On Doubly Nonnegative Relaxations of Standard Quadratic Programs

E. Alper Yıldırım
Koç University
Department of Industrial Engineering
Istanbul, Turkey
Semidefinite Programming: Theory and Applications
University of Edinburgh, Scotland, United Kingdom

19 October 2018

Joint work with Yakup Görkem Gökmen
(1) Introduction

- Standard Quadratic Programs
(2) Convex Relaxations
- Convex Cones and Their Properties
- Doubly Nonnegative Relaxation
- Exact Relaxations
- Summary and Numerical Examples
(3) Conclusions

Standard Quadratic Program

Definition

A standard quadratic program involves minimizing a (nonconvex) quadratic form (i.e., a homogeneous quadratic function) over the unit simplex.

Standard Quadratic Program

Definition

A standard quadratic program involves minimizing a (nonconvex) quadratic form (i.e., a homogeneous quadratic function) over the unit simplex.

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\},
$$

where

- $\Delta_{n}=\left\{x \in \mathbb{R}^{n}: e^{T} x=1, \quad x \in \mathbb{R}_{+}^{n}\right\}$ (the unit simplex),
- $Q \in \mathcal{S}^{n}$, where \mathcal{S}^{n} denotes the space of $n \times n$ real symmetric matrices,
- $x \in \mathbb{R}^{n}$,
- $e \in \mathbb{R}^{n}$ denotes the vector of all ones, and
- \mathbb{R}_{+}^{n} denotes the nonnegative orthant in \mathbb{R}^{n}.

Applications

- Portfolio optimization [Markowitz, 1952]
- Quadratic resource allocation problem [Ibaraki and Katoh, 1988]
- Population genetics [Kingman, 1961]
- Evolutionary game theory [Bomze, 2002]
- Social network analysis [Bomze et al., 2018]
- Copositivity detection (a matrix $M \in \mathcal{S}^{n}$ is copositive iff $\left.\nu(M)=\min \left\{x^{\top} M x: x \in \Delta_{n}\right\} \geq 0\right)$
- Maximum (weighted) stable set problem [Motzkin and Straus, 1965], [Gibbons et al., 1997]
- NP-hard in general

Applications

- Portfolio optimization [Markowitz, 1952]
- Quadratic resource allocation problem [lbaraki and Katoh, 1988]
- Population genetics [Kingman, 1961]
- Evolutionary game theory [Bomze, 2002]
- Social network analysis [Bomze et al., 2018]
- Copositivity detection (a matrix $M \in \mathcal{S}^{n}$ is copositive iff $\left.\nu(M)=\min \left\{x^{\top} M x: x \in \Delta_{n}\right\} \geq 0\right)$
- Maximum (weighted) stable set problem [Motzkin and Straus, 1965], [Gibbons et al., 1997]
- NP-hard in general
- Can have at least $(1.4933)^{n}$ strict local minimizers! [Bomze et al., 2018]

Motivation and Focus

- In this talk, we are interested in convex relaxations of (StQP).

Motivation and Focus

- In this talk, we are interested in convex relaxations of (StQP).
- Main Goal: To shed light on instances of (StQP) that admit exact convex relaxations.

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\mathcal{N}^{n}=\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\}
$$

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\begin{aligned}
\mathcal{N}^{n} & =\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\} \\
\mathcal{P} \mathcal{S D}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\begin{aligned}
\mathcal{N}^{n} & =\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\} \\
\mathcal{P} \mathcal{S D}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}^{n}\right\} \\
\mathcal{C O} \mathcal{P}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}_{+}^{n}\right\}
\end{aligned}
$$

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\begin{aligned}
& \mathcal{N}^{n}=\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\}, \\
& \mathcal{P S D}^{n}=\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}^{n}\right\}, \\
& \mathcal{C O P}{ }^{n}=\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}_{+}^{n}\right\}, \\
& \mathcal{C} \mathcal{P}^{n}=\left\{M \in \mathcal{S}^{n}: M=\sum_{k=1}^{r} b^{k}\left(b^{k}\right)^{T}, \text { for some } b^{k} \in \mathbb{R}_{+}^{n}, k=1, \ldots, r\right\},
\end{aligned}
$$

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\begin{aligned}
\mathcal{N}^{n} & =\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\} \\
\mathcal{P S D} \mathcal{D}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}^{n}\right\} \\
\mathcal{C O} \mathcal{P}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}_{+}^{n}\right\} \\
\mathcal{C} \mathcal{P}^{n} & =\left\{M \in \mathcal{S}^{n}: M=\sum_{k=1}^{r} b^{k}\left(b^{k}\right)^{T}, \text { for some } b^{k} \in \mathbb{R}_{+}^{n}, k=1, \ldots, r\right\} \\
\mathcal{D} \mathcal{N}^{n} & =\mathcal{P S D}^{n} \cap \mathcal{N}^{n}
\end{aligned}
$$

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\begin{aligned}
\mathcal{N}^{n} & =\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\} \\
\mathcal{P} \mathcal{S D}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}^{n}\right\} \\
\mathcal{C O} \mathcal{P}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}_{+}^{n}\right\} \\
\mathcal{C} \mathcal{P}^{n} & =\left\{M \in \mathcal{S}^{n}: M=\sum_{k=1}^{r} b^{k}\left(b^{k}\right)^{T}, \text { for some } b^{k} \in \mathbb{R}_{+}^{n}, k=1, \ldots, r\right\}, \\
\mathcal{D} \mathcal{N}^{n} & =\mathcal{P} \mathcal{S} \mathcal{D}^{n} \cap \mathcal{N}^{n}, \\
\mathcal{S P} \mathcal{N}^{n} & =\left\{M \in \mathcal{S}^{n}: M=M_{1}+M_{2}, \quad \text { for some } M_{1} \in \mathcal{P} \mathcal{S D} \mathcal{D}^{n}, M_{2} \in \mathcal{N}^{n}\right\}
\end{aligned}
$$

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\begin{aligned}
\mathcal{N}^{n} & =\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\}, \\
\mathcal{P S D}{ }^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}^{n}\right\}, \\
\mathcal{C O} \mathcal{P}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}_{+}^{n}\right\}, \\
\mathcal{C P}^{n} & =\left\{M \in \mathcal{S}^{n}: M=\sum_{k=1}^{r} b^{k}\left(b^{k}\right)^{T}, \text { for some } b^{k} \in \mathbb{R}_{+}^{n}, k=1, \ldots, r\right\}, \\
\mathcal{D N}^{n} & =\mathcal{P} \mathcal{S D} \cap \mathcal{N}^{n}, \\
\mathcal{S} \mathcal{P N}^{n} & =\left\{M \in \mathcal{S}^{n}: M=M_{1}+M_{2}, \quad \text { for some } M_{1} \in \mathcal{P} \mathcal{S D}^{n}, M_{2} \in \mathcal{N}^{n}\right\} .
\end{aligned}
$$

- Each of these cones is closed, convex, full-dimensional, and pointed.

