Solving Large Scale Semidefinite Problems by Decomposition with application to Topology Optimization with Vibration Constraints

Michal Kočvara

School of Mathematics, The University of Birmingham

Semidefinite Programming: Theory and Applications Edinburgh, October 2018

Michal Kočvara (University of Birmingham)

Edinburgh 2018 1 / 39

POEMA Polynomial Optimization, Efficiency through Moments and Algebra Marie Skłodowska-Curie Innovative Training Network 2019-2022

POEMA network goal is to train scientists at the interplay of algebra, geometry and computer science for polynomial optimization problems and to foster scientific and technological advances, stimulating interdisciplinary and intersectoriality knowledge exchange between algebraists, geometers, computer scientists and industrial actors facing real-life optimization problems.

Partners:

- Inria, Sophia Antipolis, France (Bernard Mourrain)
- CNRS, LAAS, Toulouse, France (Didier Henrion)
- 3 Sorbonne Université, Paris, France (Mohab Safey el Din)
- 4 NWO-I/CWI, Amsterdam, the Netherlands (Monique Laurent)
- (5) Univ. Tilburg, the Netherlands (Etienne de Klerk)
- 6 Univ. Konstanz, Germany (Markus Schweighofer)
- 🕜 Univ. degli Studi di Firenze, Italy (Giorgio Ottaviani)
- (8) Univ. of Birmingham, UK (Mikal Kočvara)
- 9 F.A. Univ. Erlangen-Nuremberg, Germany (Michael Stingl)
- 10 Univ. of Tromsoe, Norway (Cordian Riener)
- Artelys SA, Paris, France (Arnaud Renaud)

Associate partners:

- IBM Research, Ireland (Martin Mevissen)
- (2) NAG, UK (Mike Dewar)
- ③ RTE, France (Jean Maeght)

$\begin{array}{c} \textbf{15 PhD positions} \\ \textbf{available from} \\ \textbf{Sep. } \textbf{1}^{\mathrm{st}} \textbf{ 2019} \end{array}$

Contact: bernard.mourrain@inria.fr, the partner leaders, www-sop.inria.fr/members/Bernard.Mourrain/ announces/POEMA/

PENNON collection

PENNON (PENalty methods for NONlinear optimization) a collection of codes for NLP, (linear) SDP and BMI

- one algorithm to rule them all -

C++

- PENNLP AMPL, MATLAB, C/Fortran
- PENSDP MATLAB/YALMIP, SDPA, C/Fortran (FREE)
- PENBMI MATLAB/YALMIP, C/Fortran
- PENNON (NLP + SDP) extended AMPL, MATLAB, C/FORTRAN

MATLAB

• PENLAB (NLP + SDP) open source MATLAB implementation

The NLP-SDP problem

Optimization problems with nonlinear objective subject to nonlinear inequality and equality constraints and semidefinite bound constraints:

$$\begin{split} & \min_{x \in \mathbb{R}^n, Y_1 \in \mathbb{S}^{p_1}, \dots, Y_k \in \mathbb{S}^{p_k}} f(x, Y) \\ & \text{subject to} \quad g_i(x, Y) \leq 0, \qquad i = 1, \dots, m_g \\ & h_i(x, Y) = 0, \qquad i = 1, \dots, m_h \quad (\text{NLP-SDP}) \\ & \underline{\lambda}_i I \preceq Y_i \preceq \overline{\lambda}_i I, \qquad i = 1, \dots, k \end{split}$$

Notation:

 $A \succeq 0$ means A positive semidefinite (all eigenvalues ≥ 0) $A \succeq B$ means $A - B \succeq 0$

Michal Kočvara (University of Birmingham)

