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ON THE STATISTICS OF DOUBLE STARS

VY, A. Ambartaumiqp

Translated from Astronomicheskii Zhurnal 14, 207 (1937) (QWU@OMU)

by D. W. Goldsmith

The observed distribution of eccentricities among double
stars with known orbits is far from proving (despite the opinion
of Jeans) the presence of equipartition of energy among them,
Direct examination of the distribution of the internal energies
of stellar pairs (of the semimajor axes of the orbits) shows, on
the contrary, that equipartition of energy has not approached even
among wide pairs. This circumstance, together with the absence
of dissociative equilibrium between double and individual ntasa

leads to an age of the aggregate of double stars not over 1019 yeams,

It has been shown by a series of authors that the study of tie
disgtribution law of the elements of double star orbits, as well as
of other statistical dependences for these objects, can give inter-
esting results for cosmogony in general and for the solution of the
problem of the age of our stellar system in particular*, However,
as was shown by the author in a preliminary notel, erroneous comn-
clusions often arise from the observational data. The goal of the
present investigation is to show the incorrectness of several ear-
lier inferences that'have received rather wide ciréulation in tha
literaturez, and to point out several new consequences of the ob-

servational material that concerns double stars.

*Everywhere in the present article we discusa the age of
our stellar system, and not the age of the universa as a shole,
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1. The distribution of orbial eccentricities among double stars

The question of the eccentricity of orbits is fairly often
discussed from the observational regularifies. It is established
that among double stars with determined orbits the mumber of paidrs
ith eccentricities less than e is proportional to e2,

On the other hand, Jeans showdd that in the presence of
statistical equilibrium (Boltzmann distribution) this very depen-
dence should be observed. Hence there arose the conclusion that
we already have the situation with the most probable distribution,
which leads directly to a long time scale. According to the more
careful formulation of Jeans, cited in answer to the preliminary
note of the authorsi equipartition was establiéhed at least in
several respects.

First of all it is necessary to understand clearly that the
quoted distribution of eccentricities can to a considerable degreé
differ from the real one as a consequence of the selectivity of the
observational material, So far we know only the orbits of pairs
with relatively short periods. On the other hand, the average
eccentricity, as the observations reveal,, undoubtedly increases
with the period. Therefore in fact the relative number of all
pairs with larger eccentricities is greater than the relative number
of these pairs smong double stars with known orbits.

In order to introduce clarity into the question under consided-

ation, we examine from the theoretical sike the distibution of statas

of the companions in phase space. For the coordinates in phase space

we may use the three components of position of the companion and the

three components of its momentum, referred to thg primary star.
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Pax statistical equilibrium we should have the number of com-

panions dN in the element of volume dxdydzdpxdpydpz equal to
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is the energy of the companion, ﬁ and m are the masses of the
primary star and companion, ¥y is the gravitational constant, and 6
the modulus of the Boltzmann distribaition.

Let us consider, however, instead of this most probable dis-
tribution the considerably more general type of distribution when
the density in phase space does not have the special form (:e~%'

but appears as an arbitrary function £(E) of the energy E. Then

IN= F(B) dxdydz dpdpy dpe

We how introduce in phase space a canonical trangformation,
passing from the variables Xy Vo Zy Py py, p, to the wvariables of
Delaunay’sqlunar theory: L, G, H, 1, g, and h. As for the first
three of these quantities, they are .expressed through tharusual
elements of elliptic motion: the semimajor axis a, the inclination
i, and the eccentricity e, in the following manner:

L = m\3™ o
1
G= miyM o (1-eM)*

. )
H= mV3n o (1-€) Fcosi




However, the angular coorddnates 1, g, and h appear in
terms of other elements, such as the mean anomaly, the distance
from periastron to the node, and the longitude of the ascending

node.

As is well known, under a canonical transformation in phase
space the element of volume preserves its magnitude (the Jacobian

of the transformation is equal to unity). In other worda:
i dy dx dp, dpy dp, = dLAGAH dLdgdh
On the other hand,
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That is, the energy depends only on the element L. Consequently,
in our case also the density in phase space depends only on L, and

we may write

dNz F(1) aldedH daldgdn

From this it follows that the number of pairs for which L is con-

tained between L and L+dL, and G is greater than some given value

Gy, is equal to L
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as 1, g, and h vary independently of each other from O to 2w, H
rakes values from O to G, and G by definition varies from O to L.