Convex Cones and Their Properties

Convex Cones

- We denote by \mathcal{S}^{n} the space of $n \times n$ real symmetric matrices.
- We define the following cones in \mathcal{S}^{n} :

$$
\begin{aligned}
\mathcal{N}^{n} & =\left\{M \in \mathcal{S}^{n}: M_{i j} \geq 0, \quad i=1, \ldots, n ; j=1, \ldots, n\right\}, \\
\mathcal{P S D}{ }^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}^{n}\right\}, \\
\mathcal{C O} \mathcal{P}^{n} & =\left\{M \in \mathcal{S}^{n}: u^{T} M u \geq 0, \quad \forall u \in \mathbb{R}_{+}^{n}\right\}, \\
\mathcal{C P}^{n} & =\left\{M \in \mathcal{S}^{n}: M=\sum_{k=1}^{r} b^{k}\left(b^{k}\right)^{T}, \text { for some } b^{k} \in \mathbb{R}_{+}^{n}, k=1, \ldots, r\right\}, \\
\mathcal{D N}^{n} & =\mathcal{P} \mathcal{S D} \cap \mathcal{N}^{n}, \\
\mathcal{S} \mathcal{P N}^{n} & =\left\{M \in \mathcal{S}^{n}: M=M_{1}+M_{2}, \quad \text { for some } M_{1} \in \mathcal{P} \mathcal{S D}^{n}, M_{2} \in \mathcal{N}^{n}\right\} .
\end{aligned}
$$

- Each of these cones is closed, convex, full-dimensional, and pointed.

$$
\mathcal{C P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S P N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

Relations and Common Properties

$$
\mathcal{C} \mathcal{P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S P}^{(} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C P}{ }^{n}=\mathcal{D N ^ { n }}$ and $\mathcal{S P N ^ { n }}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Relations and Common Properties

$$
\mathcal{C P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C} \mathcal{P}^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}{ }^{n}$ [Murty and Kabadi, 1987].

Convex Relaxations

Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Relations and Common Properties

$$
\mathcal{C P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C} \mathcal{P}^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}^{n}$ [Murty and Kabadi, 1987].
- Each of the remaining four cones is "tractable."

Convex Relaxations

Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Relations and Common Properties

$$
\mathcal{C P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C} \mathcal{P}^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}{ }^{n}$ [Murty and Kabadi, 1987].
- Each of the remaining four cones is "tractable."
- Let $\mathcal{K}^{n} \in\left\{\mathcal{C P} \mathcal{P}^{n}, \mathcal{D} \mathcal{N}^{n}, \mathcal{N}^{n}, \mathcal{P S D}^{n}, \mathcal{S P N}^{n}, \mathcal{C O P}{ }^{n}\right\}$

Convex Relaxations

Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Relations and Common Properties

$$
\mathcal{C P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C} \mathcal{P}^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}^{n}$ [Murty and Kabadi, 1987].
- Each of the remaining four cones is "tractable."
- Let $\mathcal{K}^{n} \in\left\{\mathcal{C P}{ }^{n}, \mathcal{D N}^{n}, \mathcal{N}^{n}, \mathcal{P S D}^{n}, \mathcal{S P N}^{n}, \mathcal{C O P}{ }^{n}\right\}$
(1) If $A \in \mathcal{K}^{n}$, then $A_{k k} \geq 0, k=1, \ldots, n$.

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Relations and Common Properties

$$
\mathcal{C P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C P}{ }^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}{ }^{n}$ [Murty and Kabadi, 1987].
- Each of the remaining four cones is "tractable."
- Let $\mathcal{K}^{n} \in\left\{\mathcal{C P}{ }^{n}, \mathcal{D N}^{n}, \mathcal{N}^{n}, \mathcal{P S D}^{n}, \mathcal{S P N}^{n}, \mathcal{C O P}{ }^{n}\right\}$
(1) If $A \in \mathcal{K}^{n}$, then $A_{k k} \geq 0, k=1, \ldots, n$.
(2) $A \in \mathcal{K}^{n}$ iff $P^{T} A P \in \mathcal{K}^{n}$, where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix.

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Relations and Common Properties

$$
\mathcal{C P} \mathcal{P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P} \mathcal{S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C P}{ }^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}^{n}$ [Murty and Kabadi, 1987].
- Each of the remaining four cones is "tractable."
- Let $\mathcal{K}^{n} \in\left\{\mathcal{C P}{ }^{n}, \mathcal{D N}^{n}, \mathcal{N}^{n}, \mathcal{P S D}^{n}, \mathcal{S P N}^{n}, \mathcal{C O P}{ }^{n}\right\}$
(1) If $A \in \mathcal{K}^{n}$, then $A_{k k} \geq 0, k=1, \ldots, n$.
(2) $A \in \mathcal{K}^{n}$ iff $P^{T} A P \in \overline{\mathcal{K}}^{n}$, where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix.
(3) If $A \in \mathcal{K}^{n}$, then every principal $r \times r$ submatrix of A is in $\mathcal{K}^{r}, r=1, \ldots, n$.

Convex Cones and Their Properties

Relations and Common Properties

$$
\mathcal{C P} \mathcal{P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P} \mathcal{S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C P}{ }^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}{ }^{n}$ [Murty and Kabadi, 1987].
- Each of the remaining four cones is "tractable."
- Let $\mathcal{K}^{n} \in\left\{\mathcal{C P}{ }^{n}, \mathcal{D N}^{n}, \mathcal{N}^{n}, \mathcal{P S D}^{n}, \mathcal{S P N}^{n}, \mathcal{C O P}{ }^{n}\right\}$
(1) If $A \in \mathcal{K}^{n}$, then $A_{k k} \geq 0, k=1, \ldots, n$.
(2) $A \in \mathcal{K}^{n}$ iff $P^{T} A P \in \mathcal{K}^{n}$, where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix.
(3) If $A \in \mathcal{K}^{n}$, then every principal $r \times r$ submatrix of A is in $\mathcal{K}^{r}, r=1, \ldots, n$.
(4) If $A \in \mathcal{K}^{n}$ and $B \in \mathcal{K}^{m}$, then

$$
A \oplus B=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right] \in \mathcal{K}^{n+m} .
$$

Convex Cones and Their Properties

Relations and Common Properties

$$
\mathcal{C P} \mathcal{P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P} \mathcal{S D}^{n}
\end{array}\right\} \subseteq \mathcal{S} \mathcal{P} \mathcal{N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- We have $\mathcal{C P}{ }^{n}=\mathcal{D N}{ }^{n}$ and $\mathcal{S P} \mathcal{N}^{n}=\mathcal{C O} \mathcal{P}^{n}$ iff $n \leq 4$ [Diananda, 1962].
- For $n \geq 5$, checking membership is NP-hard for both $\mathcal{C P}{ }^{n}$ [Dickinson and Gijben, 2014] and $\mathcal{C O P}{ }^{n}$ [Murty and Kabadi, 1987].
- Each of the remaining four cones is "tractable."
- Let $\mathcal{K}^{n} \in\left\{\mathcal{C P}{ }^{n}, \mathcal{D N}^{n}, \mathcal{N}^{n}, \mathcal{P S D}^{n}, \mathcal{S P N}^{n}, \mathcal{C O P}{ }^{n}\right\}$
(1) If $A \in \mathcal{K}^{n}$, then $A_{k k} \geq 0, k=1, \ldots, n$.
(2) $A \in \mathcal{K}^{n}$ iff $P^{T} A P \in \mathcal{K}^{n}$, where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix.
(3) If $A \in \mathcal{K}^{n}$, then every principal $r \times r$ submatrix of A is in $\mathcal{K}^{r}, r=1, \ldots, n$.
(4) If $A \in \mathcal{K}^{n}$ and $B \in \mathcal{K}^{m}$, then

$$
A \oplus B=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right] \in \mathcal{K}^{n+m} .
$$

In particular, $B=0$ can be chosen.