Dimensions in (linear) Semidefinite Optimization

 $\min_{x \in \mathbb{R}^n} c^\top x$ subject to $\sum_{i=1}^n x_i A_i^{(k)} - B^{(k)} \succeq 0, \quad k = 1, \dots, p$

where

$$x \in \mathbb{R}^n$$
, $A_i^{(k)}$, $B^{(k)} \in \mathbb{R}^{m \times m}$

Majority of SDP software BAD ... n large, m large many variables, big matrix OK ... n small, m large rare GOOD ... n large, m small many variables, small matrix GOOD ... n large, m small, p large many small matrix constraints Michal Kočvara (University of Birmingham)

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...)
- Reformulate **BAD** problems as **GOOD** problems

PENSDP with an iterative solver

$$\min_{x\in\mathbb{R}^n} c^{\top}x \quad \text{s.t.} \quad \sum_{i=1}^n x_i A_i - B \succeq 0, \quad A_i, B \in \mathbb{R}^{m \times m}$$

Problems with large *n*, small *m* (Kim Toh) We have to solve repeatedly a dense $n \times n$ linear system.

			direct	itera	tive
problem	n	m	CPU	CPU	CG/it
ham_8_3_4	16129	256	17701	30	1
ham_9_5_6	53761	512	mem	330	1
theta10	12470	500	12165	227	10
theta104	87845	500	mem	11953	25
theta12	17979	600	27565	254	8
theta123	90020	600	mem	10538	23
theta162	127600	800	mem	13197	13
sanr200-0.7	6 0 3 3	200	1146	30	12

mem... insufficient memory

PENSDP with hybrid strategy

Use PCG till it works, then switch to Cholesky and return to PCG, using the Ch-factor as a preconditioner.

Collection of chemical problems by M. Fukuda ...

Average Dimacs error $\approx 1.0e - 7$

problem	n	Cg-it	Chol-it	Nwt-it	CPU-hy	CPU-ch
NH2r14	1,743	921	4	69	526	4033
NH3+.r16	2,964	1529	3	72	2427	26634
NH4+.r18	4,239	1607	3	77	8931	> 100000
AlH.r20	7,230	2283	2	102	21720	???

イロト イポト イラト イラト

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm

Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...)

Reformulate BAD problems as GOOD problems

Solving (very) large scale SDP?

Given the known restrictions of interior point solvers, how can we solve very large scale SDP problems?

- Use iterative solvers SDPT3, PENSDP, Jacek Gondzio's recent work
- Use a different algorithm

Bundle algorithm (Helmberg), Burer-Monteiro SDPA, ADMM (Wolkowicz), Augmented Lagrangian (Rendl, Malick, Toh-Sun,...)

Reformulate BAD problems as GOOD problems

イロト イポト イラト イラト

Dimensions in (linear) Semidefinite Optimization

 $\min_{x \in \mathbb{R}^{n}} c^{\top} x$ subject to $\sum_{i=1}^{n} x_{i} A_{i}^{(k)} - B^{(k)} \succeq 0, \quad k = 1, \dots, p$

where

$$x \in \mathbb{R}^n$$
, $A_i^{(k)}$, $B^{(k)} \in \mathbb{R}^{m \times m}$

So we may want to replace BAD ...n large, m large, p=1 by GOOD ...n large, m small, p large many small matrix constraints

Edinburgh 2018

10/39

Chordal decomposition

S. Kim, M. Kojima, M. Mevissen and M. Yamashita, Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion, Mathematical Programming, 2011

Based on:

A. Griewank and Ph. Toint, On the existence of convex decompositions of partially separable functions, MPA 28, 1984

J. Agler, W. Helton, S. McCulough and L. Rodnan, Positive semidefinite matrices with a given sparsity pattern, LAA 107, 1988

See also:

L. Vandenberghe and M. Andersen, Chordal graphs and semidefinite optimization. Foundations and Trends in Optimization 1:241–433, 2015

Edinburah 2018

11/39

Chordal decomposition

G(N, E) – graph with $N = \{1, \dots, n\}$ and max. cliques C_1, \dots, C_p .

