Large Scale Semidefinite Programming in ConicBundle

Christoph Helmberg based on joint work with M. Overton and F. Rendl
TU Chemnitz

- The Bundle Method and the Aggregate
- SDP, Eigenvalue Optimisation, and the Spectral Bundle Method
- Second Order Approaches to Eigenvalue Optimisation
- Adaptation to the Spectral Bundle Method
- Numerical Examples
- Conclusions

Workshop "Semidefinite Programming: Theory and Applications" Edinburgh, October 19, 2018

The Bundle Method for Nonsmooth Convex Optimization

$$
\min f(y) \text { s.t. } \quad y \in \mathbb{R}^{m}
$$

with $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex (nonsmooth)

The Bundle Method for Nonsmooth Convex Optimization

$$
\min f(y) \text { s.t. } \quad y \in \mathbb{R}^{m}
$$

with $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex (nonsmooth)
f is specified by a first order oracle: given $\bar{y} \in \mathbb{R}^{m}$ it returns

- $f(\bar{y}) \in \mathbb{R} \quad$ function value
- $g(\bar{y}) \in \mathbb{R}^{m}$ some subgradient (not nec. unique)
satisfying

$$
f(y) \geq f(\bar{y})+\langle g(\bar{y}), y-\bar{y}\rangle
$$

The Bundle Method for Nonsmooth Convex Optimization

$$
\min f(y) \text { s.t. } \quad y \in \mathbb{R}^{m}
$$

with $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex (nonsmooth)
f is specified by a first order oracle: given $\bar{y} \in \mathbb{R}^{m}$ it returns

- $f(\bar{y}) \in \mathbb{R} \quad$ function value
- $g(\bar{y}) \in \mathbb{R}^{m}$ some subgradient (not nec. unique)
satisfying $\quad f(y) \geq f(\bar{y})+\langle g(\bar{y}), y-\bar{y}\rangle$

Each $\omega=(\gamma, g), \gamma=f(\bar{y})-\langle g, \bar{y}\rangle$ generates a linear minorant of f

$$
f_{\omega}(y):=\gamma+\langle g, y\rangle \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

The Bundle Method for Nonsmooth Convex Optimization

$$
\min f(y) \quad \text { s.t. } \quad y \in \mathbb{R}^{m}
$$

with $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex (nonsmooth)
f is specified by a first order oracle: given $\bar{y} \in \mathbb{R}^{m}$ it returns

- $f(\bar{y}) \in \mathbb{R} \quad$ function value
- $g(\bar{y}) \in \mathbb{R}^{m} \quad$ some subgradient (not nec. unique)
satisfying $\quad f(y) \geq f(\bar{y})+\langle g(\bar{y}), y-\bar{y}\rangle$

Each $\omega=(\gamma, g), \gamma=f(\bar{y})-\langle g, \bar{y}\rangle$ generates a linear minorant of f

$$
f_{\omega}(y):=\gamma+\langle g, y\rangle \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

The collected minorants form the bundle, from this we select a model

$$
\widehat{\mathcal{W}} \subseteq \operatorname{conv}\left\{(\gamma, g): g=g\left(\bar{y}^{i}\right), \gamma=f\left(\bar{y}^{i}\right)-\left\langle g, \bar{y}^{i}\right\rangle, i=1, \ldots, k\right\}
$$

The Bundle Method for Nonsmooth Convex Optimization

$$
\min f(y) \quad \text { s.t. } \quad y \in \mathbb{R}^{m}
$$

with $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex (nonsmooth)
f is specified by a first order oracle: given $\bar{y} \in \mathbb{R}^{m}$ it returns

- $f(\bar{y}) \in \mathbb{R} \quad$ function value
- $g(\bar{y}) \in \mathbb{R}^{m} \quad$ some subgradient (not nec. unique)
satisfying $\quad f(y) \geq f(\bar{y})+\langle g(\bar{y}), y-\bar{y}\rangle \quad \forall y \in \mathbb{R}^{m} \quad$ (subg. ineq.)
Each $\omega=(\gamma, g), \gamma=f(\bar{y})-\langle g, \bar{y}\rangle$ generates a linear minorant of f

$$
f_{\omega}(y):=\gamma+\langle g, y\rangle \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