The expression written above is thus equal to
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where ¢ is the eccentricity corresponding to the orbit with the
given L and G = Gj.

So the mumber of stars with eLey (i.e., G>Gy) and L con-
tained in the limits L and L+dL is equal to

N3 £ el dl

from which it follows that the number of all orbits for which

e<e0 is equal to
N(ey=Hmre; (% (D% el
o

The integral on the right is a constant number, and we there-
fore obtain the following theorem:

If the density in phase space is an arbitrary function of L;
that is, of the total energy, and only of its magnitude, then e
number of all stars with eccentricities less than e, is propor-
tional to e02.

From this it follows that if we even consider that the ob-
served N(eo) is also proportional to e02 (althougﬁ, as has been
pointed out above, the selectivity of the material strongly com-
pels us to doubt this) then from this it is completely imgossible
to conclude that the bhase density is proportional to e'ﬁ" i.e.
that equipartition of energy occurs. On the contrary, for any

distribution of energy with the condition only that the phase

density does not depend on the other elements, we should have
N(e) uez.

Thus even if we accept that in actualify N(e)n:ez, navexrthe-~
legs from this it is impossible to draw conclusions about the

equipartition of energy, and especially about the duration of the

1ife of the stellar system,



The following circumstance, however, is wrthy of attention.
According to what we have saild, in the case where the phase density
depends only on L (that is, on E, or, what is the same, on the
semimajor axis) for each intervaldlL we have that the mmber of
orbits with eccentricities contained between e and e+de should be
proportional to ede, and independent of a. Thus also the average
value of the eccentricity for each interval of size of the semi-
major axis .
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should not depend on a, but should be equal to two thirds. The

e =
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observational material is in contradiction to this. The following

téble, obtained by.Aitkens, points this out:

3 e | n
16,8 years 0.43 14
37.1 0,40 24
73,0 0,53 24

138 0,57 23
200 0,62 18

In this table are given the average values of the eccentri-
cities for stars grouped according to period., 1In the first coiumn
is the average period of each group, and in the last, the number
of stars in the group. If to this table we add Russell's statis-
tical result that for stars with periods around 5000 yeérs the
average eccentricity is equal to 0,76, then we should conclude
that e depends ofi P. It is known that P~L>, Therefore depends
on L. It is perfectly obvious that the fundamental agsumption
made above 1s untrue, and the phase density does not depend only
on the semimajor axis. This means that not only is it impossible
to say that the phase density is proportional to. Q , but aloo
that in general it is imp0881ble to consider that the phase density




depends only on the energy. However, there are indications that tha
cited dependence of w on P is strongly subjedt to the effect of
. . 10,1,8 ’
observational selection,
It is possible, however, that for distant componants (P greater
rhan 100 years) the change in € is small, and that for these the
phase density depends only on E. Thus it is of interest which

dependence of the phase density on E the observations point to,

and to what extent the existing dependence is close to the Boltzmann.

2. Derivation of the phase density from observational data

In the present paragraph we assume. that the phase density
depends only on E, and txy to obtain from the empirical material
the form of this dependence. We have seen that at leasgt for small
L the phase density perhaps depends also on the other élements.
Sherefore we must interpret the result we have obtgined only as a
result of averaging over the other elements. Even in this form
our result will have some value, e@specially as for distant compon-
ents our assumption is probably correct. Thus, let the phase den-

sity be equal to £(L). This means that in the volume element

dxdydzdpxdpydpz the number of stars will be equal to

& (meV ZMMY T > dx dy dz dpy dpy 4Pz

where

)L=\1x*+37~+ 0y P \J?QW?;W‘P%
Therefore the density of the distribution in ordinary

space 1s equal to
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The “"distribution in ordinary space' is here understood to
be the spatial distribution of all companions, when the primary
gtars are all combined into one point. The upper limit of integra-
tion in the last integral is obtained from the condition that we
are examining only physical companions, moving in elliptical orbits;
that is, those systems for which the total energy is negative.

