



## Optimization of Truss Structures by Semidefinite Programming

#### Alemseged G. Weldeyesus Jacek Gondzio

#### Semidefinite Programming: Theory and Applications 19 October 2018 Edinburgh

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

A. Weldeysus, J. Gondzio

#### Outline

#### Introduction

Problem formulation

The optimization method

#### Techniques employed

Exploiting the algebraic structures Member adding Warm-start strategy

#### Numerical examples

#### Conclusions and future works

## Structural optimization

• Consider the following design domain and loading conditions.



- The goal is to find the lightest structure that is able to carry the given set of loads.
- Several approaches of structural optimization.

Topology optimization (continuum\*)

Topology optimization (truss)





\*O. Sigmund. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21:120–127, 2001.

#### Application



http://www.bbc.co.uk/programmes/p01rrnwc/p01rrbzl



https://en.wikipedia.org/wiki/Astoria%E2%80%93Megler\_Bridge



https://en.wikipedia.org/wiki/London\_King27s\_Cross \_railway\_station



http://www.buildingtalk.com/wpcontent/uploads/arsenal-1.jpg

## The underlying minimum weight problem

$$\begin{array}{ll} \underset{a,q_{\ell},u_{\ell}}{\text{minimize}} & I^{T} a \\ \text{subject to} & \sum_{i} q_{\ell,i} \gamma_{i} = f_{\ell}, \qquad \ell = 1, \cdots, n_{L} \\ & \frac{a_{i} E}{I_{i}} \gamma_{i}^{T} u_{\ell} = q_{\ell,i} \qquad \ell = 1, \cdots, n_{L}, i = 1, \cdots, m \\ & - a \sigma^{-} \leq q_{\ell} \leq \sigma^{+} a, \quad \ell = 1, \cdots, n_{L} \\ & a > 0 \end{array}$$

$$(1)$$

- n<sub>1</sub> number of load cases.
- ▶  $I \in \mathbb{R}^n$  is a vector of bar lengths,
- $a \in \mathbb{R}^n$  is a vector of bar cross-sectional areas,
- $f_{\ell} \in \mathbb{R}^m$  is a vector of applied load forces.
- ▶  $q_{\ell} \in \mathbb{R}^n$  are axial forces in members,
- $\sigma^- > 0$  and  $\sigma^+ > 0$  are the the material's yield stresses in compression and tension,

E is Young's modulus. Bendsøe, M., Sigmund, O, Topology Optimization: Theory, Methods and Applications. Springer (2003) efinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio



## Stability constraints

• Consider the following three dimensional problem.







(a) Design domains, bc, and loads.

(b) Without stability considerations.

(c) With stability considerations.

#### Without stability considerations:

- The optimal design (a slender of six bars in compression) needs some kind of support or bracing from orthogonal directions.
- The optimal design for the bridge problem includes independent planar trusses. It lacks connectivity.

#### With stability considerations:

- The bar has bracing.
- The independent planar trusses in the bridge are connected

#### The minimum weight problem with global stability constraints minimize $I^T a$ $a, q_{\ell}, u_{\ell}$ subject to $\sum_{i} q_{\ell,i} \gamma_i = f_{\ell}, \qquad \ell = 1, \cdots, n_L$ $\frac{a_i E}{l_i} \gamma_i^T u_\ell = q_{\ell,i} \qquad \ell = 1, \cdots, n_L, i = 1, \cdots, m$ (2) $-a\sigma^- < q_\ell < \sigma^+ a, \quad \ell = 1, \cdots, n_\ell$ $K(a) + \tau_{\ell} G(q_{\ell}) \succeq 0 \quad \ell = 1, \cdots, n_{\ell}$ a > 0

where the stiffness matrix K and geometry stiffness matrix G are given by

$$\mathcal{K}(a) = \sum_{j=1}^{m} a_j \mathcal{K}_j, \text{ with } \mathcal{K}_j = \frac{\mathcal{E}_j}{l_j} \gamma_j \gamma_j^{\mathsf{T}}, \text{ and } \mathcal{G}(q) = \sum_{j=1}^{m} q_j \mathcal{G}_j, \text{ with } \mathcal{G}_j = \frac{1}{l_j} (\delta_j \delta_j^{\mathsf{T}} + \eta_i \eta_j^{\mathsf{T}})$$

- The loading factor  $\tau_{\ell} \geq 1$ .
- $(\delta_j, \gamma_j, \eta_j)$  are mutually orthogonal.  $(\eta = 0 \text{ for } 2D \text{ problems})$

M. Kocvara. On the modelling and solving of the truss design problem with global stability constraints. Structural and Multidisciplinary Optimization, 23:189–203, 2002. Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio

# The minimum weight problem with global stability constraints

$$\begin{array}{ll} \underset{a,q_{\ell},u_{\ell}}{\text{minimize}} & I^{T} a \\ \text{subject to} & \sum_{i} q_{\ell,i} \gamma_{i} = f_{\ell}, \qquad \ell = 1, \cdots, n_{L} \\ & \frac{a_{i}E}{l_{i}} \gamma_{i}^{T} u_{\ell} = q_{\ell,i} \qquad \ell = 1, \cdots, n_{L}, i = 1, \cdots, m \\ & - a\sigma^{-} \leq q_{\ell} \leq \sigma^{+} a, \quad \ell = 1, \cdots, n_{L} \\ & K(a) + \tau_{\ell} G(q_{\ell}) \succeq 0 \qquad \ell = 1, \cdots, n_{L} \\ & a \geq 0 \end{array}$$

$$(2)$$

The problem (2) is large-scale nonlinear non-convex semidefinite program.