$$\mathbb{S}^{n}(E) = \{ Y \in \mathbb{S}^{n} : Y_{ij} = 0 \ (i,j) \notin E \cup \{ (\ell,\ell), \ \ell \in N \} \}$$

$$\mathbb{S}^{C_k}_+ = \{ Y \succeq 0 : Y_{ij} = 0 \text{ if } (i,j) \notin C_k \times C_k \}$$

Theorem 1: G(N, E) is chordal if and only if for every $A \in \mathbb{S}^n(E)$, $A \succeq 0$, it holds that $\exists Y^k \in \mathbb{S}^{C_k}_+$ (k = 1, ..., p) s.t. $A = Y^1 + Y^2 + ... + Y^p$.

Every psd matrix is a sum of psd matrices that are non-zero only on maximal cliques.

So constraint $A(x) \succeq 0$ replaced by: find matrices $Y^k(x) \succeq 0$, k = 1, ..., p that sum up to A.

Michal Kočvara (University of Birmingham)

(日)

Graph representation of matrix sparsity

Chordal sparsity graph, overlapping blocks

Edinburgh 2018 13 / 39

4 3 5 4 3

Image: A math

Chordal decomposition

Theorem 1: G(N, E) is chordal if and only if for every $A \in \mathbb{S}^n(E)$, $A \succeq 0$, it holds that $\exists Y^k \in \mathbb{S}^{C_k}_+ \ (k = 1, ..., p)$ s.t. $A = Y^1 + Y^2 + ... + Y^p$.

Let
$$K = \begin{pmatrix} K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\ K_{2,1}^{(1)} & K_{2,2}^{(1)} + K_{1,1}^{(2)} & K_{1,2}^{(2)} \\ 0 & K_{2,1}^{(2)} & K_{2,2}^{(2)} \end{pmatrix}$$
 with $K^{(1)}, K^{(2)}$ dense.

Then $K \succeq 0 \Leftrightarrow K = Y^1 + Y^2$ such that

$$Y^{1} = \begin{pmatrix} K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\ K_{2,1}^{(1)} & K_{2,2}^{(1)} + S & 0 \\ 0 & 0 & 0 \end{pmatrix} \succeq 0, \ Y^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & K_{2,2}^{(2)} - S & K_{1,2}^{(2)} \\ 0 & K_{2,1}^{(2)} & K_{2,2}^{(2)} \end{pmatrix} \succeq 0$$

Even if $K^{(1)}$, $K^{(2)}$ not dense, we just assume that S is dense.

Chordal decomposition

Let $A \in \mathbb{S}^n$, $n \ge 3$, with a sparsity graph G = (N, E). Let $N = \{1, 2, ..., n\}$ be partitioned into $p \ge 2$ overlapping sets

 $N=I_1\cup I_2\cup\ldots\cup I_p.$

Define
$$I_{k,k+1} = I_k \cap I_{k+1} \neq \emptyset$$
, $k = 1, ..., p-1$.
Assume $A = \sum_{k=1}^{p} A_k$, with A_k only non-zero on I_k .

Corollary 1:
$$A \succeq 0$$
 if and only if
 $\exists S_k \in \mathbb{S}^{J_{k,k+1}}, k = 1, \dots, p-1 \text{ s.t.}$
 $A = \sum_{\substack{p \ k=1}}^{p} \widetilde{A}_k \text{ with } \widetilde{A}_k = A_k - S_{k-1} + S_k \quad (S_0 = S_p = [])$
and $\widetilde{A}_k \succeq 0 \ (k = 1, \dots, p).$

Michal Kočvara (University of Birmingham)

ъ

化压力 化压力

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

Using the original theorem:

6 max. cliques of size 3, 5 additional 2 \times 2 variables

Using the corollary:

2 "cliques" of size 5, 1 additional 2×2 variable

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

When we know the sparsity structure of *A*, we can choose a "regular" partitioning.

-

Application: Topology optimization

Aim:

Given an amount of material, boundary conditions and external load f, find the material distribution so that the body is as stiff as possible under f.

