariant under $G_{j}$,

$$
\frac{4 \operatorname{Vol}_{g}\left(C_{\alpha}^{j}\right)}{\operatorname{ord}\left(G_{j}\right)} \leqq \beta \quad \forall \alpha \in C P^{m-1}
$$

where $\operatorname{ord}\left(G_{j}\right)=\min _{z \in M-S_{j}} \frac{\left|G_{j}\right|}{\left|\operatorname{Stab}_{z} \subset G_{j}\right|}$. Then, $\alpha_{G}(M) \geqq \frac{4 \pi}{\beta}$.

Proof. Almost same as the proof of Theorem 3.2. We adapt the notations there, $z_{0} \in E_{l-1}$, a smooth point. We may find $j$ such that $z_{0} \notin S_{j}, z_{0} \in C_{\alpha_{0}}^{j}$.

If $C_{x_{0}}^{j}$ is transversal to $E_{l-1}$ at $z_{0}, B_{R_{1}}^{m-1} \times B_{R_{2}}$ is taken exactly as in the proof of Theorem 3.2.

Put $\mu=\frac{\left|G_{j}\right|}{\left|\operatorname{Stab}_{z_{0}}\right|}, \mu \geqq \operatorname{ord} G_{j}$. By (iv)', one can choose $R_{1}, R_{2}$ so small that $\sigma\left(B_{R_{1}}^{m-1} \times B_{R_{2}}\right) \cap B_{R_{1}}^{m-1} \times B_{R_{2}}=\emptyset$ for at least $\mu$ elements $\sigma$ of $G_{j}$.

Since $\omega_{g}, \phi_{i_{k}}$ are invariant under $G$,

$$
\begin{aligned}
& \forall z \in B_{R_{1}}^{m-1}, \quad \int_{z \times B_{R_{2}}}\left(4+\Delta_{w} \phi_{i_{k}}\right) d w=\int_{z \times B_{R_{2}}}\left(2 \omega_{g}+\partial \bar{\partial} \phi_{i_{k}}\right) \\
& \leqq \frac{2}{\mu} \int_{C \alpha_{\alpha_{0}}}\left(2 \omega_{g}+\partial \bar{\partial} \phi_{i_{k}}\right) \leqq \frac{4}{\operatorname{ord}\left(G_{j}\right)} \int_{C_{\alpha_{0}}^{J}} \omega_{g}=\frac{4 \operatorname{Vol}_{g}\left(C_{\alpha_{0}}^{j}\right)}{\operatorname{ord}\left(G_{j}\right)} \leqq \beta
\end{aligned}
$$

By Lemma 3.2 with $\varepsilon$ by $\frac{\beta \delta_{1}}{4 \pi-l \delta_{1} \beta}, \delta$ by $l \delta_{1}, z_{0} \notin E_{l}$, the rest is same as in the proof of Theorem 3.2.

Now we consider Fermat hypersurfaces

$$
X_{m, p}=\left\{\left[Z_{0}, \ldots, Z_{m+1}\right] \in C P^{m+1} \mid z_{0}^{p}+z_{1}^{p}+\ldots+z_{m+1}^{p}=0\right\}, \quad p \leqq m+1
$$

$g=(m+2-p)$ multiple of the restriction of Fubini-study metric of $C P^{m+1}$ i.e.

$$
\left.(m+2-p) \partial \bar{\partial} \log \left(\left|z_{0}\right|^{2}+\ldots+\left|z_{m+1}\right|^{2}\right)\right|_{X_{m, p}}
$$

$G$ : the group generated by permutations

$$
\sigma_{i j}:\left[z_{0}, \ldots, z_{i}, \ldots, z_{j}, \ldots, z_{m+1}\right] \rightarrow\left[z_{0}, \ldots, z_{j}, \ldots, z_{i}, \ldots, z_{m+1}\right]
$$

and

$$
\tau_{k}:\left[z_{0}, \ldots, z_{k}, \ldots, z_{m+1}\right] \rightarrow\left[z_{0}, \ldots, e_{p} z_{k}, \ldots, z_{m+1}\right]
$$

where

$$
\begin{gathered}
e_{p}=\exp \left(\frac{2 \pi \sqrt{-1}}{p}\right) . \\
0 \leqq i, j \leqq m+1, \\
S_{i j}=X_{m, p} \cap\left\{\left[z_{0}, \ldots, \stackrel{(i)}{0} \ldots \stackrel{(j)}{0} \ldots z_{m+1}\right] \in C P^{m+1},\right. \\
\left.\left[0, \ldots, 1, \ldots, e_{p}^{k+\frac{1}{2}}, 0 \ldots 0\right], k=0,1, \ldots, p-1\right\} .
\end{gathered}
$$