We now introduce into the iast integral instead of p the

variable of integration

L=y M\ T

We obtain
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If we designate.
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K= m\ 2 '

then
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Making use of these integral equationas, we can find for a
known density in ordinary space[>the phase dénsity £(L). Ina
R
well-Iknown study, Opik showed that the existing observational

material, corrected for observational selection, gives

o (©
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It is evident that for this special form of the function/o,

equation (5) is satisfied by the function
v \
LV ~ e &)

Let us now compare this "observed" density in phase space
with that which whould exist for statistical equilibrium, For

statistical equilibrium we should have
1MZ m3

+) = Ce:% = Ce 7o | (?)

We see that to elucidate the question it is necessary to know
the quantity 8. If the set of double stars has arrived at statis-
tical equilibrium as & result of encounters with other star's, thsn
® should be of the order of two thirds of the average kinetic
energy of the translational motion of the circling stér. If we assuge
that the average speed of translational motion of the stars is of the
order of 25 km/sec, then already for about a»20 A.U, the exponent
on the right side of formula (8) is very small compared to unity.

Thus for all larger values of L (and in the same way of g) we can

to a high degree of approximation rewrite (8) iIn the form

£(L) = constant | (%)



At the same time, the result obtainéd by 6pik applies just
%o the distant components. Thus (7) applies to large values of L,
We see that the '"observed'" phase density varies according
to a law sharply different from that which exists for statistical
equilibrium, |
It is possible to show that the "distribution in ordinary
gspace' for the case of statistical equilibrium also differs sharply
from observation. In fact, from (9) and (5) it follows that far -

statistical equilibrium

) (10)

VA
in contradiction to the observed distribution (§). The differemce
between (10) and (6) is so great that there cannot be any doubt
that (10) is nout observed in actuality if only with a small degree
of approximation. Since the regularity (3) was extablished by Opik
for distant cowuponents with distances up to 10,000 A,U., we may
conclude that even for such distant components the influence of
encounters ﬁas not yet led to statistical equilibrium (i,e, to the
most probable distributionzlin the distribution of the semimajor
axem; that is, of the energies; As we shall see, this strongly

decreasea the upper bound for the lifetime of the stellar system.

3. Verification of the Opik inverse cube law for new observational
' material

In the present paiagraph we exanine ‘one very simple method
of verification of the law obfained by Opik for the "distribution
of components in ordinary space.'" We shhll see that a quite new
method of analysis of the question confirms the approximate accuracy

of formula (6).
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The fact is that if the conponents of the distribution
about the central stars follow the law %}., where n is any rumber,
then the distribution of density in projection on the c2iastial
sphere will be determined by the law '%;: °

If we have some set of double stars with such a distribution,
contained in some volume element, and if this volume element is
removed, then the distribution of visible separations in progdection
will, it is evident, continue to satisfy the laW'“%;:. The summing
‘up of such distributions for different volume elements along the
line of sight and for different directions on the celestial sphere
also leads to the proportionality ;&ﬁ. Thus for every visible
distribution in projection we should obtain--for as large a section
of the 'sky as we choose--the same law.

In particular with the alternative assumptions

)
/OfN";E and /0 Aajiaa

we should obtain for the distribution of densities in projection

: ! d l
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from which it follows that the nunber of stars with visible

separations contained between Ty and T, shonld be proportional to

ln =2 ang ,)ti_”“- f"ﬂ- D)

For the solution of thg problem there were taken all the
stars down to visual magnitude 9,0, situated 2% tthe northern
henisphere, that appear in Aitken's catalogue7 (4640 stars).

