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Standard Quadratic Program

Definition

A standard quadratic program involves minimizing a
(nonconvex) quadratic form (i.e., a homogeneous quadratic
function) over the unit simplex.

(StQP) ν(Q) = min{xTQx : x ∈ ∆n},
where

∆n = {x ∈ Rn : eT x = 1, x ∈ Rn
+} (the unit simplex),

Q ∈ Sn, where Sn denotes the space of n × n real symmetric matrices,

x ∈ Rn,

e ∈ Rn denotes the vector of all ones, and

Rn
+ denotes the nonnegative orthant in Rn.
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Applications

Portfolio optimization [Markowitz, 1952]

Quadratic resource allocation problem [Ibaraki and Katoh, 1988]

Population genetics [Kingman, 1961]

Evolutionary game theory [Bomze, 2002]

Social network analysis [Bomze et al., 2018]

Copositivity detection (a matrix M ∈ Sn is copositive iff
ν(M) = min{xTMx : x ∈ ∆n} ≥ 0)

Maximum (weighted) stable set problem [Motzkin and Straus,
1965], [Gibbons et al., 1997]

NP-hard in general

Can have at least (1.4933)n strict local minimizers! [Bomze et al.,
2018]
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Motivation and Focus

In this talk, we are interested in convex relaxations of (StQP).

Main Goal: To shed light on instances of (StQP) that admit
exact convex relaxations.
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Convex Cones

We denote by Sn the space of n × n real symmetric matrices.

We define the following cones in Sn:

N n =
{
M ∈ Sn : Mij ≥ 0, i = 1, . . . , n; j = 1, . . . , n

}
,

PSDn =
{
M ∈ Sn : uTMu ≥ 0, ∀u ∈ Rn

}
,

COPn =
{
M ∈ Sn : uTMu ≥ 0, ∀u ∈ Rn

+

}
,

CPn =

{
M ∈ Sn : M =

r∑
k=1

bk (bk )T , for some bk ∈ Rn
+, k = 1, . . . , r

}
,

DN n = PSDn ∩N n,

SPN n = {M ∈ Sn : M = M1 + M2, for some M1 ∈ PSDn, M2 ∈ N n} .

Each of these cones is closed, convex, full-dimensional, and pointed.

CPn ⊆ DN n ⊆
{
N n

PSDn

}
⊆ SPN n ⊆ COPn.
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Relations and Common Properties

CPn ⊆ DN n ⊆
{
N n

PSDn

}
⊆ SPN n ⊆ COPn.

We have CPn = DN n and SPN n = COPn iff n ≤ 4 [Diananda, 1962].

For n ≥ 5, checking membership is NP-hard for both CPn [Dickinson and
Gijben, 2014] and COPn [Murty and Kabadi, 1987].

Each of the remaining four cones is ”tractable.”

Let Kn ∈ {CPn,DN n,N n,PSDn,SPN n, COPn}
1 If A ∈ Kn, then Akk ≥ 0, k = 1, . . . , n.
2 A ∈ Kn iff PTAP ∈ Kn, where P ∈ Rn×n is a permutation matrix.
3 If A ∈ Kn, then every principal r × r submatrix of A is in Kr , r = 1, . . . , n.
4 If A ∈ Kn and B ∈ Km, then

A⊕ B =

[
A 0
0 B

]
∈ Kn+m.

In particular, B = 0 can be chosen.
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Let Kn ∈ {CPn,DN n,N n,PSDn,SPN n, COPn}
1 If A ∈ Kn, then Akk ≥ 0, k = 1, . . . , n.
2 A ∈ Kn iff PTAP ∈ Kn, where P ∈ Rn×n is a permutation matrix.
3 If A ∈ Kn, then every principal r × r submatrix of A is in Kr , r = 1, . . . , n.
4 If A ∈ Kn and B ∈ Km, then

A⊕ B =

[
A 0
0 B

]
∈ Kn+m.

In particular, B = 0 can be chosen.
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Copositive Formulation and A Convex Relaxation

(StQP) ν(Q) = min{xTQx : x ∈ ∆n}.

For any U ∈ Sn and V ∈ Sn,

〈U,V 〉 :=
n∑

i=1

n∑
j=1

UijVij .