#### Simplification

Ignore the kinematic compatibility constraints

$$\frac{a_i E}{l_i} \gamma_i^T u_\ell = q_{\ell,i}, \ \ell = 1, \cdots, n_L, \ i = 1, \cdots, m.$$

Hence, we solve the linear formulation

$$\begin{array}{ll} \underset{a,q_{\ell}}{\text{minimize}} & l^{T} a \\ \text{subject to} & \sum_{i} q_{\ell,i} \gamma_{i} = f_{\ell}, \qquad \ell = 1, \cdots, n_{L} \\ & -a\sigma^{-} \leq q_{\ell} \leq \sigma^{+} a, \quad \ell = 1, \cdots, n_{L} \\ & K(a) + \tau_{\ell} G(q_{\ell}) \succeq 0 \quad \ell = 1, \cdots, n_{L} \\ & a \geq 0. \end{array}$$

$$(3)$$

We then measure the violation due to ignoring the kinematic compatibility constraints by solving the least-squares problem

minimize 
$$\max_{\ell} \frac{1}{||q_{\ell}^{*}||^{2}} \sum_{i} (\frac{a_{i}^{*}E}{l_{i}}\gamma_{i}^{T}u_{\ell} - q_{\ell,i}^{*})^{2},$$
 (4)

where  $a^*$  and  $q^*_{\ell}$  are the solution of the relaxed problem (3). Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio

## Simplification

The (relaxation) SDP problem

$$\begin{array}{ll} \underset{a,q_{\ell}}{\text{minimize}} & I^{T} a \\ \text{subject to} & \sum_{i} q_{\ell,i} \gamma_{i} = f_{\ell}, \qquad \ell = 1, \cdots, n_{L} \\ & -a\sigma^{-} \leq q_{\ell} \leq \sigma^{+} a, \quad \ell = 1, \cdots, n_{L} \\ & K(a) + \tau_{\ell} G(q_{\ell}) \succeq 0 \quad \ell = 1, \cdots, n_{L} \\ & a \geq 0 \end{array}$$

$$(5)$$

- can be efficiently solved.
- provides lower bounds to the nonlinear and non-convex formulation.
- ► its solution has (usually) small violation in the kinematic compatibility constraints for realistic input and reasonable value of \(\tau\_{\ell}\)

#### Primal-Dual Interior Point Method

Consider the following primal and dual semidefinite programs.

 $\begin{array}{cccc} & \underset{X}{\operatorname{minimize}} & \underset{C \bullet X}{\operatorname{minimize}} & \underset{C \bullet X}{\operatorname{minimize}} & \underset{y,S}{\operatorname{subject to}} & \underset{X \succeq 0}{\operatorname{minimize}} & \underset{y,S}{\operatorname{subject to}} & \underset{i=1}{\overset{m}{\operatorname{subject to}}} & \underset{i=$ 

#### Primal-Dual Interior Point Method

• Consider the following primal and dual semidefinite programs.

 $\max_{\substack{ \text{maximize} \\ maximize}} Dual_{b^{T}v}$ Primal minimize  $C \bullet X$ subject to  $\sum_{i=1}^{m} y_i A_i + S = C$ subject to  $A_i \bullet X = b_i, i = 1, ..., m$  $X \succ 0$  $S \succ 0$ where  $C, A_i \in \mathbb{S}^{n \times n}$ ,  $b, y \in \mathbb{R}^m$ , and  $U \bullet V = \sum_i \sum_j U_{ij} V_{ij}$  for  $U, V \in \mathbb{R}^{n \times n}$ . • The first-order optimality conditions are (solved for  $\mu_k \rightarrow 0$ ) AX = b $\mathcal{A}^* v + S = C$ (6) $X = \mu S^{-1}$ .

where  $\mathcal{A}: \mathbb{S}^n \to \mathbb{R}^m : \mathcal{A}X = (A_i \bullet X)_{i=1}^m$  and  $\mathcal{A}^*: \mathbb{R}^m \to \mathbb{S}^n : \mathcal{A}^*y = \sum_{i=1}^m y_i A_i$ 

Primal-Dual Interior Point Method Consider the following primal and dual semidefinite programs.  $\max_{\substack{\text{maximize}}} Dual b^T v$ Primal minimize  $C \bullet X$ subject to  $\sum_{i=1}^{n} y_i A_i + S = C$ subject to  $A_i \bullet X = b_i, i = 1, ..., m$  $X \succ 0$  $S \succ 0$ where  $C, A_i \in \mathbb{S}^{n \times n}$ ,  $b, y \in \mathbb{R}^m$ , and  $U \bullet V = \sum_i \sum_i U_{ij} V_{ij}$  for  $U, V \in \mathbb{R}^{n \times n}$ . • The first-order optimality conditions are (solved for  $\mu_k \rightarrow 0$ )  $\Delta X = h$  $\mathcal{A}^* \mathbf{v} + \mathbf{S} = \mathbf{C}$ (6)

 $X = \mu S^{-1}.$ 

where  $\mathcal{A} : \mathbb{S}^n \to \mathbb{R}^m : \mathcal{A}X = (A_i \bullet X)_{i=1}^m$  and  $\mathcal{A}^* : \mathbb{R}^m \to \mathbb{S}^n : \mathcal{A}^*y = \sum_{i=1}^m y_i A_i$ • Apply Newton method to solve (6).

$$\begin{bmatrix} 0 & \mathcal{A}^* & \mathcal{I} \\ \mathcal{A} & 0 & 0 \\ \mathcal{E} & 0 & \mathcal{F} \end{bmatrix} \begin{bmatrix} \Delta X \\ \Delta y \\ \Delta S \end{bmatrix} = \begin{bmatrix} \xi_d \\ \xi_p \\ \xi_c \end{bmatrix}.$$

where  $\mathcal{E} = I \odot I$ ,  $\mathcal{F} = X \odot S^{-1}$ , and  $P \odot Q : \mathbb{S}^n \to \mathbb{S}^n : (P \odot Q)U = \frac{1}{2}(PUQ^T) + QUP^T)$ 

## Primal-Dual Interior Point Method

Consider the following primal and dual semidefinite programs.