4 3 5 4 3 5 5

Edinburah 2018

18/39

$$E(x) = \rho(x)E_0$$
 with $0 \le \rho \le \rho(x) \le \overline{\rho}$

 E_0 a given (homogeneous, isotropic) material

Topology optimization, example

Pixels—finite elements Color—value of variable ρ , constant on every element

Michal Kočvara (University of Birmingham)

Edinburgh 2018 19 / 39

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Equilibrium

Equilibrium equation:

$$\mathcal{K}(\boldsymbol{\rho})\boldsymbol{u} = \boldsymbol{f}, \qquad \mathcal{K}(\boldsymbol{\rho}) = \sum_{i=1}^{m} \boldsymbol{\rho}_{i} \mathcal{K}_{i} := \sum_{i=1}^{m} \sum_{j=1}^{G} \boldsymbol{B}_{i,j} \boldsymbol{\rho}_{i} \boldsymbol{E}_{0} \boldsymbol{B}_{i,j}^{\top}$$
$$\boldsymbol{f} := \sum_{i=1}^{m} \boldsymbol{f}_{i}$$

Image: A math

4 3 5 4 3 5 5

Edinburgh 2018

20/39

Standard finite element discretization:

Quadrilateral elements

- ρ ... piece-wise constant
- u... piece-wise bilinear (tri-linear)

TO primal formulation

$$\min_{\rho \in \mathbb{R}^{m}, u \in \mathbb{R}^{n}} f^{T} u$$
subject to
$$(0 \leq) \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} \rho_{i} \leq 1$$

$$K(\rho) u = f$$

... large-scale nonlinear non-convex problem

Michal Kočvara (University of Birmingham)

Edinburgh 2018 21 / 39

イロト イポト イヨト イヨト

SDP formulation of TO

The TO problem

 $\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \ u \in \mathbb{R}^{n}, \ \gamma \in \mathbb{R}} \ \gamma \\ \text{subject to} \\ f^{T} u \leq \gamma, \quad \mathcal{K}(\rho) u = f \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m \\ \text{e equivalently formulated as a linear SDP:} \end{array}$

$$\begin{split} \min_{\rho \in \mathbb{R}^{m}, \ \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq 0 \quad \text{(positive semidefinite)} \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints plased + (2) + (

SDP formulation of **TO**

The TO problem

$$\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \ u \in \mathbb{R}^{n}, \ \gamma \in \mathbb{R}} \ \gamma \\ \text{subject to} \\ f^{\mathsf{T}} u \leq \gamma, \quad \mathcal{K}(\rho) u = f \\ \sum \rho_{i} \leq \mathsf{1}, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = \mathsf{1}, \ldots, m \end{array}$$

can be equivalently formulated as a linear SDP:

$$\begin{split} \min_{\rho \in \mathbb{R}^{m}, \ \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq \mathbf{0} \quad \text{(positive semidefinite)} \\ \sum \rho_{i} \leq \mathbf{1}, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints present < = + < = +

Michal Kočvara (University of Birmingham)

Edinburgh 2018 22 / 39

SDP formulation of TO

The TO problem

 $\min_{\boldsymbol{\rho} \in \mathbb{R}^m, \ \boldsymbol{u} \in \mathbb{R}^n, \ \boldsymbol{\gamma} \in \mathbb{R}} \ \boldsymbol{\gamma}$ subject to $f^T u < \gamma, \quad K(\rho) u = f$ $\sum \rho_i \leq 1, \quad \rho \leq \rho_i \leq \overline{\rho}, \quad i = 1, \dots, m$

can be equivalently formulated as a linear SDP:

$$\begin{split} \min_{\rho \in \mathbb{R}^{m}, \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq 0 \quad \text{(positive semidefinite)} \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints present (=) (=) (=) (=) Michal Kočvara (University of Birmingham) Edinburgh 2018

22/39

TO with a vibration constraint

Self-vibrations of the (discretized) structure-eigenvalues of

 $K(\rho)w = \lambda M(\rho)w$

where the mass matrix $M(\rho)$ has the same sparsity as $K(\rho)$.