In these limits Aitken's catalogue may be considered sufficiently

uniform, because all the stars to magnitude 9.0 were checked for
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duality by Aitken himself at the Lick Observatory. In the
following table are given the mumber of pairs with separations
from 0".5 to 1", from 1" to 2', from 2" to 4", and from 4".to
8". In the second and third lines are given the mmbers propor-
tional to ln(rz/fl) and r23/2 - r13/2, correspondingly; the co=-

efficient of proporfionality C is expressed in such a way that

the total rnumbar in each of the three lines was the same,

Interval 0".5-1"  1Ma2"  2"-4"  4u.8"  Total
Observed no. of pairs 883 1160 1283 1314 4640
¢ 1n(r,/r;) 1160 1160 1160 1160 4640
¢ (£,%/2 - £ /2 136 . 382 1080 3040 4638

From this.comparison it is clear that the formula C ln(rz/rl)
strikes a certain approximation (with an accuracy of about 10%) to
the observed figures, while the farmula C (r23/2 - r13/2) ig ot
Justified to ahy degfee. The existing deviatl ons from the formula
C 1n (rz/rl) undoubtédly should decrease in the case of the exclu-
sion of optical pairs.

It is clear from this that Opik's law/p»uiﬁiﬂ coniirmed to
a first apnroximation, 1In the same way it is showvn anew that the
enersgies of stellar pairs are not dist#ibuted according to tha
Boltzmann formula,

In answer to the author'!s preliminary note on the sabjects
considered above, Jeans admitted’ that equipartition of energy
does not exist, but immediately after this he added 'in certeln
respects there is a tolerably good approximation to equipartition,*
In what then does Jeans see if only a distant approximation to
equipartition in the field of double stars? After the cited
consequences of Opik's law it is evident that it is not possible

to speak of any approximation whatever to equipartitionm,
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4, . Relexation time of a set & double gtars

Let us examine the problem of the tinme nhecessary that a get
of double stars which have entered a stellar gystenm may have
arrived at sgtatigtical equilibrium with the surrounding gtars,

It is evident thét in a state of statistical equilibrium two op-
posite and mutually compensating processes are possible: there
should occur on the one hand the destruction of physicél pairs
owing to the Passing of a thirgd body, and, on the other hand, the
formation of pairsg during the approach of three mutually unbouﬁd
stars, in which the third body carries avay a surpiiig of energy
freed as a.result of the'formation of a physical pair. As we

shall gee farther on, in our stellar system, aving to the absence

of statistical_equilibrium, the full mutual compensation of these
processes dses not fake Dlace, in the genge that the mumber of pairs
formed g insignificantly small in comparison with the number of
destroyed pairsg,

Side by side with the déstruction of pairs may also occur, ag

8 consequence of approaches with formed stars, small changes of the
energy of the system which may, in summation, also entail disruption,
It is these processes of change of energy (of the semima jor axis)

48 a consequence of ehcounters, ag well as the destruction of pairg,

that lead to the establishment of statistical equilibrium in the
sense of establishing a Boltzmann distribution,

' It is obvious that the average time of destruction of a
stellar pair, which we shall calculate at once, is perfectly
sufficient for the establishment of a Boltzmann distribution,

Indeed, the establishment of a Boltzmann distribution t dng

Place by means of changes in the energy less that those agsociated
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with disruption. Therefore the time necessary fa this is not
greater than the average time of destruction of a pair. 1In this

way the average time of destruction of a pair will give us the

order of the "relaxation time' of a system of double stara.

For such calculations we go no further than the "digtant
pairs'; that is, those for which the distance between the com-
ponents exceeds 100 A.U., and on the average is of the order «
thousands of astronomical units, |

We can divide encounters of a third star with the stellar mid

into two types: 1) encounters for which the minimum distance of the

passing star from the center of mass of the system is very large in
comparison with the semimajor axis of the orbit, 2) encounters for
which the distance of the third body from one of the components &
the pair become s émall in comparison with the semimajor axis of the
system, We shall call such encounters "distant' and 'close'" re-
spectively. There can also arise encounters of an intermediate
type, but we shall not pause over these, bacause they do no: have a
significant value,

Bohr8’9 has already shown (while considering the encounter of
a particle intéracting according to Coulomb®s law, around an aipm)
that the role of "'distant'" encounters is inéignificantly small in
comparison with the role of "close'" encounters. Theréfore we
shall examine only the 'close' encounters. The consideration, in
addition, of the '"distant" encounters as well can only lessen
somewhat the relaxation tiﬁe without cﬁanging its order.