Copositive Formulation and A Convex Relaxation

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\}
$$

Copositive Formulation and A Convex Relaxation

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\} .
$$

- For any $U \in \mathcal{S}^{n}$ and $V \in \mathcal{S}^{n}$,

$$
\langle U, V\rangle:=\sum_{i=1}^{n} \sum_{j=1}^{n} U_{i j} V_{i j}
$$

Copositive Formulation and A Convex Relaxation

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\} .
$$

- For any $U \in \mathcal{S}^{n}$ and $V \in \mathcal{S}^{n}$,

$$
\langle U, V\rangle:=\sum_{i=1}^{n} \sum_{j=1}^{n} U_{i j} V_{i j}
$$

- (StQP) can be formulated as a copositive program [Bomze et al., 2000]:

$$
\text { (CP) } \quad \nu(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} \mathcal{P}^{n}\right\}
$$

where $X \in \mathcal{S}^{n}$ and $E=e e^{T} \in \mathcal{S}^{n}$ is the matrix of all ones.

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Copositive Formulation and A Convex Relaxation

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\} .
$$

- For any $U \in \mathcal{S}^{n}$ and $V \in \mathcal{S}^{n}$,

$$
\langle U, V\rangle:=\sum_{i=1}^{n} \sum_{j=1}^{n} U_{i j} V_{i j}
$$

- (StQP) can be formulated as a copositive program [Bomze et al., 2000]:

$$
(\mathrm{CP}) \quad \nu(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} P^{n}\right\}
$$

where $X \in \mathcal{S}^{n}$ and $E=e e^{T} \in \mathcal{S}^{n}$ is the matrix of all ones.

- Recall that

$$
\mathcal{C P}{ }^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S P N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

Convex Cones and Their Properties
Doubly Nonnegative Relaxation Exact Relaxations Summary and Numerical Examples

Copositive Formulation and A Convex Relaxation

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\} .
$$

- For any $U \in \mathcal{S}^{n}$ and $V \in \mathcal{S}^{n}$,

$$
\langle U, V\rangle:=\sum_{i=1}^{n} \sum_{j=1}^{n} U_{i j} v_{i j}
$$

- (StQP) can be formulated as a copositive program [Bomze et al., 2000]:

$$
(\mathrm{CP}) \quad \nu(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} P^{n}\right\}
$$

where $X \in \mathcal{S}^{n}$ and $E=e e^{T} \in \mathcal{S}^{n}$ is the matrix of all ones.

- Recall that

$$
\mathcal{C P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S P N}^{n} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- By replacing $X \in \mathcal{C} \mathcal{P}^{n}$ by $X \in \mathcal{D N}^{n}$, we obtain a relaxation of (CP):

$$
(\mathrm{DN}) \quad \ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
$$

Convex Cones and Their Properties
Doubly Nonnegative Relaxation Exact Relaxations Summary and Numerical Examples

Copositive Formulation and A Convex Relaxation

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\}
$$

- For any $U \in \mathcal{S}^{n}$ and $V \in \mathcal{S}^{n}$,

$$
\langle U, V\rangle:=\sum_{i=1}^{n} \sum_{j=1}^{n} U_{i j} v_{i j}
$$

- (StQP) can be formulated as a copositive program [Bomze et al., 2000]:

$$
(\mathrm{CP}) \quad \nu(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} P^{n}\right\}
$$

where $X \in \mathcal{S}^{n}$ and $E=e e^{T} \in \mathcal{S}^{n}$ is the matrix of all ones.

- Recall that

$$
\mathcal{C} \mathcal{P}^{n} \subseteq \mathcal{D N}^{n} \subseteq\left\{\begin{array}{c}
\mathcal{N}^{n} \\
\mathcal{P S D}^{n}
\end{array}\right\} \subseteq \mathcal{S P}^{\left(\mathcal{N}^{n}\right.} \subseteq \mathcal{C O} \mathcal{P}^{n}
$$

- By replacing $X \in \mathcal{C} \mathcal{P}^{n}$ by $X \in \mathcal{D N}^{n}$, we obtain a relaxation of (CP):

$$
(\mathrm{DN}) \quad \ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
$$

- (DN) is referred to as the doubly nonnegative relaxation.

Basic Relations and Our Focus

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} \mathcal{P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

Convex Relaxations

Conclusions

Basic Relations and Our Focus

$\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} \mathcal{P}^{n}\right\}$
$\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}$

- For all $Q \in \mathcal{S}^{n}$, we have $\ell(Q) \leq \nu(Q)$ since $\mathcal{C} P^{n} \subseteq \mathcal{D} \mathcal{N}^{n}$.

Basic Relations and Our Focus

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- For all $Q \in \mathcal{S}^{n}$, we have $\ell(Q) \leq \nu(Q)$ since $\mathcal{C} \mathcal{P}^{n} \subseteq \mathcal{D} \mathcal{N}^{n}$.
- For $n \leq 4$, we have $\ell(Q)=\nu(Q)$ by Diananda's result.

Basic Relations and Our Focus

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- For all $Q \in \mathcal{S}^{n}$, we have $\ell(Q) \leq \nu(Q)$ since $\mathcal{C} \mathcal{P}^{n} \subseteq \mathcal{D N}^{n}$.
- For $n \leq 4$, we have $\ell(Q)=\nu(Q)$ by Diananda's result.
- Question: For $n \geq 5$, can we give a characterization of instances of (StQP) for which $\ell(Q)=\nu(Q)$?

Global Optimality Conditions

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\} .
$$

Global Optimality Conditions

$$
(\mathrm{StQP}) \quad \nu(Q)=\min \left\{x^{\top} Q x: x \in \Delta_{n}\right\} .
$$

Theorem (Bomze, 1997)
Let $Q \in \mathcal{S}^{n}$ and let $x^{*} \in \Delta_{n}$. Then,

$$
\nu(Q)=\left(x^{*}\right)^{\top} Q x^{*} \Longleftrightarrow Q-\underbrace{\left(\left(x^{*}\right)^{\top} Q x^{*}\right)}_{\nu(Q)} E \in \mathcal{C O P}^{n} .
$$

A General Characterization

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

A General Characterization

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Recall that $Q-\nu(Q) E \in \mathcal{C O} \mathcal{P}^{n}$ for any $Q \in \mathcal{S}^{n}$.