(StQP) can be formulated as a copositive program [Bomze et al., 2000]:

(CP) ν(Q) = min{〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ CPn},

where X ∈ Sn and E = eeT ∈ Sn is the matrix of all ones.

Recall that

CPn ⊆ DN n ⊆
{
N n

PSDn

}
⊆ SPN n ⊆ COPn.

By replacing X ∈ CPn by X ∈ DN n, we obtain a relaxation of (CP):

(DN) `(Q) = min {〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ DN n} ,

(DN) is referred to as the doubly nonnegative relaxation.
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Basic Relations and Our Focus

ν(Q) = min{xTQx : x ∈ ∆n} = min{〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ CPn}
`(Q) = min {〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ DN n}

For all Q ∈ Sn, we have `(Q) ≤ ν(Q) since CPn ⊆ DN n.

For n ≤ 4, we have `(Q) = ν(Q) by Diananda’s result.

Question: For n ≥ 5, can we give a characterization of
instances of (StQP) for which `(Q) = ν(Q)?
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Global Optimality Conditions

(StQP) ν(Q) = min{xTQx : x ∈ ∆n}.

Theorem (Bomze, 1997)

Let Q ∈ Sn and let x∗ ∈ ∆n. Then,

ν(Q) = (x∗)TQx∗ ⇐⇒ Q − ((x∗)TQx∗)︸ ︷︷ ︸
ν(Q)

E ∈ COPn.
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A General Characterization

ν(Q) = min{xTQx : x ∈ ∆n} = min{〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ CPn}
`(Q) = min {〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ DN n}

Recall that Q − ν(Q)E ∈ COPn for any Q ∈ Sn.

Recall that SPN n ⊆ COPn.

Theorem

Let Q ∈ Sn. We have

`(Q) = ν(Q)⇐⇒ Q − ν(Q)E ∈ SPN n.
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An Implication

ν(Q) = min{xTQx : x ∈ ∆n} = min{〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ CPn}
`(Q) = min {〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ DN n}

Theorem

Let Q ∈ Sn be such that Q + λE ∈ PSDn for some λ ∈ R. Then,
`(Q) = ν(Q).

The proof is based on constructing an explicit decomposition
Q − ν(Q)E = S1 + S2, where S1 ∈ PSDn and S2 ∈ N n.

If Q ∈ PSDn, then `(Q) = ν(Q).

We may have Q +λE ∈ PSDn for some λ ∈ R even if Q 6∈ PSDn:

Q =

[
0 −2
−2 −1

]
6∈ PSD2, Q + 2E =

[
2 0
0 1

]
∈ PSD2.
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A Simpler Characterization

Question

Given Q ∈ Sn, how can we decide if Q + λE ∈ PSDn for some λ ∈ R?

Lemma

Let Q ∈ Sn. Then, Q + λE ∈ PSDn for some λ ∈ R iff

eTd = 0⇒ dTQd ≥ 0, ∀d ∈ Rn,

or, equivalently, UTQU ∈ PSDn−1, where U ∈ Rn×(n−1) is an
orthonormal basis for e⊥.
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Shifting

ν(Q) = min{xTQx : x ∈ ∆n} = min{〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ CPn}
`(Q) = min {〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ DN n}

Let Q ∈ Sn and λ ∈ R.

ν(Q + λE) = ν(Q) + λ,

`(Q + λE) = `(Q) + λ.

Let

Qs = Q −
(

min
1≤i≤j≤n

Qij

)
E .

Then Qs ∈ N n and Qs
ij = 0 for some 1 ≤ i ≤ j ≤ n.

We have 0 ≤ `(Qs) ≤ ν(Qs).

In particular, this implies that min
1≤i≤j≤n

Qij ≤ `(Q) ≤ ν(Q).
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Other Cases

Suppose that Q + λE 6∈ PSDn for any λ ∈ R.

Recall that

Qs = Q −
(

min
1≤i≤j≤n

Qij

)
E .

We have Qs ∈ N n and Qs
ij = 0 for some 1 ≤ i ≤ j ≤ n.

Case 1: There exists k = 1, . . . , n such that Qs
kk = 0.