 $\max_{\substack{ \text{maximize} \\ maximize}} Dual_{b^{T}v}$ Primal minimize  $C \bullet X$ subject to  $\sum_{i=1}^{m} y_i A_i + S = C$ subject to  $A_i \bullet X = b_i, i = 1, ..., m$  $X \succ 0$  $S \succ 0$ where  $C, A_i \in \mathbb{S}^{n \times n}$ ,  $b, y \in \mathbb{R}^m$ , and  $U \bullet V = \sum_i \sum_i U_{ij} V_{ij}$  for  $U, V \in \mathbb{R}^{n \times n}$ . • The first-order optimality conditions are (solved for  $\mu_k \rightarrow 0$ ) AX = b $\mathcal{A}^* v + S = C$ (6) $X = \mu S^{-1}$ .

where  $\mathcal{A} : \mathbb{S}^n \to \mathbb{R}^m : \mathcal{A}X = (A_i \bullet X)_{i=1}^m$  and  $\mathcal{A}^* : \mathbb{R}^m \to \mathbb{S}^n : \mathcal{A}^*y = \sum_{i=1}^m y_i A_i$ • Usually solved for the reduced system (normal equations)

$$\mathcal{A}\mathcal{E}^{-1}\mathcal{F}\mathcal{A}^*\Delta y = -\xi_p + \mathcal{A}\mathcal{E}^{-1}(\xi_d - \mathcal{F}\xi_c).$$

#### Primal-Dual Interior Point Method

- The method obtains solution within modest number of iterations.
- Every iteration requires solving the linear system

$$\mathcal{A}\mathcal{E}^{-1}\mathcal{F}\mathcal{A}^*\Delta y = -\xi_{\rho} + \mathcal{A}\mathcal{E}^{-1}(\xi_d - \mathcal{F}\xi_c).$$

- Forming the system requires  $O(mn^3 + m^2n^2)$  arithmetic operations (straightforward expressions) (bottle-neck)
- ▶ Large storage requirement (bottle-neck).  $\mathcal{AE}^{-1}\mathcal{FA}^*$  is usually full matrix.

$$\begin{array}{ll} \underset{a,q_{\ell},u_{\ell}}{\text{minimize}} & l^{T}a \\ \text{subject to} & Bq_{\ell} = f_{\ell}, & \ell = 1, \cdots, n_{L} \\ & -a\sigma^{-} \leq q_{\ell} \leq \sigma^{+}a, \quad \ell = 1, \cdots, n_{L} \\ & K(a) + \tau_{\ell}G(q_{\ell}) \succeq 0 \quad \ell = 1, \cdots, n_{L} \\ & a \geq 0 \end{array}$$

$$(7)$$



#### Exploiting algebraic structures

The reduced system

$$\mathcal{A}\mathcal{E}^{-1}\mathcal{F}\mathcal{A}^*\Delta y = -\xi_{\rho} + \mathcal{A}\mathcal{E}^{-1}(\xi_d - \mathcal{F}\xi_c).$$

for the truss problem is

$$\begin{bmatrix} A_{11} & A_{12}^{T} & 0\\ A_{12} & A_{22} & \tilde{B}^{T}\\ 0 & \tilde{B} & 0 \end{bmatrix} \begin{bmatrix} \Delta a\\ \Delta q_{\ell}\\ \Delta \lambda_{\ell} \end{bmatrix} = \begin{bmatrix} \xi_{1}\\ \xi_{2}\\ \xi_{3} \end{bmatrix}, \text{ where}$$
(8)  
$$(A_{11})_{ij} = -\sum_{\ell} X_{\ell} K_{i} S_{\ell}^{-1} \bullet K_{j} + (D_{11})_{ij}$$
$$(A_{12})_{ij} = -X_{\ell} K_{i} S_{\ell}^{-1} \bullet G_{j} + (D_{12})_{ij}, (A_{22})_{ij} = -X_{\ell} G_{i} S_{\ell}^{-1} \bullet G_{j} + (D_{22})_{ij}$$
$$K_{j} = \frac{E_{j}}{l_{j}} \gamma_{j} \gamma_{j}^{T}, \ G_{j} = \frac{1}{l_{j}} (\delta_{j} \delta_{j}^{T} + \eta_{i} \eta_{j}^{T}),$$

 $D_{kl}$  diagonal matrices, and  $U \bullet V = \sum_i \sum_j U_{ij} V_{ij}$  for  $U, V \in \mathbb{R}^{n \times n}$ .

#### Exploiting algebraic structures

$$\begin{bmatrix} A_{11} & A_{12}^{T} & 0\\ A_{12} & A_{22} & \tilde{B}^{T}\\ 0 & \tilde{B} & 0 \end{bmatrix} \begin{bmatrix} \Delta a\\ \Delta q_{\ell}\\ \Delta \lambda_{\ell} \end{bmatrix} = \begin{bmatrix} \xi_{1}\\ \xi_{2}\\ \xi_{3} \end{bmatrix}, \text{ where}$$
(8)  
$$(A_{11})_{ij} = -\sum_{\ell} X_{\ell} K_{i} S_{\ell}^{-1} \bullet K_{j} + (D_{11})_{ij}$$
$$(A_{12})_{ij} = -X_{\ell} K_{i} S_{\ell}^{-1} \bullet G_{j} + (D_{12})_{ij}, (A_{22})_{ij} = -X_{\ell} G_{i} S_{\ell}^{-1} \bullet G_{j} + (D_{22})_{ij}$$
$$K_{j} = \frac{E_{j}}{I_{i}} \gamma_{j} \gamma_{j}^{T}, \ G_{j} = \frac{1}{I_{i}} (\delta_{j} \delta_{j}^{T} + \eta_{i} \eta_{j}^{T}),$$

• We exploit the low rank property (and sparsity) of the  $K_i$ 's and  $G_i$ 's.

$$X_{\ell} K_i S_{\ell}^{-1} \bullet K_j = \frac{E^2}{l_i l_j} \gamma_j^{\mathsf{T}} S_{\ell}^{-1} \gamma_i \gamma_i^{\mathsf{T}} X_{\ell} \gamma_j, \qquad (9)$$

▶ The matrix in (8) can be computed in  $\mathcal{O}(n^2m)$  instead of  $\mathcal{O}(nm^3 + n^2m^2)$  arithmetic operations.