A General Characterization

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Recall that $Q-\nu(Q) E \in \mathcal{C O} \mathcal{P}^{n}$ for any $Q \in \mathcal{S}^{n}$.
- Recall that $\mathcal{S P} \mathcal{N}^{n} \subseteq \mathcal{C} \mathcal{O} \mathcal{P}^{n}$.

A General Characterization

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Recall that $Q-\nu(Q) E \in \mathcal{C O} \mathcal{P}^{n}$ for any $Q \in \mathcal{S}^{n}$.
- Recall that $\mathcal{S P} \mathcal{N}^{n} \subseteq \mathcal{C} \mathcal{O} \mathcal{P}^{n}$.

Theorem

Let $Q \in \mathcal{S}^{n}$. We have

$$
\ell(Q)=\nu(Q) \Longleftrightarrow Q-\nu(Q) E \in \mathcal{S P} \mathcal{N}^{n} .
$$

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

An Implication

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} \mathcal{P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D} \mathcal{N}^{n}\right\}
\end{aligned}
$$

An Implication

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C} \mathcal{P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D} \mathcal{N}^{n}\right\}
\end{aligned}
$$

Theorem

Let $Q \in \mathcal{S}^{n}$ be such that $Q+\lambda E \in \mathcal{P S D}^{n}$ for some $\lambda \in \mathbb{R}$. Then, $\ell(Q)=\nu(Q)$.

An Implication

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

Theorem

Let $Q \in \mathcal{S}^{n}$ be such that $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$. Then, $\ell(Q)=\nu(Q)$.

- The proof is based on constructing an explicit decomposition $Q-\nu(Q) E=S_{1}+S_{2}$, where $S_{1} \in \mathcal{P S D}^{n}$ and $S_{2} \in \mathcal{N}^{n}$.

An Implication

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

Theorem

Let $Q \in \mathcal{S}^{n}$ be such that $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$. Then, $\ell(Q)=\nu(Q)$.

- The proof is based on constructing an explicit decomposition $Q-\nu(Q) E=S_{1}+S_{2}$, where $S_{1} \in \mathcal{P} \mathcal{S D}^{n}$ and $S_{2} \in \mathcal{N}^{n}$.
- If $Q \in \mathcal{P S D}^{n}$, then $\ell(Q)=\nu(Q)$.

An Implication

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

Theorem

Let $Q \in \mathcal{S}^{n}$ be such that $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$. Then, $\ell(Q)=\nu(Q)$.

- The proof is based on constructing an explicit decomposition $Q-\nu(Q) E=S_{1}+S_{2}$, where $S_{1} \in \mathcal{P} \mathcal{S D}^{n}$ and $S_{2} \in \mathcal{N}^{n}$.
- If $Q \in \mathcal{P S D}^{n}$, then $\ell(Q)=\nu(Q)$.
- We may have $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$ even if $Q \notin \mathcal{P S D}{ }^{n}$:

$$
Q=\left[\begin{array}{cc}
0 & -2 \\
-2 & -1
\end{array}\right] \notin \mathcal{P} \mathcal{S D}^{2}
$$

An Implication

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

Theorem

Let $Q \in \mathcal{S}^{n}$ be such that $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$. Then, $\ell(Q)=\nu(Q)$.

- The proof is based on constructing an explicit decomposition $Q-\nu(Q) E=S_{1}+S_{2}$, where $S_{1} \in \mathcal{P} \mathcal{S D}^{n}$ and $S_{2} \in \mathcal{N}^{n}$.
- If $Q \in \mathcal{P S D}^{n}$, then $\ell(Q)=\nu(Q)$.
- We may have $Q+\lambda E \in \mathcal{P} \mathcal{S D}^{n}$ for some $\lambda \in \mathbb{R}$ even if $Q \notin \mathcal{P S D}{ }^{n}$:

$$
Q=\left[\begin{array}{cc}
0 & -2 \\
-2 & -1
\end{array}\right] \notin \mathcal{P S D}^{2}, \quad Q+2 E=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \in \mathcal{P S D}^{2}
$$

A Simpler Characterization

Question

Given $Q \in \mathcal{S}^{n}$, how can we decide if $Q+\lambda E \in \mathcal{P S D}^{n}$ for some $\lambda \in \mathbb{R}$?

A Simpler Characterization

Question

Given $Q \in \mathcal{S}^{n}$, how can we decide if $Q+\lambda E \in \mathcal{P S D}^{n}$ for some $\lambda \in \mathbb{R}$?

Lemma

Let $Q \in \mathcal{S}^{n}$. Then, $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$ iff

$$
e^{T} d=0 \Rightarrow d^{T} Q d \geq 0, \quad \forall d \in \mathbb{R}^{n},
$$

A Simpler Characterization

Question

Given $Q \in \mathcal{S}^{n}$, how can we decide if $Q+\lambda E \in \mathcal{P S D}^{n}$ for some $\lambda \in \mathbb{R}$?

Lemma

Let $Q \in \mathcal{S}^{n}$. Then, $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$ iff

$$
e^{T} d=0 \Rightarrow d^{T} Q d \geq 0, \quad \forall d \in \mathbb{R}^{n},
$$

or, equivalently, $U^{T} Q U \in \mathcal{P S D}^{n-1}$, where $U \in \mathbb{R}^{n \times(n-1)}$ is an orthonormal basis for e^{\perp}.

Shifting

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

Shifting

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Let $Q \in \mathcal{S}^{n}$ and $\lambda \in \mathbb{R}$.

Shifting

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Let $Q \in \mathcal{S}^{n}$ and $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
\nu(Q+\lambda E) & =\nu(Q)+\lambda \\
\ell(Q+\lambda E) & =\ell(Q)+\lambda .
\end{aligned}
$$

Shifting

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Let $Q \in \mathcal{S}^{n}$ and $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
\nu(Q+\lambda E) & =\nu(Q)+\lambda, \\
\ell(Q+\lambda E) & =\ell(Q)+\lambda .
\end{aligned}
$$

- Let

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

Shifting

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Let $Q \in \mathcal{S}^{n}$ and $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
\nu(Q+\lambda E) & =\nu(Q)+\lambda \\
\ell(Q+\lambda E) & =\ell(Q)+\lambda
\end{aligned}
$$

- Let

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

- Then $Q^{s} \in \mathcal{N}^{n}$ and $Q_{i j}^{s}=0$ for some $1 \leq i \leq j \leq n$.