For pairs §f the type considered the oxrbital speed of motin
around the center of mass is of the order’of one or at most several

(2-3) kilometers per second., Mcanwhile the relative speeds in te
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stellar system are generally of the order of 30 km/sec. Therefora,
in practice, in the coordinate system related to the center & mass,

the companion may be considered almost motionless. The time during

" which the passing star will exert the major part « it s influence

on the companion will be insignificantly small in compari son with
the time of revolution of the pair both as a consequence of the
indicated small ratio of speeds, and as a consequehce of the

ncloseness' of the encounter. Therefore each time as a result of

'a perturbation of the companion there will appear an additional kim-

etic energy with respect to the constant potential energy; i.e.,
there will arise either some increase of the energy (of the semi-
major axis) or the complete disruption of the pair. In this way
the change of energy, evidently will always take plaée in the di-
rection of increase. Cnly in a few cases, wien the kinetic énergy
of the passing star relative to the center of mass is small in
comparison with the kinetic energy of the companion, can we have
the reverse picture., But theie will be a comparatively insignif-
icant number of such passing stars.

On the other hand, the conditions wriften above allow us to
consider the companion as '"free," since the influence of the central
star on the companion is noticeable only in the course of a time
interval much greater than the duration  the collision. Thus the
question reduces to the calculation of the change in kln?tlc energy
of the comianion during its encounter with a passing star, in the
coordinate system connected’with the center of mass of the pir.

A simple caluulation showé that the increment of energy at

+h# time of such a distant encounter is equal to
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if we assume thet the masses of the passing star and of the
companion are the same. Here p is the "impact parameter,'" i.3.
the distance of th: companion from the initial straight line along

which the passing star was moving before the approaah. The mumber

of encounters for which the impact parameter is contained between

p and p+dp for the timedt, and the speed of the passing star lies

between v and v+dv, is equal to

27w p dp v-dt dn,
where dn is the mumber of stars per unit volume, the velsoities of
which lie between v and v+dv. Thus the increase in energy over a
time t will be equal to

Tk Srav3¢n S——g—&ryq‘ 9
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tha integration over p must be carried out over the region inw hich
the encounter may be considered 'close." The limit of close en-
counters is p = a (i.e., the semimajor axis of the orbit).

Therefore

NE = 2wt m

S \n(H" 7.)

or

AE= 2wtm®y* 42‘ I (l-‘r s La;. N (3

vhere m iz the total number of stars per unit volume (stellar

density) and ¥ is some average speed. If we take for the time of
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relaxation the time during which the absolute magnitude of AE

.
becomes equal to the total energy of the system .,%%__’ then we
o

may write
it Y
I 2 ' 4
Yy o i () r 3;1;) ()

Here we must use, of course, some average value of a for

i

the period considered. This average value is very close to the

initial value, because the major part of the time goes into the

increase of energy fa small values of a.

Let us here set v = 3°10° cm/sec, and use for m the mass
of the sun; recognizing that the observed values of a reach 1/20
of a parsec, and n = O.l/pcs, we f£ind that t = 5-10° years, Fcr
smaller & we find values of the order of 1010 and 101l years.

Thus for double stars with separations of the com)onents
reaching ten thoumand astronomical units, a Boltzmann distribution
should be established during a time of the order of 1010 years.,
The Opik distribution (/o~~%§) was deduced exactly for stars with
a large separation of the components (up to ten thousand A.U.),
Therefore for such stars a Boltzmann distribution does not in fact

From this we must conclude that not more than 10-° vears

Thus

occur,
have elapsed from the moment of formation of these pairs,
the distribution of the semimajor axes of double stars’'speaks in

a most definite way in favor of a short time scale.