$C_{\alpha}^{i j}=$ the closure of

$$
\left\{\left[z_{0} \ldots z_{i} \ldots z_{j} \ldots z_{m+1}\right] \in X_{m, p}-S_{i j} \mid\left[z_{0} \ldots \hat{z}_{i} \ldots \hat{z}_{j} \ldots z_{m+1}\right]=\alpha \in C P^{m-1}\right\}
$$

where $\left[\alpha_{0}, \ldots, \alpha_{m-1}\right]=\alpha \in C P^{m-1}$.
Obviously,

$$
\begin{gathered}
C_{\alpha}^{i j}=\sigma_{0 i} \cdot \sigma_{1 j}\left(C_{\alpha}^{01}\right) \\
S_{i j}=\sigma_{0 i} \cdot \sigma_{1 j}\left(S_{01}\right), \quad \operatorname{dim} S_{i j}=m-2
\end{gathered}
$$

We claim that $\left\{C_{\alpha}^{i j}\right\}, S_{i j}$ satisfy the assumptions (ii), (iii), (iv) of Theorem 4.2.

It is clear that $\bigcap_{i, j} S_{i j}=\emptyset$, i.e. (i) is satisfied. For (ii),

$$
\begin{aligned}
& X_{m, p}-S_{i j}=\left\{\left[z_{0}, \ldots, z_{m+1}\right]\right. \\
& \in X_{m, p} \mid\left[z_{0}, \ldots, \hat{z}_{i} \ldots \hat{z}_{j} \ldots z_{m+1}\right] \\
&\left.\in C P^{m-1},\left|z_{i}\right|^{2}+\left|z_{j}\right|^{2} \neq 0\right\} \\
&=\left(\bigcup_{\alpha \in C P^{m-1}} C_{\alpha}^{i j}\right) \cap\left(X_{m, p}-S_{i j}\right),
\end{aligned}
$$

$$
\begin{aligned}
C_{\alpha}^{i j} \cap C_{\beta}^{i j}= & \left\{\left[0, \ldots, 0,1_{1}^{(i)}, \ldots, e_{p}^{\left(j+\frac{1}{2}\right.}, \ldots, 0\right]\right\} \subset S_{i j}, \quad \alpha \neq \beta . \\
C_{\alpha}^{i j}= & \left\{\left[\alpha_{0} t, \ldots, \alpha_{i-1} t, z_{i}, \ldots, z_{j}, \alpha_{j} t, \ldots, \alpha_{m-1} t\right] \mid\right. \\
& \left.\left(\alpha_{0}^{p}+\ldots+\alpha_{m-1}^{p}\right) t^{p}+z_{i}^{p}+z_{j}^{p}=0\right\} .
\end{aligned}
$$

Hence, if $\alpha_{0}^{p}+\ldots+\alpha_{m-1}^{p} \neq 0, C_{\alpha}^{i j}$ is smooth. If

$$
\alpha_{0}^{p}+\ldots+\alpha_{m-1}^{p}=0, \quad C_{\alpha}^{i j}=\bigcup_{k=1}^{p}\left\{\left[\alpha_{0} t, \ldots, \alpha_{i-1} t, z_{i}, \ldots, z_{j}, \alpha_{j-1} t, \ldots, \alpha_{m-1} t\right]\right\}
$$

is a union of $p$ rational curves with a singular point

$$
\left[\alpha_{0}, \alpha_{i}, \ldots, \alpha_{i-1}, \stackrel{(i)}{0}, \alpha_{i}, \ldots, \alpha_{j-2}, \stackrel{(j)}{0}, \alpha_{j-1} \ldots \alpha_{m-1}\right] \in S_{i j}
$$