Case 2: Qs
kk > 0 for all k = 1, . . . , n and Qs

ij = Qs
ji = 0 for

some 1 ≤ i < j ≤ n.
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Case 1

Qs = Q −
(

min
1≤i≤j≤n

Qij

)
E ∈ N n.

Case 1: There exists k = 1, . . . , n such that Qs
kk = 0.

Then, `(Qs) = ν(Qs) = 0 since

0 ≤ `(Qs) ≤ ν(Qs) ≤ eTk Qsek = Qs
kk = 0.

Corollary

If Q ∈ Sn satisfies min
1≤i≤j≤n

Qij = Qkk for some k = 1, . . . , n, then

`(Q) = ν(Q) = Qkk .
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Case 2

Qs = Q −
(

min
1≤i≤j≤n

Qij

)
E ∈ N n.

Case 2: There exists Qs
kk > 0 for all k = 1, . . . , n and Qs

ij = Qs
ji = 0

for some 1 ≤ i < j ≤ n.

We will slightly digress.

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 17/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Case 2

Qs = Q −
(

min
1≤i≤j≤n

Qij

)
E ∈ N n.

Case 2: There exists Qs
kk > 0 for all k = 1, . . . , n and Qs

ij = Qs
ji = 0

for some 1 ≤ i < j ≤ n.

We will slightly digress.

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 17/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Maximum Weighted Stable Set Problem I

Let G = (V ,E ) be a simple, undirected graph with
V = {1, . . . , n} and let w ∈ Rn

+ be strictly positive, where wk

denotes the weight of vertex k , k = 1, . . . , n.

A set S ⊆ V is a stable set if no two vertices in S are
connected by an edge.

Weight of a stable set S ⊆ V is w(S) =
∑
j∈S

wj .

The maximum weighted stable set problem is concerned with
finding a stable set with the maximum weight, and its weight
is denoted by α(G ,w).
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Maximum Weighted Stable Set Problem II

Let G = (V ,E ) be a simple, undirected graph with
V = {1, . . . , n} and let w ∈ Rn

+ be strictly positive, where wj

denotes the weight of vertex k , k = 1, . . . , n.

Let

M(G ,w) =

B ∈ Sn :
Bkk = 1/wk , k = 1, . . . , n,
2Bij ≥ Bii + Bjj , (i , j) ∈ E ,
Bij = 0, otherwise

 .

Theorem (Gibbons et al., 1997)

Let G = (V ,E ) be a simple, undirected graph and let w ∈ Rn
+ be

strictly positive. Then, for any B ∈M(G ,w),

1

α(G ,w)
= ν(B) = min{xTBx : x ∈ ∆n}.
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Weighted Lovász Theta Number

Let G = (V ,E) be a simple, undirected graph with V = {1, . . . , n} and
let w ∈ Rn

+ be strictly positive.

ϑ(G ,w) = max {〈W ,X 〉 : 〈I ,X 〉 = 1, Xij = 0, (i , j) ∈ E , X ∈ PSDn} ,

where W ∈ Sn and Wij =
√
wiwj , 1 ≤ i ≤ j ≤ n.

We have α(G ,w) ≤ ϑ(G ,w), with equality if G = (V ,E) is a perfect
graph [Lovász, 1979], [Grötschel, Lovász, Schrijver, 1981].

A stronger bound [Schrijver, 1979]:

ϑ′(G ,w) = max {〈W ,X 〉 : 〈I ,X 〉 = 1, Xij = 0, (i , j) ∈ E , X ∈ DN n} .

We have α(G ,w) ≤ ϑ′(G ,w) ≤ ϑ(G ,w), with equalities if G = (V ,E) is
a perfect graph.
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Establishing Connections

Let G = (V ,E) be a simple, undirected graph with V = {1, . . . , n} and
let w ∈ Rn

+ be strictly positive.

Let Q ∈M(G ,w), where

M(G ,w) =
{
B ∈ Sn : Bkk = 1/wk , i = 1, . . . , n; 2Bij ≥ Bii + Bjj , (i, j) ∈ E , Bij = 0, otherwise

}
.

Then,

ν(Q) =
1

α(G ,w)
.