Shifting

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Let $Q \in \mathcal{S}^{n}$ and $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
\nu(Q+\lambda E) & =\nu(Q)+\lambda \\
\ell(Q+\lambda E) & =\ell(Q)+\lambda
\end{aligned}
$$

- Let

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

- Then $Q^{s} \in \mathcal{N}^{n}$ and $Q_{i j}^{s}=0$ for some $1 \leq i \leq j \leq n$.
- We have $0 \leq \ell\left(Q^{s}\right) \leq \nu\left(Q^{s}\right)$.

Shifting

$$
\begin{aligned}
\nu(Q) & =\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q) & =\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\}
\end{aligned}
$$

- Let $Q \in \mathcal{S}^{n}$ and $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
\nu(Q+\lambda E) & =\nu(Q)+\lambda \\
\ell(Q+\lambda E) & =\ell(Q)+\lambda
\end{aligned}
$$

- Let

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

- Then $Q^{s} \in \mathcal{N}^{n}$ and $Q_{i j}^{s}=0$ for some $1 \leq i \leq j \leq n$.
- We have $0 \leq \ell\left(Q^{s}\right) \leq \nu\left(Q^{s}\right)$.
- In particular, this implies that $\min _{1 \leq i \leq j \leq n} Q_{i j} \leq \ell(Q) \leq \nu(Q)$.

Other Cases

- Suppose that $Q+\lambda E \notin \mathcal{P S D}^{n}$ for any $\lambda \in \mathbb{R}$.

Other Cases

- Suppose that $Q+\lambda E \notin \mathcal{P S D}^{n}$ for any $\lambda \in \mathbb{R}$.
- Recall that

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

Other Cases

- Suppose that $Q+\lambda E \notin \mathcal{P S D}^{n}$ for any $\lambda \in \mathbb{R}$.
- Recall that

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

- We have $Q^{s} \in \mathcal{N}^{n}$ and $Q_{i j}^{s}=0$ for some $1 \leq i \leq j \leq n$.

Other Cases

- Suppose that $Q+\lambda E \notin \mathcal{P S D}^{n}$ for any $\lambda \in \mathbb{R}$.
- Recall that

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

- We have $Q^{s} \in \mathcal{N}^{n}$ and $Q_{i j}^{s}=0$ for some $1 \leq i \leq j \leq n$.
- Case 1: There exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$.

Other Cases

- Suppose that $Q+\lambda E \notin \mathcal{P S D}^{n}$ for any $\lambda \in \mathbb{R}$.
- Recall that

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
$$

- We have $Q^{s} \in \mathcal{N}^{n}$ and $Q_{i j}^{s}=0$ for some $1 \leq i \leq j \leq n$.
- Case 1: There exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$.
- Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.

Case 1

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E \in \mathcal{N}^{n} .
$$

- Case 1: There exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$.

Case 1

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E \in \mathcal{N}^{n} .
$$

- Case 1: There exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$.
- Then, $\ell\left(Q^{s}\right)=\nu\left(Q^{s}\right)=0$ since

$$
0 \leq \ell\left(Q^{s}\right) \leq \nu\left(Q^{s}\right) \leq e_{k}^{T} Q^{s} e_{k}=Q_{k k}^{s}=0 .
$$

Case 1

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E \in \mathcal{N}^{n}
$$

- Case 1: There exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$.
- Then, $\ell\left(Q^{s}\right)=\nu\left(Q^{s}\right)=0$ since

$$
0 \leq \ell\left(Q^{s}\right) \leq \nu\left(Q^{s}\right) \leq e_{k}^{T} Q^{s} e_{k}=Q_{k k}^{s}=0 .
$$

Corollary

If $Q \in \mathcal{S}^{n}$ satisfies $\min _{1 \leq i \leq j \leq n} Q_{i j}=Q_{k k}$ for some $k=1, \ldots, n$, then $\ell(Q)=\nu(Q)=Q_{k k}$.

Case 2

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E \in \mathcal{N}^{n} .
$$

- Case 2: There exists $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.

Case 2

$$
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E \in \mathcal{N}^{n} .
$$

- Case 2: There exists $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.
- We will slightly digress.

Maximum Weighted Stable Set Problem I

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive, where w_{k} denotes the weight of vertex $k, k=1, \ldots, n$.

Maximum Weighted Stable Set Problem I

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive, where w_{k} denotes the weight of vertex $k, k=1, \ldots, n$.
- A set $S \subseteq V$ is a stable set if no two vertices in S are connected by an edge.

Maximum Weighted Stable Set Problem I

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive, where w_{k} denotes the weight of vertex $k, k=1, \ldots, n$.
- A set $S \subseteq V$ is a stable set if no two vertices in S are connected by an edge.
- Weight of a stable set $S \subseteq V$ is $w(S)=\sum_{j \in S} w_{j}$.

Maximum Weighted Stable Set Problem I

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive, where w_{k} denotes the weight of vertex $k, k=1, \ldots, n$.
- A set $S \subseteq V$ is a stable set if no two vertices in S are connected by an edge.
- Weight of a stable set $S \subseteq V$ is $w(S)=\sum_{j \in S} w_{j}$.
- The maximum weighted stable set problem is concerned with finding a stable set with the maximum weight, and its weight is denoted by $\alpha(G, w)$.

Maximum Weighted Stable Set Problem II

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive, where w_{j} denotes the weight of vertex $k, k=1, \ldots, n$.

Maximum Weighted Stable Set Problem II

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive, where w_{j} denotes the weight of vertex $k, k=1, \ldots, n$.
- Let

$$
\mathcal{M}(G, w)=\left\{\begin{array}{ll}
\\
B \in \mathcal{S}^{n}: & B_{k k}=1 / w_{k}, \\
2 B_{i j} \geq B_{i j}+B_{j j}, & k=1, \ldots, n, \\
B_{i j}=0, & (i, j) \in E, \\
\text { otherwise }
\end{array}\right\} .
$$

Maximum Weighted Stable Set Problem II

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive, where w_{j} denotes the weight of vertex $k, k=1, \ldots, n$.
- Let

$$
\mathcal{M}(G, w)=\left\{\begin{array}{ll}
B_{k k}=1 / w_{k}, & k=1, \ldots, n, \\
B \in \mathcal{S}^{n}: & 2 B_{i j} \geq B_{i j}+B_{j j}, \\
B_{i j}=0, & (i, j) \in E, \\
\text { otherwise }
\end{array}\right\} .
$$

Theorem (Gibbons et al., 1997)

Let $G=(V, E)$ be a simple, undirected graph and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive. Then, for any $B \in \mathcal{M}(G, w)$,

$$
\frac{1}{\alpha(G, w)}=\nu(B)=\min \left\{x^{\top} B x: x \in \Delta_{n}\right\} .
$$

Weighted Lovász Theta Number

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.

Weighted Lovász Theta Number

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
$\vartheta(G, w)=\max \left\{\langle W, X\rangle:\langle I, X\rangle=1, \quad X_{i j}=0,(i, j) \in E, \quad X \in \mathcal{P S D}^{n}\right\}$,
where $W \in \mathcal{S}^{n}$ and $W_{i j}=\sqrt{W_{i} W_{j}}, 1 \leq i \leq j \leq n$.