Low frequencies dangerous \rightarrow constraint $\lambda_{\min} \geq \hat{\lambda}$

Equivalently: $V(\hat{\lambda}; \rho) := K(\rho) - \hat{\lambda} M(\rho) \succeq 0$

TO problem with vibration constraint as linear SDP:

$$\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \ \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & K(\rho) \end{array}\right) \succeq 0 \\ \hline V(\hat{\lambda}; \rho) \succeq 0 \\ \sum_{\substack{\sum \rho_{i} \leq 1, \\ \text{Edinburgh 2018}}} \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1; \dots; m \text{ for } i > 1 \\ \hline \text{Michal Kočvara (University of Birmingham)}} \end{array}$$

SDP formulation of TO by decomposition

Both

$$\left(\begin{array}{cc} \gamma & \boldsymbol{f}^{T} \\ \boldsymbol{f} & \sum \rho_{i}\boldsymbol{K}_{i} \end{array}\right) \succeq \boldsymbol{0}$$

and

 $V(\hat{\lambda}; \rho) \succeq 0$

Edinburah 2018

25/39

are large matrix constraints dependent on many variables ... bad for existing SDP software

Can we replace them by several smaller constraints equivalently?

Chordal decomposition (recall)

Let $A \in \mathbb{S}^n$, $n \ge 3$, with a sparsity graph G = (N, E). Let $N = \{1, 2, ..., n\}$ be partitioned into $p \ge 2$ overlapping sets

 $N=I_1\cup I_2\cup\ldots\cup I_p.$

Define
$$I_{k,k+1} = I_k \cap I_{k+1} \neq \emptyset$$
, $k = 1, ..., p-1$.
Assume $A = \sum_{k=1}^{p} A_k$, with A_k only non-zero on I_k .

Corollary 1:
$$A \succeq 0$$
 if and only if
 $\exists S_k \in \mathbb{S}^{J_{k,k+1}}, k = 1, \dots, p-1 \text{ s.t.}$
 $A = \sum_{\substack{p \ k=1}}^{p} \widetilde{A}_k \text{ with } \widetilde{A}_k = A_k - S_{k-1} + S_k \quad (S_0 = S_p = [])$
and $\widetilde{A}_k \succeq 0 \ (k = 1, \dots, p).$

Michal Kočvara (University of Birmingham)

ъ

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

Using the corollary:

2 "cliques" of size 5, 1 additional 2×2 variable

When we know the sparsity structure of *A*, we can choose a regular partitioning.

Michal Kočvara (University of Birmingham)

Edinburgh 2018 27 / 39

医下子 医

Image: A math

SDP formulation of TO by DD

$$\left(egin{array}{cc} \mathcal{K}(
ho) & f \\ f^{ op} & \gamma \end{array}
ight) \succeq 0 \qquad ext{and} \quad \mathcal{V}(\hat{\lambda};
ho) \succeq 0$$

are large matrix constraints dependent on many variables.

FE mesh, matrix $K(\rho)$ and its sparsity graph:

Image: A Image: A

< <p>I > < </p>

Chordal decomposition

Even though $K^{(1)}$ and $K^{(2)}$ are sparse, we need to assume that *S* is dense.

4 3 5 4 3 5

In this way, we can control the number and size of the maximal cliques and use the chordal decomposition theorem.

New result for arrow-type matrices: For the matrix inequality

$$\left(egin{array}{cc} \mathcal{K}(
ho) & f \ f^{ op} & \gamma \end{array}
ight) \succeq \mathbf{0}$$

the additional matrix variables *S* are rank-one; this further reduces the size of the solved SDP problem.