## A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite programming. SIAM Journal on Optimization, 7(4):991–1016, 1997.

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

A. Weldeysus, J. Gondzio



(a)



(b) Mem add iter.=1, 444 bars,  $vol=0.05681m^3$ 



(d) Mem add iter.=3, 564 bars,  $vol=0.05417m^3$ 



(f) Mem add iter.=5, 592 bars, vol= 0.05414m<sup>3</sup>

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018



(c) Mem add iter.=2, 518 bars,  $vol= 0.05429m^3$ 



(e) Mem add iter.=4, 588 bars,  $vol= 0.05414m^3$ 



(g) Mem add iter.=6, 600 bars, vol=  $0.05414m^3_{A. Weldeysus, J. Gondzio}$ 

#### Member adding Primal (# inital bars) $\sum_{j\in\mathcal{K}_0}l_ja_j+\sum_{j\in\mathcal{K}_1}l_ja_j$

 $\underset{a,q}{\mathsf{minimize}}$ 

subject to

$$\sum_{j \in \mathcal{K}_0} \gamma_j q_{\ell,j} + \sum_{j \in \mathcal{K}_1} \gamma_j q_{\ell,j} = f_{\ell}, \qquad \forall \ell$$

$$-\sigma^{-}\mathbf{a}_{j} \leq q_{\ell,j} \leq \sigma^{+}\mathbf{a}_{j}, \qquad \qquad j \in \mathcal{K}_{0}, orall \ell$$

$$-\sigma^{-}\mathbf{a}_{j} \leq q_{\ell,j} \leq \sigma^{+}\mathbf{a}_{j}, \qquad \qquad j \in \mathcal{K}_{1}, orall \ell$$

$$\sum_{j \in \mathcal{K}_0} a_j K_j + \sum_{j \in \mathcal{K}_1} a_j K_j + \tau_{\ell} \sum_{j \in \mathcal{K}_0} q_{\ell,j} G_j + \tau_{\ell} \sum_{j \in \mathcal{K}_1} q_{\ell,j} G_j \succeq 0 \qquad \forall \ell$$

$$\mathbf{a}_{j} \geq \mathbf{0}, j \in \mathcal{K}_{0}, \mathbf{a}_{j} \geq \mathbf{0}, j \in \mathcal{K}_{1}, orall \ell$$

$$\sum_{\lambda,X}^{\bullet} \sum_{\ell}^{\mathsf{Dual}} f_{\ell}^{\mathsf{T}} \lambda_{\ell}$$
s.t. 
$$-\frac{I}{\sigma^{-}} (I_{j} - \sum_{\ell} K_{j} \bullet X_{\ell}) \leq \sum_{\ell} (\gamma_{j}^{\mathsf{T}} \lambda_{\ell} + \tau_{\ell} G_{j} \bullet X_{\ell}) \leq \frac{1}{\sigma^{+}} (I_{j} - \sum_{\ell} K_{j} \bullet X_{\ell}), j \in \mathcal{K}_{0}, \forall \ell$$

$$-\frac{I}{\sigma^{-}} (I_{j} - \sum_{\ell} K_{j} \bullet X_{\ell}) \leq \sum_{\ell} (\gamma_{j}^{\mathsf{T}} \lambda_{\ell} + \tau_{\ell} G_{j} \bullet X_{\ell}) \leq \frac{1}{\sigma^{+}} (I_{j} - \sum_{\ell} K_{j} \bullet X_{\ell}), j \in \mathcal{K}_{1}, \forall \ell$$

 $X_{\ell} \succeq 0, \forall \ell.$ 

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

(# all bars)



- Set a = 0, q = 0.
- Primal

minimize  $\sum_{j \in \mathcal{K}_{n}} l_{j} a_{j} + \sum_{i \in \mathcal{K}_{n}} l_{j} a_{j}^{*}$ subject to  $\sum_{j \in \mathcal{K}_0} \gamma_j q_{\ell,j} + \sum_{j \in \mathcal{K}_1} \gamma_j q_{\ell,j}^{*,0} = f_{\ell},$ ∀ℓ  $-\sigma^{-}a_{i} \leq q_{\ell,i} \leq \sigma^{+}a_{i},$  $i \in \mathcal{K}_0, \forall \ell$  $\sum_{j \in \mathcal{K}_0} a_j \mathcal{K}_j + \sum_{j \in \mathcal{K}_1} a_j \mathcal{K}_j^{\vee} + \tau_\ell \sum_{j \in \mathcal{K}_0} q_{\ell,j} \mathcal{G}_j + \tau_\ell \sum_{j \in \mathcal{K}_1} q_{\ell,j} \mathcal{G}_j^{\vee} \succeq 0$ ∀ℓ  $a_j \geq 0, j \in \mathcal{K}_0, a_j \geq 0, j$ 







Solve the primal restricted problem (RMP)

$$\begin{array}{ll} \underset{a,q}{\text{minimize}} & \sum_{j \in \mathcal{K}_0} l_j a_j \\ \text{subject to} & \sum_{j \in \mathcal{K}_0} \gamma_j q_{\ell,j} = f_\ell, & \forall \ell \\ & -\sigma^- a_j \leq q_{\ell,j} \leq \sigma^+ a_j, & j \in \mathcal{K}_0, \forall \ell \\ & \sum_{j \in \mathcal{K}_0} a_j K_j + \tau_\ell \sum_{j \in \mathcal{K}_0} q_j G_j \succeq 0, & \forall \ell \\ & a_j \geq 0, & j \in \mathcal{K}_0 \end{array}$$

and the dual restricted problem (D-RMP)

$$\max_{\lambda, X} \sum_{\ell} f_{\ell}^{T} \lambda_{\ell}$$
s.t.  $-\frac{1}{\sigma^{-}} (l_{j} - \sum_{\ell} K_{j} \bullet X_{\ell}) \leq \sum_{\ell} (\gamma_{j}^{T} \lambda_{\ell} + \tau_{\ell} G_{j} \bullet X_{\ell}) \leq \frac{1}{\sigma^{+}} (l_{j} - \sum_{\ell} K_{j} \bullet X_{\ell}), j \in \mathcal{K}_{\ell}$ 
Semidefinite Programming: Theory and Application, Edinburgh, <sup>19</sup> October 2018 A. Weldeysus, J. Gondzio 22