The argument cited has been indicated in our preliminary m te,
but our calculations of the relaxation time were not introduced in
it. This gave Jeans ground to write that "I cannot seec that Prof,
tmbarzumian's remarks in any way challenge this position, so that,



it seems to me that the observaticnal data he mentions are nct

opposed to. the long time scale of 1013 years, but only to an

infinitely long time scale."
Meanwhile we see that simple calculations point to the fact
that the observational data under discussion mot only contradict

10

a scale of 1013 years, but even a scale of 10 years, and in the

same way speak wholly in favor of a short time scale,

5, Dissociative equilibrium for double stars

A further highly important fact, shov ing thgt the encoun-
tersfhave not yet succeeded in establishing statistical equil-
ibrium for pairs with separations of the order of 104 A.U,, appears
in the data on the deviation of the number of such pairs observed
from the formula of dissociative equilibrium.

If $np designates the mumber of pairs fer which the compan-
jons are located with the element §T' of phase space mentiored above,

then, according to the theory of gases, for dissociative equilib-

rium we should have

“""":) vt . ‘ EYE N e
n* Grm &) )

whera E, as always, is, the internal energy o the pair, when

the com: anion is located in the element gp, ® is the modulus of
the

If

the Boltzmann distribution for the translational motion of

stars, n is the mumber of individual stars per unit volume,

we take SI°in regions of phase space where a 7100 A.U., then the

factor e:“0 can be set equel to unity. Then

-
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Surning up, we see that +his formula holds good cvenvhen the
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volume $I' has large dimensions, with the restrick ion only that
in this volume there should not fall points for which the quan-
tity %% is not small in comparison with unity.

Let us therefore take that area of phase space for which the
semiriajor axis a is contained between some limits a; and a,., To

these limits correspond the limits of L

L= Ny M 0/ L,=mNyM o

However, the volume of phase space for which L is contained

between L, and L, is equal to

1 2 Ly N 6 ‘43 . . .
§T= &n® {m $a6 §dn= 2 (-1,
L. 0

or

3 a . apn
S\ = 5".‘1;.. (M) : (ai’ ~a:f' bE ()

Substituting (17) in (16) and setting M = m, we obtain

%‘{Lp g 3z
2 32 - Alg ¢
=™ Gg{") (™2™ (3)

By substituting into this formula for all the constants and

the concentration n the calculations already introduced, and by

2 1

Iy -8
T =0

setting a, = 104 AU,, a, = 102 A,U., we obtain

]

That is, out of 102 stars in the condition o« dissociative equi-
librium, only one should have a companion for which the orbital
seﬁimajor axis is contained between 100 A.U., and 104 A.U., But

as a matter of fact we know that at least one.gter out of several _
dozen has this property. <Thus the number of distant pailrs is in

actuality a million times greater than that which should exist for



dissociative equilibrium,

This circumstence may be the clearest fact indicating how
far our galactic system is from a state of statistical equilibrium,

Here we again may repeat, on the basis of the p evious
paragraphs, that the time of establishment of statistical equi-
librium for such distant pairs is of the order of 10}° years,
Therefore such a departure from dissociative equilibrium bears
witness to the correctness ¢ a short time scale. |

Since at present in the galaxy there is a surplias of double
stars in comparison with the equilibrium situation, it is quite
understandable that right now processes of dgstruction of pairs
proceed much (perhaps a million times) faster than rocesses of
formation of pairs. only in an equilibrium situation would
these processes compensate each other.

Roughly speaking, the result of the present paragraphs
could be formulated in the following manner:

The existence of such pairs asa and Proxima Centauri or
Washington 5583-5584 is proof of a short time scale, Indeed,
there are so many stellar companions with separationg of the wrder

4

of 10" A.U, that even the star nearest to us has such a companion.

Conclusion

At one timez, mainly oving to Jeans, it was thought that the
statistical features of double.stars speak in favor of a long time
scale, With the passage of fime, as increasingly newer facts from
other fields of stellar astronomy began to support a short time
scale, the conclusions made by Jeans proved to be in contradicti om
fo them. Double stars remained the chief argument in favor of a

long evolutionary scale. But even this proved an illusion. We



See that a theoretically correct consideration of the question

of the statistics of orbits of double stars leads just to a

s-ort evolutionary scale. To shas this has been the goal of the

present article,
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