Therefore, (ii) is verified.
For (iii), take $\left[z_{0}, \ldots, z_{m+1}\right]$ in $X_{m, p}$, may assume that

$$
\left[z_{0}, \ldots, z_{m+1}\right]=\left[1, z_{1}, \ldots, z_{i}, 0, \ldots, 0\right]
$$

where $i \geqq 1, z_{j} \neq 0$ for $1 \leqq j \leqq i$, in particular, $z_{1} \neq 0$, so $\left[z_{0}, \ldots, z_{m+1}\right] \neq S_{1 k}$ for $k \geqq 2$. Define $H_{0 k}=\left\{\left[w_{0}, \ldots, w_{m+1}\right] \in C P^{m+1} \mid w_{k}=z_{k} w_{0}\right\}$, for

$$
\begin{aligned}
& k \geqq 2, \quad C_{\left[z_{0}, \hat{z}_{1} \ldots \hat{z}_{k} \ldots z_{m+1]}\right.}^{1 k}=X_{m, p} \cap\left(\bigcap_{\substack{l=2 \\
l \neq k}}^{m+1} H_{0 l}\right), \\
& X_{m, p} \cap\left(\bigcap_{k=2}^{m+1} H_{0 k}\right)=\left\{\left[t, z_{1} s, z_{2} t, \ldots, z_{m+1} t\right]\right\} \cap X_{m, p} \\
& =\left\{t^{p}\left(1+z_{2}^{p}+\ldots+z_{m+1}^{p}\right)+z_{1}^{p} s^{p}=0\right\} \\
& =\left\{z_{1}^{p}\left(s^{p}-t^{p}\right)=0\right\}
\end{aligned}
$$

by $z_{1} \neq 0, X_{m, p} \cap\left(\bigcap_{k=2}^{m+1} H_{0 k}\right)=\{p$ finite points $\}$ and multiplicity at $\left[z_{0}, \ldots, z_{m+1}\right]$ is one, so $\left(T_{\left[z_{0}, \ldots, z_{m+1}\right]} X_{m, p}\right) \cap\left(\bigcap_{k=2}^{m+1} H_{0 k}\right)=\{0\}$, it follows that

$$
\begin{aligned}
& \operatorname{span}_{2 \leqq k \leqq m+1}\left\{T_{\left[z_{0} \ldots z_{m+1}\right]} C_{\left[z_{0}, \hat{z}_{1} \ldots \hat{z}_{k} \ldots z_{m+1}\right]}^{1 k}\right\} \\
& \quad=\operatorname{span}_{2 \leqq k \leqq m+1}\left\{T_{z} X_{m, p} \cap\left(\bigcap_{\substack{l=2 \\
l \neq k}}^{m+1} H_{0 l}\right)\right\} \\
& \quad=T_{z} X_{m, p} .
\end{aligned}
$$

Hence, (iii) is satisfied.

Now we consider (iv)'. $G_{i j}=\left\{\sigma_{i j}, \tau_{i}, \tau_{j}\right\}$, obviously, $G_{i j}$ preserves $C_{\alpha}^{i j}$ and $S_{i j}$. For the estimate of ord $\left(G_{i j}\right)$, because of symmetry, we may assume $i=0, j=1$. Take $z \in X_{m, p}-S_{01}, z=\left[z_{0}, \ldots, z_{m+1}\right] . \exists z_{i} \neq 0$, for $i \geqq 2$, we may assume $z_{i}=1$, then $\tau_{0}^{k} \tau_{1}^{l}\left[z_{0}, \ldots, z_{m+1}\right]=\left[z_{0}, \ldots, z_{m+1}\right]=z \quad$ if $\quad$ and $\quad$ only $\quad$ if $k \equiv 0(\bmod p)$, $l \equiv 0 \bmod (p)$ when $z_{0} z_{1} \neq 0$, hence $\frac{\left|G_{01}\right|}{\left|\operatorname{Stab_{z}}\right|} \geqq p^{2}$ for such $z$.
$\quad$ If $z_{0}=0, z_{1}=1$, then

If $z_{0}=0, z_{1}=1$, then

$$
\begin{aligned}
\sigma_{01}^{k} \tau_{1}^{l}\left[z_{0}, \ldots, z_{m+1}\right]=z \quad \text { if and only if } k & \equiv 0(\bmod 2) \\
l & \equiv 0(\bmod 3)
\end{aligned}
$$

hence

$$
\frac{\left|G_{01}\right|}{\left|\operatorname{Stab}_{z}\right|} \geqq 2 p .
$$