Michal Kočvara (University of Birmingham)

Edinburgh 2018 30 / 39

SDP codes tested: PENSDP, SeDuMi, SDPT3, Mosek

Results shown for Mosek: not the fastest for the original problem but has highest speedup

Mosek:

- version 8 much more reliable than version 7
- called from YALMIP
- difficult (for me) to control any options

B 1 4 B 1

Michal Kočvara (University of Birmingham)

Edinburgh 2018 32 / 39

Michal Kočvara (University of Birmingham)

Edinburgh 2018 33 / 39

Regular decomposition, 40x20 elements, Mosek 8.0 Basic problem (arrow-type matrix, no vibration constraints)

no of	no of	size of	no of	no of CPU		speedup	
doms	vars	matrix	iters	total	per iter	total	/iter
1	801	1681	53	2489	47	1	1
2	844	882	66	778	12	3	4
8	1032	243	57	49	0.86	51	55
32	1492	73	55	11	0.19	235	244
50	1764	51	54	8	0.14	323	329
200	3544	19	45	5	0.10	553	470
34	22997	11260	42	1206	29	2	2

Automatic decomposition using software SparseCoLO by Kim, Kojima, Mevissen and Yamashita (2011)

Michal Kočvara (University of Birmingham)

Edinburgh 2018 34 / 39

Regular decomposition, 40x20 elements, Mosek 8.0 Problem with vibration constraints

no of	no of	size of	ze of no of CPU		speedup		
matrices	vars	matrix	iters	total	per iter	total	/iter
2	801	1681	64	3894	61	1	1
16	1746	243	59	127	2.15	31	28
64	3384	73	54	27	0.50	144	122
100	4263	51	55	25	0.45	155	136
400	9258	19	37	18	0.49	216	125

and without again, for comparison:

1	801	1681	53	2489	47	1	1
8	1032	243	57	49	0.86	51	55
32	1492	73	55	11	0.19	235	244
50	1764	51	54	8	0.14	323	329
200	3544	19	45	5	0.10	553	470

Regular decomposition, 120x60 elements, Mosek 8.0 Basic problem (arrow-type matrix, no vibration constraints)

no of	no of	size of	no of	CP	U	speedup		
doms	vars	matrix	iters	total	per iter	total	/iter	
1	7200	14641	178	5089762	28594	1	1	
50	9524	339	85	1475	17.4	3541	1648	
200	12904	99	72	209	2.9	24355	9851	
450	16984	51	67	107	1.6	47568	17905	
800	21764	33	61	82	1.3	62070	21271	
1800	33424	19	44	77	1.6	66101	18196	

estimated; 508976 sec \approx 2 months

Michal Kočvara (University of Birmingham)

Edinburgh 2018 36 / 39

Regular decomposition, Mosek 8.0 Basic problem (arrow-type matrix, no vibration constraints) "best" decomposition speedup (subdomain = 4 elements)

		ORIGIN	AL	DEC	DECOMPOSED			
problem	no of	size of	CPU	no of	size of	CPU		
	vars	matrix	total	vars	matrix	total		
40x20	801	1681	2489	3544	19	8	311	
60x30	1801	3721	31835	8164	19	25	1273	
80x40	3201	6561	252355	14684	19	23	10972	
100x50	5001	10201	1298087	23104	19	46	28219	
120x60	7201	14641	5091862	33424	19	77	66128	
140x70	9801	19881	16436180	45664	19	115	142923	
160x80	12801	25921	45804946	59764	19	206	222354	
complexit	<mark>y c</mark> ⋅size ^q		<i>q</i> = 3.5		<i>q</i> =	= 1.33		

times estimated; 45804946 sec \approx 18 months

Michal Kočvara (University of Birmingham)

Edinburgh 2018 37 / 39

CPU time, original versus decomposed

Michal Kočvara (University of Birmingham)

Edinburgh 2018 38 / 39

THE END

Michal Kočvara (University of Birmingham)

Edinburgh 2018 39 / 39

э

<ロ> <同> <同> <同> < 同> < 同>