• Generate the columns(matrices) as below.

$$\mathcal{K} = \left\{ j \in \{1, \cdots, m\} \setminus \mathcal{K}_0 | \sum_{\ell} (\gamma_j^T \lambda_{\ell}^* + \tau_{\ell} \mathcal{G}_j \bullet X_{\ell}^*) < -\frac{l}{\sigma^-} (l_j - \sum_{\ell} \mathcal{K}_j \bullet X_{\ell}^*) \text{ or } \right.$$
$$\left. \sum_{\ell} (\gamma_j^T \lambda_{\ell}^* + \tau_{\ell} \mathcal{G}_j \bullet X_{\ell}^*) > \frac{l}{\sigma^+} (l_j - \sum_{\ell} \mathcal{K}_j \bullet X_{\ell}^*) \right\}$$
(10)

where  $\lambda_{\ell}^*$  and  $X_{\ell}^*$  are solution of the D-RMPs.

- Filter, add, and the next problem instance.
- The sparsity of  $K_i$ 's and  $G_i$  is exploited to generate the set  $\mathcal{K}$



(a) Mem add iter.=1, 444 bars, vol=  $0.05681m^3$ 



(b) Mem add iter.=2, 518 bars,  $vol=0.05429m^3$ 

#### Figure

• Generate the columns(matrices) as below.

$$\mathcal{K} = \left\{ j \in \{1, \cdots, m\} \setminus \mathcal{K}_0 | \sum_{\ell} (\gamma_j^T \lambda_{\ell}^* + \tau_{\ell} \mathbf{G}_j \bullet \mathbf{X}_{\ell}^*) < -\frac{l}{\sigma^-} (l_j - \sum_{\ell} \mathbf{K}_j \bullet \mathbf{X}_{\ell}^*) \text{ or } \right.$$
$$\left. \sum_{\ell} (\gamma_j^T \lambda_{\ell}^* + \tau_{\ell} \mathbf{G}_j \bullet \mathbf{X}_{\ell}^*) > \frac{l}{\sigma^+} (l_j - \sum_{\ell} \mathbf{K}_j \bullet \mathbf{X}_{\ell}^*) \right\}$$
(10)

where  $\lambda_{\ell}^*$  and  $X_{\ell}^*$  are solution of the D-RMPs.

- Filter, add, and the next problem instance.
- The sparsity of  $K_i$ 's and  $G_i$  is exploited to generate the set  $\mathcal{K}$



(a) Mem add iter.=1, 444 bars, vol=  $0.05681m^3$ 



(b) Mem add iter.=2, 518 bars,  $vol=0.05429m^3$ 

#### Figure

#### Member adding the primal restricted problem (RMP) minimize $\sum_{a,q} l_j a_j + \sum_{l \neq a_j} l_j a_j$ $i \in K_0$ $i \in K$ subject to $\sum \gamma_j q_{\ell,j} + \sum \gamma_j q_{\ell,j} = f_{\ell}$ , ∀ℓ $i \in \mathcal{K}_0$ $i \in \mathcal{K}$ $-\sigma^{-}a_{i} < q_{\ell,i} < \sigma^{+}a_{i}$ $i \in \mathcal{K}_0, \forall \ell$ $-\sigma^{-}a_{i} \leq q_{\ell,i} \leq \sigma^{+}a_{i},$ $i \in \mathcal{K}, \forall \ell$ $\sum_{j \in \mathcal{K}_0} a_j \mathcal{K}_j + \sum_{j \in \mathcal{K}} a_j \mathcal{K}_j + \tau_{\ell} \sum_{j \in \mathcal{K}_0} q_{\ell,j} \mathcal{G}_j + \tau_{\ell} \sum_{j \in \mathcal{K}} q_{\ell,j} \mathcal{G}_j \succeq 0$ ∀ℓ $a_i > 0, j \in \mathcal{K}_0, a_i > 0, j \in \mathcal{K}, \forall \ell$ . the dual restricted problem (D-RMP) $\max_{\lambda,X} \quad \sum f_{\ell}^{T} \lambda_{\ell}$ s.t. $-\frac{l}{\sigma^-}(l_j - \sum_{i} K_j \bullet X_\ell) \leq \sum_{i} (\gamma_j^\mathsf{T} \lambda_\ell + \tau_\ell G_j \bullet X_\ell) \leq \frac{1}{\sigma^+}(l_j - \sum_{i} K_j \bullet X_\ell), j \in \mathcal{K}_0, \forall \ell$ $-\frac{l}{\sigma^+}(l_j-\sum_i K_j \bullet X_\ell) \leq \sum_i (\gamma_j^T \lambda_\ell + \tau_\ell \mathsf{G}_j \bullet X_\ell) \leq \frac{1}{\sigma^+}(l_j-\sum_i K_j \bullet X_\ell), j \in \mathcal{K}, \forall \ell$ $X_{\ell} \succ 0. \ \forall \ell.$

#### Warm-start strategy



(a)