Weighted Lovász Theta Number

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
$\vartheta(G, w)=\max \left\{\langle W, X\rangle:\langle I, X\rangle=1, \quad X_{i j}=0,(i, j) \in E, \quad X \in \mathcal{P S D}{ }^{n}\right\}$,
where $W \in \mathcal{S}^{n}$ and $W_{i j}=\sqrt{W_{i} W_{j}}, 1 \leq i \leq j \leq n$.
- We have $\alpha(G, w) \leq \vartheta(G, w)$, with equality if $G=(V, E)$ is a perfect graph [Lovász, 1979], [Grötschel, Lovász, Schrijver, 1981].

Weighted Lovász Theta Number

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
$\vartheta(G, w)=\max \left\{\langle W, X\rangle:\langle I, X\rangle=1, \quad X_{i j}=0,(i, j) \in E, \quad X \in \mathcal{P S D}{ }^{n}\right\}$,
where $W \in \mathcal{S}^{n}$ and $W_{i j}=\sqrt{W_{i} W_{j}}, 1 \leq i \leq j \leq n$.
- We have $\alpha(G, w) \leq \vartheta(G, w)$, with equality if $G=(V, E)$ is a perfect graph [Lovász, 1979], [Grötschel, Lovász, Schrijver, 1981].
- A stronger bound [Schrijver, 1979]:

Weighted Lovász Theta Number

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
$\vartheta(G, w)=\max \left\{\langle W, X\rangle:\langle I, X\rangle=1, \quad X_{i j}=0,(i, j) \in E, \quad X \in \mathcal{P S D}{ }^{n}\right\}$,
where $W \in \mathcal{S}^{n}$ and $W_{i j}=\sqrt{W_{i} W_{j}}, 1 \leq i \leq j \leq n$.
- We have $\alpha(G, w) \leq \vartheta(G, w)$, with equality if $G=(V, E)$ is a perfect graph [Lovász, 1979], [Grötschel, Lovász, Schrijver, 1981].
- A stronger bound [Schrijver, 1979]:

$$
\vartheta^{\prime}(G, w)=\max \left\{\langle W, X\rangle:\langle I, X\rangle=1, \quad X_{i j}=0,(i, j) \in E, \quad X \in \mathcal{D N}^{n}\right\}
$$

Weighted Lovász Theta Number

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
$\vartheta(G, w)=\max \left\{\langle W, X\rangle:\langle I, X\rangle=1, \quad X_{i j}=0,(i, j) \in E, \quad X \in \mathcal{P S D}{ }^{n}\right\}$,
where $W \in \mathcal{S}^{n}$ and $W_{i j}=\sqrt{W_{i} W_{j}}, 1 \leq i \leq j \leq n$.
- We have $\alpha(G, w) \leq \vartheta(G, w)$, with equality if $G=(V, E)$ is a perfect graph [Lovász, 1979], [Grötschel, Lovász, Schrijver, 1981].
- A stronger bound [Schrijver, 1979]: $\vartheta^{\prime}(G, w)=\max \left\{\langle W, X\rangle:\langle I, X\rangle=1, \quad X_{i j}=0,(i, j) \in E, \quad X \in \mathcal{D N}^{n}\right\}$.
- We have $\alpha(G, w) \leq \vartheta^{\prime}(G, w) \leq \vartheta(G, w)$, with equalities if $G=(V, E)$ is a perfect graph.

Establishing Connections

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.

Establishing Connections

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
- Let $Q \in \mathcal{M}(G, w)$, where

$$
\mathcal{M}(G, w)=\left\{B \in \mathcal{S}^{n}: B_{k k}=1 / w_{k}, i=1, \ldots, n ; 2 B_{i j} \geq B_{i i}+B_{j j},(i, j) \in E, B_{i j}=0, \text { otherwise }\right\}
$$

Establishing Connections

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
- Let $Q \in \mathcal{M}(G, w)$, where
$\mathcal{M}(G, w)=\left\{B \in \mathcal{S}^{n}: B_{k k}=1 / w_{k}, \quad i=1, \ldots, n ; 2 B_{i j} \geq B_{i j}+B_{j j},(i, j) \in E, B_{i j}=0\right.$, otherwise $\}$.
- Then,

$$
\nu(Q)=\frac{1}{\alpha(G, w)} .
$$

Establishing Connections

- Let $G=(V, E)$ be a simple, undirected graph with $V=\{1, \ldots, n\}$ and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive.
- Let $Q \in \mathcal{M}(G, w)$, where

$$
\mathcal{M}(G, w)=\left\{B \in \mathcal{S}^{n}: B_{k k}=1 / w_{k}, i=1, \ldots, n ; 2 B_{i j} \geq B_{i j}+B_{j j},(i, j) \in E, B_{i j}=0, \text { otherwise }\right\}
$$

- Then,

$$
\nu(Q)=\frac{1}{\alpha(G, w)} .
$$

Theorem

Let $G=(V, E)$ be a simple, undirected graph and let $w \in \mathbb{R}_{+}^{n}$ be strictly positive. For any $Q \in \mathcal{M}(G, w)$,

$$
\ell(Q)=\frac{1}{\vartheta^{\prime}(G, w)}
$$

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Implications

- Recall Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.

Implications

- Recall Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.
- Let us define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$.

Implications

- Recall Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.
- Let us define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$.
- We define an undirected graph $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

Implications

- Recall Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.
- Let us define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$.
- We define an undirected graph $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

- Note that $G(Q)=G\left(Q^{s}\right)$.

Implications

- Recall Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.
- Let us define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$.
- We define an undirected graph $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

- Note that $G(Q)=G\left(Q^{s}\right)$.
- Suppose that $Q_{i j}^{s}=0$ for all $(i, j) \notin E$.

Implications

- Recall Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.
- Let us define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$.
- We define an undirected graph $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\} .
$$

- Note that $G(Q)=G\left(Q^{s}\right)$.
- Suppose that $Q_{i j}^{s}=0$ for all $(i, j) \notin E$.
- Then, $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.

Exact Relaxations

Summary and Numerical Examples

Implications

- Recall Case 2: $Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$.
- Let us define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$.
- We define an undirected graph $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

- Note that $G(Q)=G\left(Q^{s}\right)$.
- Suppose that $Q_{i j}^{s}=0$ for all $(i, j) \notin E$.
- Then, $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.

Corollary

Let $Q \in \mathcal{S}^{n}$ be such that Q^{s} has strictly diagonal entries, and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$. If $G\left(Q^{s}\right)$ is a perfect graph, then $\ell\left(Q^{s}\right)=\nu\left(Q^{s}\right)$ and therefore, $\ell(Q)=\nu(Q)$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation Exact Relaxations
Summary and Numerical Examples

Summary

$$
\begin{gathered}
\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D} \mathcal{N}^{n}\right\} \\
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E
\end{gathered}
$$

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Summary

$$
\begin{gathered}
\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\} \\
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E .
\end{gathered}
$$

- Case 1: If $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$, then $\ell(Q)=\nu(Q)$.