Theorem

Let G = (V ,E) be a simple, undirected graph and let w ∈ Rn
+ be strictly

positive. For any Q ∈M(G ,w),

`(Q) =
1

ϑ′(G ,w)
.

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 21/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Establishing Connections

Let G = (V ,E) be a simple, undirected graph with V = {1, . . . , n} and
let w ∈ Rn

+ be strictly positive.

Let Q ∈M(G ,w), where

M(G ,w) =
{
B ∈ Sn : Bkk = 1/wk , i = 1, . . . , n; 2Bij ≥ Bii + Bjj , (i, j) ∈ E , Bij = 0, otherwise

}
.

Then,

ν(Q) =
1

α(G ,w)
.

Theorem

Let G = (V ,E) be a simple, undirected graph and let w ∈ Rn
+ be strictly

positive. For any Q ∈M(G ,w),

`(Q) =
1

ϑ′(G ,w)
.

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 21/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Establishing Connections

Let G = (V ,E) be a simple, undirected graph with V = {1, . . . , n} and
let w ∈ Rn

+ be strictly positive.

Let Q ∈M(G ,w), where

M(G ,w) =
{
B ∈ Sn : Bkk = 1/wk , i = 1, . . . , n; 2Bij ≥ Bii + Bjj , (i, j) ∈ E , Bij = 0, otherwise

}
.

Then,

ν(Q) =
1

α(G ,w)
.

Theorem

Let G = (V ,E) be a simple, undirected graph and let w ∈ Rn
+ be strictly

positive. For any Q ∈M(G ,w),

`(Q) =
1

ϑ′(G ,w)
.

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 21/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Establishing Connections

Let G = (V ,E) be a simple, undirected graph with V = {1, . . . , n} and
let w ∈ Rn

+ be strictly positive.

Let Q ∈M(G ,w), where

M(G ,w) =
{
B ∈ Sn : Bkk = 1/wk , i = 1, . . . , n; 2Bij ≥ Bii + Bjj , (i, j) ∈ E , Bij = 0, otherwise

}
.

Then,

ν(Q) =
1

α(G ,w)
.

Theorem

Let G = (V ,E) be a simple, undirected graph and let w ∈ Rn
+ be strictly

positive. For any Q ∈M(G ,w),

`(Q) =
1

ϑ′(G ,w)
.

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 21/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Implications

Recall Case 2: Qs
kk > 0 for all k = 1, . . . , n and Qs

ij = Qs
ji = 0 for some

1 ≤ i < j ≤ n.

Let us define w ∈ Rn
+, where wk = 1/Qs

kk , k = 1, . . . , n.

We define an undirected graph G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Note that G(Q) = G(Qs).

Suppose that Qs
ij = 0 for all (i , j) 6∈ E .

Then, Qs ∈M(G(Qs ,w)).

Corollary

Let Q ∈ Sn be such that Qs has strictly diagonal entries, and Qs ∈M(G(Qs ,w)),
where wk = 1/Qs

kk , k = 1, . . . , n. If G(Qs) is a perfect graph, then `(Qs) = ν(Qs)
and therefore, `(Q) = ν(Q).
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Summary

ν(Q) = min{xTQx : x ∈ ∆n} = min{〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ CPn}
`(Q) = min {〈Q,X 〉 : 〈E ,X 〉 = 1, X ∈ DN n}

Qs = Q −
(

min
1≤i≤j≤n

Qij

)
E .

Case 1: If Q + λE ∈ PSDn for some λ ∈ R, then `(Q) = ν(Q).

Case 2: If Q + λE 6∈ PSDn for any λ ∈ R and there exists k = 1, . . . , n such
that Qs

kk = 0, then `(Q) = ν(Q).

Case 3: If Q + λE 6∈ PSDn for any λ ∈ R, Qs
kk > 0 for all k = 1, . . . , n and

Qs
ij = Qs

ji = 0 for some 1 ≤ i < j ≤ n, then construct G(Qs) and define

w ∈ Rn
+, where wk = 1/Qs

kk , k = 1, . . . , n:

Case 3a: If Qs ∈M(G(Qs ,w)) and G(Qs) is a perfect graph, then

`(Q) = ν(Q).