(d) Mem add iter.=3, 564 bars,  $vol=0.05417m^3$ 



(f) Mem add iter.=5, 592 bars, vol= 0.05414m<sup>3</sup>

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

(c) Mem add iter.=2, 518 bars,  $vol= 0.05429m^3$ 



(e) Mem add iter.=4, 588 bars,  $vol= 0.05414m^3$ 



(g) Mem add iter.=6, 600 bars, vol=  $0.05414m_{A. Weldeysus, J. Gondzio}^{3}$ 

#### Warm-start strategy





We extend the warm-start strategy

$$\begin{aligned} (\mathsf{a}, \mathsf{q}_{\ell}, \mathsf{S}_{\ell}, \mathsf{s}_{\ell}^+, \mathsf{s}_{\ell}^-) &\to (\mathsf{a}, \bar{\mathsf{a}}, \mathsf{q}_{\ell}, \bar{\mathsf{q}}_{\ell}, \mathsf{S}_{\ell}, \mathsf{s}_{\ell}^+, \bar{\mathsf{s}}_{\ell}^+, \mathsf{s}_{\ell}^-, \bar{\mathsf{s}}_{\ell}^-) \\ (\lambda_{\ell}, X_{\ell}, x_{\ell}^+, x_{\ell}^-) &\to (\lambda_{\ell}, X_{\ell}, x_{\ell}^+, \bar{x}_{\ell}^+, x_{\ell}^-, \bar{x}_{\ell}^-) \end{aligned}$$

The variables with the super-bar are vectors in  $\mathbb{R}^k$ , k = |K|

- Computing a warm-start point
  - $\blacktriangleright$  Old variables  $\leftarrow$  solution of the preceding save problem with loose tolerance, say  $\epsilon_{opt}=0.1$
  - New variables (those with super-bar)

$$\begin{split} & \bar{x}_{\ell,j}^{+} = \max\{\bar{\gamma}_{j}^{T} \lambda_{\ell} + \tau_{\ell} \bar{G}_{i} \bullet X_{\ell}, \mu_{0}^{\frac{1}{2}}\}, \, \forall j \in K, \\ & \bar{x}_{\ell,j}^{-} = \max\{-\bar{\gamma}_{j}^{T} \lambda_{\ell} - \tau_{\ell} \bar{G}_{i} \bullet X_{\ell}, \mu_{0}^{\frac{1}{2}}\}, \, \forall j \in K, \\ & \bullet (\bar{x}_{a})_{j} = \max\{|\bar{l}_{j} - \sigma^{+} \sum_{\ell} (\bar{x}^{+}_{\ell})_{j} - \sigma^{-} \sum_{\ell} (\bar{x}^{-}_{\ell})_{j} - \bar{K}_{i} \bullet X_{\ell}|, \mu_{0}^{\frac{1}{2}}\}, \, \forall j \in K, \\ & \bullet \bar{q}_{\ell}^{+} = 0 \, \forall \ell \in \{1, ..., n_{L}\} \\ & \bar{a}_{j} = \mu(\bar{x}_{a}^{-1})_{j}, \, \forall j \in K, \\ & \bullet \bar{s}_{\ell}^{+} = \sigma^{+}\bar{a}, \, \forall \ell \in \{1, ..., n_{L}\} \\ & \bullet \bar{s}_{\ell}^{-} = \sigma^{-}\bar{a}, \, \forall \ell \in \{1, ..., n_{L}\} \end{split}$$

#### Violation estimations

• Primal infeasibility  $(\xi_{P_{1,\ell}}, \xi_{P_{2,\ell}}, \xi_{P_{3,\ell}}, \xi_{P_{4,\ell}})$ 

$$\begin{aligned} ||\xi_{p_{1,\ell}}||_{\infty} &= ||f_{\ell} - \sum_{i} q_{\ell,i}\gamma_{i} - \sum_{i} \bar{q}_{\ell,i}\bar{\gamma}_{i}||_{\infty} = ||f_{\ell} - \sum_{i} q_{\ell,i}\gamma_{i}||_{\infty} = ||\xi_{p_{1,\ell}}^{0}||_{\infty}, \\ ||\xi_{p_{2,\ell}}||_{\infty} &= ||\sigma^{+}\bar{a} - \bar{q}_{\ell} - \bar{s}_{\ell}^{+}||_{\infty} = 0, \\ ||\xi_{p_{3,\ell}}||_{\infty} &= ||\sigma^{-}\bar{a} + \bar{q}_{\ell} - \bar{s}_{\ell}^{-}||_{\infty} = 0, \\ ||\xi_{p_{4,\ell}}||_{\infty} &= || - K(a) - \tau_{\ell}G(q_{\ell}) + S_{\ell} - \bar{K}(\bar{a}) - \tau_{\ell}\bar{G}(\bar{q}_{\ell})||_{\infty} \leq ||\xi_{p_{4,\ell}}^{0}||_{\infty} + \mu_{0}^{\frac{1}{2}} \sum \frac{E_{i}}{\bar{I}_{i}} \end{aligned}$$
(11)

#### Violation estimations

▶ Primal infeasibility  $(\xi_{P_{1,\ell}}, \xi_{P_{2,\ell}}, \xi_{P_{3,\ell}}, \xi_{P_{4,\ell}})$ 

$$\begin{aligned} ||\xi_{P_{1,\ell}}||_{\infty} &= ||f_{\ell} - \sum_{i} q_{\ell,i}\gamma_{i} - \sum_{i} \bar{q}_{\ell,i}\bar{\gamma}_{i}||_{\infty} = ||f_{\ell} - \sum_{i} q_{\ell,i}\gamma_{i}||_{\infty} = ||\xi_{P_{1,\ell}}^{0}||_{\infty}, \\ ||\xi_{P_{2,\ell}}||_{\infty} &= ||\sigma^{+}\bar{a} - \bar{q}_{\ell} - \bar{s}_{\ell}^{+}||_{\infty} = 0, \\ ||\xi_{P_{3,\ell}}||_{\infty} &= ||\sigma^{-}\bar{a} + \bar{q}_{\ell} - \bar{s}_{\ell}^{-}||_{\infty} = 0, \\ ||\xi_{P_{4,\ell}}||_{\infty} &= || - K(a) - \tau_{\ell}G(q_{\ell}) + S_{\ell} - \bar{K}(\bar{a}) - \tau_{\ell}\bar{G}(\bar{q}_{\ell})||_{\infty} \leq ||\xi_{P_{4,\ell}}^{0}||_{\infty} + \mu_{0}^{\frac{1}{2}} \sum_{i} \frac{E_{i}}{\bar{I}_{i}} \end{aligned}$$
(11)