Summary

$$
\begin{gathered}
\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\} \\
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E .
\end{gathered}
$$

- Case 1: If $Q+\lambda E \in \mathcal{P S D}^{n}$ for some $\lambda \in \mathbb{R}$, then $\ell(Q)=\nu(Q)$.
- Case 2: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}$ and there exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$, then $\ell(Q)=\nu(Q)$.

Summary

$$
\begin{gathered}
\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\} \\
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E .
\end{gathered}
$$

- Case 1: If $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$, then $\ell(Q)=\nu(Q)$.
- Case 2: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}$ and there exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$, then $\ell(Q)=\nu(Q)$.
- Case 3: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}, Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$, then construct $G\left(Q^{s}\right)$ and define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n:$

Summary

$$
\begin{gathered}
\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\} \\
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E .
\end{gathered}
$$

- Case 1: If $Q+\lambda E \in \mathcal{P S D}^{n}$ for some $\lambda \in \mathbb{R}$, then $\ell(Q)=\nu(Q)$.
- Case 2: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}$ and there exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$, then $\ell(Q)=\nu(Q)$.
- Case 3: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}, Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$, then construct $G\left(Q^{s}\right)$ and define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n:$
- Case 3a: If $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ and $G\left(Q^{s}\right)$ is a perfect graph, then $\ell(Q)=\nu(Q)$.

Summary

$$
\begin{gathered}
\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\} \\
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E .
\end{gathered}
$$

- Case 1: If $Q+\lambda E \in \mathcal{P S D}{ }^{n}$ for some $\lambda \in \mathbb{R}$, then $\ell(Q)=\nu(Q)$.
- Case 2: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}$ and there exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$, then $\ell(Q)=\nu(Q)$.
- Case 3: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}, Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$, then construct $G\left(Q^{s}\right)$ and define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$:
- Case 3a: If $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ and $G\left(Q^{s}\right)$ is a perfect graph, then $\ell(Q)=\nu(Q)$.
- Case 3b: Two further subcases:
- Case 3b-i: If $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ but $G\left(Q^{s}\right)$ is not a perfect graph?

Summary

$$
\begin{gathered}
\nu(Q)=\min \left\{x^{T} Q x: x \in \Delta_{n}\right\}=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{C P}^{n}\right\} \\
\ell(Q)=\min \left\{\langle Q, X\rangle:\langle E, X\rangle=1, \quad X \in \mathcal{D N}^{n}\right\} \\
Q^{s}=Q-\left(\min _{1 \leq i \leq j \leq n} Q_{i j}\right) E .
\end{gathered}
$$

- Case 1: If $Q+\lambda E \in \mathcal{P S D}^{n}$ for some $\lambda \in \mathbb{R}$, then $\ell(Q)=\nu(Q)$.
- Case 2: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}$ and there exists $k=1, \ldots, n$ such that $Q_{k k}^{s}=0$, then $\ell(Q)=\nu(Q)$.
- Case 3: If $Q+\lambda E \notin \mathcal{P S D}{ }^{n}$ for any $\lambda \in \mathbb{R}, Q_{k k}^{s}>0$ for all $k=1, \ldots, n$ and $Q_{i j}^{s}=Q_{j i}^{s}=0$ for some $1 \leq i<j \leq n$, then construct $G\left(Q^{s}\right)$ and define $w \in \mathbb{R}_{+}^{n}$, where $w_{k}=1 / Q_{k k}^{s}, k=1, \ldots, n$:
- Case 3a: If $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ and $G\left(Q^{s}\right)$ is a perfect graph, then $\ell(Q)=\nu(Q)$.
- Case 3b: Two further subcases:
- Case 3b-i: If $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ but $G\left(Q^{s}\right)$ is not a perfect graph?
- Case 3b-ii: If $Q^{s} \notin \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$?

Example 1 (Case 1)

$$
Q=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Example 1 (Case 1)

$$
Q=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

- $Q \in \mathcal{P S D}^{5}$. Therefore, $\nu(Q)=\ell(Q)=0.4$.

Example 2 (Case 2)

$$
Q=Q^{s}=\left[\begin{array}{lllll}
0 & 1 & 0 & 2 & 0 \\
1 & 2 & 3 & 0 & 2 \\
0 & 3 & 2 & 2 & 1 \\
2 & 0 & 2 & 1 & 0 \\
0 & 2 & 1 & 0 & 1
\end{array}\right]
$$

Example 2 (Case 2)

$$
Q=Q^{S}=\left[\begin{array}{lllll}
0 & 1 & 0 & 2 & 0 \\
1 & 2 & 3 & 0 & 2 \\
0 & 3 & 2 & 2 & 1 \\
2 & 0 & 2 & 1 & 0 \\
0 & 2 & 1 & 0 & 1
\end{array}\right]
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.

Example 2 (Case 2)

$$
Q=Q^{s}=\left[\begin{array}{lllll}
0 & 1 & 0 & 2 & 0 \\
1 & 2 & 3 & 0 & 2 \\
0 & 3 & 2 & 2 & 1 \\
2 & 0 & 2 & 1 & 0 \\
0 & 2 & 1 & 0 & 1
\end{array}\right]
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- $Q_{11}^{S}=0$. Therefore, $\nu(Q)=\ell(Q)=0$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation Exact Relaxations
Summary and Numerical Examples

Example 3 (Case 3a)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i i}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

Convex Cones and Their Properties Doubly Nonnegative Relaxation Exact Relaxations Summary and Numerical Examples

Example 3 (Case 3a)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

$$
Q=Q^{s}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Convex Cones and Their Properties Doubly Nonnegative Relaxation

Exact Relaxations

Summary and Numerical Examples

Example 3 (Case 3a)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i i}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

$$
Q=Q^{s}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Example 3 (Case 3a)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i i}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

$$
Q=Q^{S}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.

Example 3 (Case 3a)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

$$
Q=Q^{s}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $Q+\lambda E \notin \mathcal{P S D}{ }^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.

Example 3 (Case 3a)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.
- Note that $\alpha\left(G\left(Q^{s}\right), w\right)=2$. Therefore, $\nu(Q)=1 / 2$.