If $z_{1}=0, z_{0}=1$, we have also $\frac{\left|G_{01}\right|}{\left|\operatorname{Stab}_{z}\right|} \geqq 2 p$.
Therefore ord $\left(G_{01}\right) \geqq 2 p$.
Theorem 4.3. If $m+1 \geqq p \geqq m$, then $X_{m, p}$ admits a Kähler-Einstein metric.
Proof. By Theorem 4.1, we only need to show that $\alpha_{G}\left(X_{m, p}\right)>\frac{m}{m+1}$.
Using the notations of above,

$$
\begin{aligned}
\operatorname{Vol}_{g}\left(C_{\alpha}^{i j}\right)=\int_{C_{\alpha}^{\prime}} \omega_{g} & =\pi\left(C_{1}\left(X_{m, p}\right) \cdot C_{\alpha}^{i j}\right) \\
& =(m+2-p) p \pi \\
\therefore \beta & =\frac{4 \operatorname{Vol}_{g}\left(C_{\alpha}^{i j}\right)}{2 p} \leqq \frac{4(m+2-p) \pi}{2}
\end{aligned}
$$

$\frac{m}{m+1}<\frac{4 \pi}{\beta}=\frac{2}{m+2-p}$ is equivalent to say $p>m-\frac{2}{m}$ i.e. $p \geqq m$.
Now this theorem follows from Theorem 4.2.
Corollary. For $m+1 \geqq p \geqq m$, there exists an open subset $U_{m, p}$ in the moduli space of m-dimension hypersurfaces with degree $p$ in $C P^{m+1}$, such that any $M \in U_{m, p}$ admits a $K$ - $E$ metric.

Proof. It follows from the previous theorem and the application of Implicit function theorem to the equation (*) in Sect. 1.

Note that the existence of K-E metric on a $m$-dimensional hypersurface of degree $p \geqq m+2$ follows from [13].

## References

1. Aubin, T.: Réduction du cas positif de l'equation de Monge-Ampére sur les varietés Kählériennes compactes á la démonstration dúne inégalité. J. Funct. Anal. 57, 143-153 (1984)
2. Bombieri, E.: Addendum to my paper, Algebraic values of meromorphic maps. Invent. Math. 11, 163-166 (1970)
3. Calabi, E.: The space of Kähler metrics. Proc. Int. Congress Math. Amsterdam 2, 206-207 (1954)
4. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin Heidelberg New York: Springer 1977
5. Griffith, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York, 1978
6. Hömander, L.: An introduction to complex analysis in several variables. Van Nostrand, Princeton, NJ, 1973
7. Croke, C.B.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ec. Norm. Super, $4^{\mathrm{e}}$ série, 13, 419-435 (1980)
8. Li, P.: On the Sobolev constant and the $p$-spectrum of a compact Riemannian manifold. Ann. Sci. Ec. Norm. Super, $4^{e}$ série, 13, 451-469 (1980)
9. Schoen, R.: Conformation deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geo. 20, 479-496 (1984)
10. Scaks, J., Uhlenbeck, K.: The existence of minimal immersions of 2 -spheres. Ann. Math. 113, 1-24 (1981)
11. Skoda, H.: Sous-ensembles analytiques d'ordre fini on infini dans $\mathbb{C}^{n}$. Bull. Soc. Math. France, 100, 353-408 (1972)
12. Tian, G.: On the existence of solutions of a class of Monge-Ampere equations. Acta. Math. Sinica (to appear)
13. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpére equation, $I^{*}$. Commun. Pure Appl. Math. 31, 339-411 (1978)

Oblatum 15-VIII-1986

## Note added in proof

Various estimates of the lower bound of the holomorphic invariant $\alpha(M)$ are given by S.T. Yau and me in a joint paper, which is to appear in Comm. in Math. Phys. These estimates are applied there to produce Kähler-Einstein metrics on complex surfaces with $C_{1}>0$, for example, we prove that there are Kähler-Einstein structures with $C_{1}>0$ on any manifold of differential type $C P^{2}$ $\# \overline{n C P^{2}}(3 \leqq n \leqq 8)$. We were also informed that Prof. Y.T. Siu had independently produced results on the existence of Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}>0$. His approach in completely different from ours.

Note that the proof of Theorem 2.1 also implies: if $\alpha(M)$ has a lower bound depending only on the dimension of $M$, then there is a constant $C(m)$ such that each compact Kähler manifold with $C_{1}>0$ admits a Kähler metric with Ricci curvature $\geqq C(m)$. An upper bound of $C_{1}(M)^{m}$ will follow from this and a volume comparison. This is pointed out to us by Yau