**Dual infeasibility**  $(\xi_{d_1}, \xi_{d_2,\ell})$ 

$$\begin{split} ||\xi_{d_{1}}||_{\infty} &= ||\sum_{\ell} (\sigma^{+} x_{\ell}^{+} + \sigma^{-} x_{\ell}^{-} + \mathcal{K} X_{\ell}) + x_{s} - I||_{\infty} \\ &\leq ||2(\bar{I} + \sum_{\ell} (\sigma_{max}(\varepsilon_{\ell}^{-} + \varepsilon_{\ell}^{+}) - \bar{\mathcal{K}} X_{\ell})) + (4n_{L} + 1)\mu_{0}^{\frac{1}{2}} e||_{\infty} \\ &||\bar{\xi}_{d_{2},\ell}||_{\infty} &= ||\bar{B}^{T} \lambda_{\ell} - \bar{x}_{\ell}^{+} + \bar{x}_{\ell}^{-} + \tau_{\ell} \bar{\mathcal{G}} X_{\ell}|| \leq \mu_{0}^{\frac{1}{2}}. \end{split}$$

#### Violation estimations

• Primal infeasibility  $(\xi_{P_{1,\ell}}, \xi_{P_{2,\ell}}, \xi_{P_{3,\ell}}, \xi_{P_{4,\ell}})$ 

$$\begin{aligned} ||\xi_{P_{1,\ell}}||_{\infty} &= ||f_{\ell} - \sum_{i} q_{\ell,i}\gamma_{i} - \sum_{i} \bar{q}_{\ell,i}\bar{\gamma}_{i}||_{\infty} = ||f_{\ell} - \sum_{i} q_{\ell,i}\gamma_{i}||_{\infty} = ||\xi_{P_{1,\ell}}^{0}||_{\infty}, \\ ||\xi_{P_{2,\ell}}||_{\infty} &= ||\sigma^{+}\bar{a} - \bar{q}_{\ell} - \bar{s}_{\ell}^{+}||_{\infty} = 0, \\ ||\xi_{P_{3,\ell}}||_{\infty} &= ||\sigma^{-}\bar{a} + \bar{q}_{\ell} - \bar{s}_{\ell}^{-}||_{\infty} = 0, \\ ||\xi_{P_{4,\ell}}||_{\infty} &= || - K(a) - \tau_{\ell}G(q_{\ell}) + S_{\ell} - \bar{K}(\bar{a}) - \tau_{\ell}\bar{G}(\bar{q}_{\ell})||_{\infty} \leq ||\xi_{P_{4,\ell}}^{0}||_{\infty} + \mu_{0}^{\frac{1}{2}} \sum \frac{E_{i}}{\bar{l}_{i}} \end{aligned}$$
(11)

1

30

**Dual infeasibility**  $(\xi_{d_1}, \xi_{d_{2,\ell}})$ 

$$\begin{aligned} ||\xi_{d_1}||_{\infty} &\leq ||2(\bar{l} + \sum_{\ell} (\sigma_{\max}(\varepsilon_{\ell}^- + \varepsilon_{\ell}^+) - \bar{\mathcal{K}}X_{\ell})) + (4n_L + 1)\mu_0^{\frac{1}{2}} e||_{\infty} \\ ||\bar{\xi}_{d_2,\ell}||_{\infty} &= ||\bar{B}^T \lambda_{\ell} - \bar{x}_{\ell}^+ + \bar{x}_{\ell}^- + \tau_{\ell}\bar{\mathcal{G}}X_{\ell}|| \leq \mu_0^{\frac{1}{2}}. \end{aligned}$$

 $\begin{array}{||c||} \bullet \quad \textbf{Centrality} \; (\bar{a}, \bar{s}_a), \; (\bar{X}_\ell, \bar{S}_\ell), (\bar{x}_\ell^-, \bar{s}_\ell^-), (\bar{x}_\ell^+, \bar{s}_\ell^+) \\ (\bar{a}, \bar{s}_a), \; (\bar{X}_\ell, \bar{S}_\ell) \; \text{are} \; \mu_0 \; \text{centered.} \end{array}$ 

$$\begin{aligned} \frac{\sigma^+}{\sigma_{\max}n_L\mu_0^{-\frac{1}{2}}(\max_{\ell}(\varepsilon_{\ell_j}^-+\varepsilon_{\ell_j}^+)+\bar{K}_i\bullet X_{\ell})+2n_L}\mu_0 &\leq (\bar{x}_{\ell}^+)_j(\bar{s}_{\ell}^+)_j \leq \mu_0\sigma^++\mu_0^{\frac{1}{2}}\sigma^+(\varepsilon_{\ell_j}^-+\varepsilon_{\ell_j}^+), \;\forall j, \forall \ell. \\ \frac{\sigma^-}{\sigma_{\max}n_L\mu_0^{-\frac{1}{2}}(\max_{\ell}(\varepsilon_{\ell_j}^-+\varepsilon_{\ell_j}^+)+\bar{K}_i\bullet X_{\ell})+2n_L}\mu_0 &\leq (\bar{x}_{\ell}^-)_j(\bar{s}_{\ell}^-)_j \leq \mu_0\sigma^-+\mu_0^{\frac{1}{2}}\sigma^-(\varepsilon_{\ell_j}^-+\varepsilon_{\ell_j}^+), \;\forall j, \forall \ell. \end{aligned}$$
Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio

| minimize   | Nonlinear<br>I <sup>T</sup> a                                                             |                                  |                                                   | Relaxation                                   |                |
|------------|-------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------------|----------------|
| subject to | $\sum q_{\ell,i} \gamma_i = f_\ell,$                                                      | $\forall \ell$                   | $\underset{a,q_{\ell},u_{\ell}}{\text{minimize}}$ | l <sup>T</sup> a                             |                |
|            | i<br>a <sub>i</sub> E <sub>T</sub>                                                        | \/ <i>0</i> \/'                  | subject to                                        | $\sum_{i} q_{\ell,i} \gamma_i = f_\ell,$     | $\forall \ell$ |
|            | $\overline{I_i} \gamma_i^{*} u_{\ell} = q_{\ell,i}$                                       | $\forall \ell, \forall I$        |                                                   | $-a\sigma^{-}\leq q_{\ell}\leq \sigma^{+}a,$ | $\forall \ell$ |
|            | $-a\sigma \leq q_{\ell} \leq \sigma \cdot a,$<br>$K(a) + \tau_{\ell} G(q_{\ell}) \succ 0$ | $\forall \ell$<br>$\forall \ell$ |                                                   | $K(a) + 	au_\ell G(q_\ell) \succeq 0$        | $\forall \ell$ |
|            | $a \ge 0$                                                                                 |                                  |                                                   | $a \ge 0$                                    |                |

Least-squares (LSQ) problem

minimize 
$$\max_{\ell} \frac{1}{||q_{\ell}^{*}||^{2}} \sum_{i} (\frac{a_{i}^{*}E}{I_{i}}\gamma_{i}^{T}u_{\ell} - q_{\ell,i}^{*})^{2},$$
 (12)







| au                      | 0     | 1        | 10      |
|-------------------------|-------|----------|---------|
| Volume (nonlinear SDP)  | 0.062 | 0.06222  | 0.06464 |
| Volume (relaxed SDP )   | -     | 0.06217  | 0.06433 |
| Violation (LSQ problem) | -     | 4.96e-06 | 5.32e-4 |

# M. Kocvara. On the modelling and solving of the truss design problem with global stability constraints. Structural and Multidisciplinary Optimization, 23:189–203, 2002.

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

A. Weldeysus, J. Gondzio



Figure:  $\tau_{\ell} = 20, 30, 40, ..., 90$ . (a)-(h) By solving the relaxation linear SDP. (i)-(p) By solving the nonlinear SDP.

| τ                       | 20     | 30     | 40     | 50     | 60     | 70     | 80     | 90     |
|-------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Volume (nonlinear SDP)  | 0.0677 | 0.0717 | 0.0772 | 0.0846 | 0.0933 | 0.1031 | 0.1139 | 0.1251 |
| Volume (relaxed SDP )   | 0.0670 | 0.0703 | 0.0749 | 0.0805 | 0.0871 | 0.0947 | 0.1028 | 0.1117 |
| Violation (LSQ problem) | 0.0024 | 0.0066 | 0.0164 | 0.0306 | 0.0368 | 0.0459 | 0.0591 | 0.0702 |

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

A. Weldeysus, J. Gondzio



| $\tau$                  | 0      | 1      | 10     |
|-------------------------|--------|--------|--------|
| Volume (nonlinear SDP)  | 0.0300 | 0.0302 | 0.0320 |
| Volume (relaxed SDP )   | -      | 0.0301 | 0.0310 |
| Violation (LSQ problem) | -      | 3.7e-6 | 5.1e-5 |



Figure: Optimal design with stability constraints for  $\tau_{\ell} = 20, 30, 40$ . (a)-(c) By solving the linear SDP relaxation. (d)-(f) By solving the nonlinear SDP.

| $\tau$                  | 20     | 30     | 40     |
|-------------------------|--------|--------|--------|
| Volume (nonlinear SDP)  | 0.0370 | 0.0507 | 0.0663 |
| Volume (relaxed SDP )   | 0.0358 | 0.0499 | 0.0642 |
| Violation (LSQ problem) | 0.0151 | 0.0510 | 0.5889 |

## Example: Validating the member adding

|                          | All at once | With member adding |
|--------------------------|-------------|--------------------|
| Volume (m <sup>3</sup> ) | 0.05414     | 0.05414            |
| Final number of bars     | 3240        | 600                |
| Mem. add. iter           | 1           | 6                  |
| Total CPU (Sec)          | 145         | 28                 |



The violation of the compatibility constraints by stable design is equal to 5.8336e - 06.

## Example: Large-scale truss problems (SDP)

3638

- ▶ #bars =90,100 (*n* = 1,263, *m* = 180,200 in standard SDP notation).
- The full-scale SDP requires at least 240GB memory.

Total CPU



The violation of the compatibility constraints by stable design is equal to 52354e - 06. Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio 39

2654

## Example: Stadium roof (multiple-load cases)

36856 members, 3-loads case, 2487 bars and 6 mem add iter needed. CPU=2238Sec.



Figure:  $f_1$  (red),  $f_2$  (blue), and  $f_3$  (green). A = (0, 0, 2.3), B = (5, 0, 0), C = (15, 0, 0), D = (20, 0, 0), E = (40, 0, 2.8), F = (15, 0, 2.4.2). The roof is 80m the y-direction.

The violation of the compatibility constraints by unstable design is equal to 0.0011. The violation of the compatibility constraints by stable design is equal to 0.3190.

## Conclusions and future works

#### Conclusions

- Extended the member adding procedure to SDP.
- Developed and implemented a specialized primal-dual interior point method The method and its implementation:
  - exploits the structure of the problem.
  - uses warm-start strategy.

#### Future work

- Comparison to other SDP solvers.
- Look into the possibilities of using iterative methods for solving the linear systems.

#### Acknowledgment

- ▶ The research is supported by EPSRC grant EP/N019652/1.
- Research collaborators from the University of Sheffield, UK, and the University of Bath, UK.

#### Thank you for your attention!