Case 3b: Two further subcases:

Case 3b-i: If Qs ∈M(G(Qs ,w)) but G(Qs) is not a perfect graph?

Case 3b-ii: If Qs 6∈ M(G(Qs ,w))?
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Example 1 (Case 1)

Q =


2 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1

 .

Q ∈ PSD5. Therefore, ν(Q) = `(Q) = 0.4.
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Example 2 (Case 2)

Q = Qs =


0 1 0 2 0
1 2 3 0 2
0 3 2 2 1
2 0 2 1 0
0 2 1 0 1



Q + λE 6∈ PSD5 for any λ ∈ R.

Qs
11 = 0. Therefore, ν(Q) = `(Q) = 0.
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Example 3 (Case 3a)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 1 1 1 0
1 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1


2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
and Qs ∈M(G (Qs ,w)).

Note that α(G (Qs),w) = 2. Therefore, ν(Q) = 1/2.

G (Qs) is a perfect graph. Therefore, `(Q) = ν(Q) = 1/2.
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Example 5 (Case 3b-ii)
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]T
.
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13 > 0.

G (Qs) is a perfect graph.
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On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 0 0.9 0.9 0
0 1 0 0.9 0.9

0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1



2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
.

Qs 6∈ M(G (Qs ,w)) since Qs
13 > 0.

G (Qs) is a perfect graph.

We have `(Q) = 0.4472 < 0.4872 = ν(Q).

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 0 0.9 0.9 0
0 1 0 0.9 0.9

0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1


2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
.

Qs 6∈ M(G (Qs ,w)) since Qs
13 > 0.

G (Qs) is a perfect graph.

We have `(Q) = 0.4472 < 0.4872 = ν(Q).

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 0 0.9 0.9 0
0 1 0 0.9 0.9

0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1


2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
.

Qs 6∈ M(G (Qs ,w)) since Qs
13 > 0.

G (Qs) is a perfect graph.

We have `(Q) = 0.4472 < 0.4872 = ν(Q).

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 0 0.9 0.9 0
0 1 0 0.9 0.9

0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1


2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
.

Qs 6∈ M(G (Qs ,w)) since Qs
13 > 0.

G (Qs) is a perfect graph.

We have `(Q) = 0.4472 < 0.4872 = ν(Q).

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 0 0.9 0.9 0
0 1 0 0.9 0.9

0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1


2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
.

Qs 6∈ M(G (Qs ,w)) since Qs
13 > 0.

G (Qs) is a perfect graph.

We have `(Q) = 0.4472 < 0.4872 = ν(Q).

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 0 0.9 0.9 0
0 1 0 0.9 0.9

0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1


2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
.

Qs 6∈ M(G (Qs ,w)) since Qs
13 > 0.

G (Qs) is a perfect graph.

We have `(Q) = 0.4472 < 0.4872 = ν(Q).

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Convex Cones and Their Properties
Doubly Nonnegative Relaxation
Exact Relaxations
Summary and Numerical Examples

Example 5 (Case 3b-ii)

Recall G(Qs) = (V ,E), where V = {1, . . . , n} and

E =
{

(i , j) : 2Qs
ij ≥ Qs

ii + Qs
jj , 1 ≤ i < j ≤ n

}
.

Q = Qs =


1 0 0.9 0.9 0
0 1 0 0.9 0.9

0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1


2 5

3

1

4

Q + λE 6∈ PSD5 for any λ ∈ R.

We have w =
[
1 1 1 1 1

]T
.

Qs 6∈ M(G (Qs ,w)) since Qs
13 > 0.

G (Qs) is a perfect graph.

We have `(Q) = 0.4472 < 0.4872 = ν(Q).

On Doubly Nonnegative Relaxations of Standard Quadratic Programs E. Alper Yıldırım 28/30



Outline
Introduction

Convex Relaxations
Conclusions

Concluding Remarks

We identified several classes of instances of (StQP) for which
the doubly nonnegative relaxation is exact.

Our results establish an interesting connection between
(StQP) and the maximum weighted stable set problem.

Our characterization yields a recipe for constructing instances
of (StQP) for which the doubly nonnegative relaxation is not
exact.

Can we identify further subcases of Case 3b for which the
doubly nonnegative relaxation is exact?
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