Example 3 (Case 3a)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\}
$$

- $Q+\lambda E \notin \mathcal{P S D} \mathcal{D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.
- Note that $\alpha\left(G\left(Q^{s}\right), w\right)=2$. Therefore, $\nu(Q)=1 / 2$.
- $G\left(Q^{s}\right)$ is a perfect graph. Therefore, $\ell(Q)=\nu(Q)=1 / 2$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation Exact Relaxations
Summary and Numerical Examples

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\} .
$$

Convex Cones and Their Properties Doubly Nonnegative Relaxation Exact Relaxations
Summary and Numerical Examples

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\} .
$$

$$
Q=Q^{s}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Summary and Numerical Examples

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{\mathrm{s}} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\} .
$$

$$
Q=Q^{s}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Convex Cones and Their Properties Doubly Nonnegative Relaxation

Exact Relaxations

Summary and Numerical Examples

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\}
$$

$$
Q=Q^{s}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation

Exact Relaxations

Summary and Numerical Examples

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{\mathrm{s}} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\} .
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{\mathrm{s}} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\} .
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.
- Note that $\alpha\left(G\left(Q^{s}\right), w\right)=2$. Therefore, $\nu(Q)=1 / 2$.

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{\mathrm{s}} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\} .
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.
- Note that $\alpha\left(G\left(Q^{s}\right), w\right)=2$. Therefore, $\nu(Q)=1 / 2$.
- $G\left(Q^{s}\right)$ is not a perfect graph.

Example 4 (Case 3b-i)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{\mathrm{s}} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\} .
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $Q^{s} \in \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$.
- Note that $\alpha\left(G\left(Q^{s}\right), w\right)=2$. Therefore, $\nu(Q)=1 / 2$.
- $G\left(Q^{s}\right)$ is not a perfect graph.
- We have $\ell(Q)=1 / \sqrt{5} \approx 0.4472<\nu(Q)=1 / 2$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\} .
$$

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\} .
$$

$$
Q=Q^{s}=\left[\begin{array}{ccccc}
1 & 0 & 0.9 & 0.9 & 0 \\
0 & 1 & 0 & 0.9 & 0.9 \\
0.9 & 0 & 1 & 0 & 0.9 \\
0.9 & 0.9 & 0 & 1 & 0 \\
0 & 0.9 & 0.9 & 0 & 1
\end{array}\right]
$$

Convex Cones and Their Properties Doubly Nonnegative Relaxation

Exact Relaxations

Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i i}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\} .
$$

$$
Q=Q^{s}=\left[\begin{array}{ccccc}
1 & 0 & 0.9 & 0.9 & 0 \\
0 & 1 & 0 & 0.9 & 0.9 \\
0.9 & 0 & 1 & 0 & 0.9 \\
0.9 & 0.9 & 0 & 1 & 0 \\
0 & 0.9 & 0.9 & 0 & 1
\end{array}\right]
$$

(2) 5

Convex Cones and Their Properties Doubly Nonnegative Relaxation

Exact Relaxations

Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
\begin{gathered}
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{s}+Q_{j j}^{s}, \quad 1 \leq i<j \leq n\right\} . \\
Q=Q^{s}=\left[\begin{array}{ccccc}
1 & 0 & 0.9 & 0.9 & 0 \\
0 & 1 & 0 & 0.9 & 0.9 \\
0.9 & 0 & 1 & 0 & 0.9 \\
0.9 & 0.9 & 0 & 1 & 0 \\
0 & 0.9 & 0.9 & 0 & 1
\end{array}\right]
\end{gathered}
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation

Exact Relaxations

Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\}
$$

$$
Q=Q^{s}=\left[\begin{array}{ccccc}
1 & 0 & 0.9 & 0.9 & 0 \tag{1}\\
0 & 1 & 0 & 0.9 & 0.9 \\
0.9 & 0 & 1 & 0 & 0.9 \\
0.9 & 0.9 & 0 & 1 & 0 \\
0 & 0.9 & 0.9 & 0 & 1
\end{array}\right]
$$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{\mathrm{s}} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\} .
$$

$Q=Q^{s}=\left[\begin{array}{ccccc}1 & 0 & 0.9 & 0.9 & 0 \\ 0 & 1 & 0 & 0.9 & 0.9 \\ 0.9 & 0 & 1 & 0 & 0.9 \\ 0.9 & 0.9 & 0 & 1 & 0 \\ 0 & 0.9 & 0.9 & 0 & 1\end{array}\right]$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$.
- $Q^{s} \notin \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ since $Q_{13}^{s}>0$.

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{\mathrm{s}} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\} .
$$

$Q=Q^{s}=\left[\begin{array}{ccccc}1 & 0 & 0.9 & 0.9 & 0 \\ 0 & 1 & 0 & 0.9 & 0.9 \\ 0.9 & 0 & 1 & 0 & 0.9 \\ 0.9 & 0.9 & 0 & 1 & 0 \\ 0 & 0.9 & 0.9 & 0 & 1\end{array}\right]$

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$.
- $Q^{s} \notin \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ since $Q_{13}^{s}>0$.
- $G\left(Q^{s}\right)$ is a perfect graph.

Convex Cones and Their Properties Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall $G\left(Q^{s}\right)=(V, E)$, where $V=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): 2 Q_{i j}^{s} \geq Q_{i j}^{\mathrm{s}}+Q_{j j}^{\mathrm{s}}, \quad 1 \leq i<j \leq n\right\}
$$

$Q=Q^{S}=\left[\begin{array}{ccccc}1 & 0 & 0.9 & 0.9 & 0 \\ 0 & 1 & 0 & 0.9 & 0.9 \\ 0.9 & 0 & 1 & 0 & 0.9 \\ 0.9 & 0.9 & 0 & 1 & 0 \\ 0 & 0.9 & 0.9 & 0 & 1\end{array}\right]$
(2) (5)

- $Q+\lambda E \notin \mathcal{P S D}^{5}$ for any $\lambda \in \mathbb{R}$.
- We have $w=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$.
- $Q^{s} \notin \mathcal{M}\left(G\left(Q^{s}, w\right)\right)$ since $Q_{13}^{s}>0$.
- $G\left(Q^{s}\right)$ is a perfect graph.
- We have $\ell(Q)=0.4472<0.4872=\nu(Q)$.

Concluding Remarks

- We identified several classes of instances of (StQP) for which the doubly nonnegative relaxation is exact.

Concluding Remarks

- We identified several classes of instances of (StQP) for which the doubly nonnegative relaxation is exact.
- Our results establish an interesting connection between (StQP) and the maximum weighted stable set problem.

Concluding Remarks

- We identified several classes of instances of (StQP) for which the doubly nonnegative relaxation is exact.
- Our results establish an interesting connection between (StQP) and the maximum weighted stable set problem.
- Our characterization yields a recipe for constructing instances of (StQP) for which the doubly nonnegative relaxation is not exact.

Concluding Remarks

- We identified several classes of instances of (StQP) for which the doubly nonnegative relaxation is exact.
- Our results establish an interesting connection between (StQP) and the maximum weighted stable set problem.
- Our characterization yields a recipe for constructing instances of (StQP) for which the doubly nonnegative relaxation is not exact.
- Can we identify further subcases of Case $\mathbf{3 b}$ for which the doubly nonnegative relaxation is exact?

Acknowledgements

- Jacek Gondzio
- Alemseged Weldeyesus
- TÜBITAK-BIDEB 2219 International Postdoctoral Research Scholarship Program
- University of Edinburgh