The collected minorants form the bundle, from this we select a model

$$
\widehat{\mathcal{W}} \subseteq \operatorname{conv}\left\{(\gamma, g): g=g\left(\bar{y}^{i}\right), \gamma=f\left(\bar{y}^{i}\right)-\left\langle g, \bar{y}^{i}\right\rangle, i=1, \ldots, k\right\},
$$

Any closed proper convex function is the sup over its linear minorants,

$$
f(y)=\sup _{(\gamma, g) \in \mathcal{W}} \gamma+\langle g, y\rangle, \quad \text { choose compact } \widehat{\mathcal{W}} \subseteq \mathcal{W} .
$$

The Bundle Method for Nonsmooth Convex Optimization

$$
\min f(y) \quad \text { s.t. } \quad y \in \mathbb{R}^{m}
$$

with $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex (nonsmooth)
f is specified by a first order oracle: given $\bar{y} \in \mathbb{R}^{m}$ it returns

- $f(\bar{y}) \in \mathbb{R} \quad$ function value
- $g(\bar{y}) \in \mathbb{R}^{m} \quad$ some subgradient (not nec. unique)
satisfying $\quad f(y) \geq f(\bar{y})+\langle g(\bar{y}), y-\bar{y}\rangle \quad \forall y \in \mathbb{R}^{m} \quad$ (subg. ineq.)
Each $\omega=(\gamma, g), \gamma=f(\bar{y})-\langle g, \bar{y}\rangle$ generates a linear minorant of f

$$
f_{\omega}(y):=\gamma+\langle g, y\rangle \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

The collected minorants form the bundle, from this we select a model

$$
\widehat{\mathcal{W}} \subseteq \operatorname{conv}\left\{(\gamma, g): g=g\left(\bar{y}^{i}\right), \gamma=f\left(\bar{y}^{i}\right)-\left\langle g, \bar{y}^{i}\right\rangle, i=1, \ldots, k\right\},
$$

Maximizing over all $\omega \in \widehat{\mathcal{W}}$ gives a cutting model minorizing f,

$$
f_{\widehat{\mathcal{W}}}(y):=\max _{\omega \in \widehat{\mathcal{W}}} f_{\omega}(y) \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

Proximal Bundle Method

[Lemaréchal78,Kiwiel90]
convex function

Input: a convex function given by a first order oracle

Proximal Bundle Method

[Lemaréchal78,Kiwiel90]
convex function

Input: a convex function given by a first order oracle

Proximal Bundle Method

[Lemaréchal78,Kiwiel90] cutting plane model with $g \in \partial f(\hat{y})$

Input: a convex function given by a first order oracle

Proximal Bundle Method

[Lemaréchal78,Kiwiel90]

 cutting plane model with $g \in \partial f(\hat{y})$Input: a convex function given by a first order oracle

1. Find a candidate by solving

$$
\min _{y} \max _{\omega \in \widehat{\mathcal{W}}} f_{\omega}(y)
$$

Proximal Bundle Method

$\underset{\text { solve augmented }}{\text { [Lodel } \rightarrow \bar{y}}$ Kiel solve augmented model $\rightarrow \bar{y}$

Input: a convex function given by a first order oracle

1. Find a candidate by solving the quadratic model

$$
\min _{y} \max _{\omega \in \widehat{\mathcal{W}}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

Proximal Bundle Method

$\underset{\text { solve augmented }}{\text { [Lodel } \rightarrow \bar{y}}$ Kiel solve augmented model $\rightarrow \bar{y}$

Input: a convex function given by a first order oracle

1. Find a candidate by solving the quadratic model

$$
\min _{y} \max _{\omega \in \mathcal{W}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

2. Evaluate the function and determine a subgradient (oracle)

Proximal Bundle Method

$\underset{\text { solve augmented }}{\text { [Lodel } \rightarrow \bar{y}}$ Kiwiel90] solve augmented model $\rightarrow \bar{y}$

Input: a convex function given by a first order oracle

1. Find a candidate by solving the quadratic model

$$
\min _{y} \max _{\omega \in \widehat{\mathcal{W}}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

2. Evaluate the function and determine a subgradient (oracle)
3. Decide on

- null step
- descent step

Proximal Bundle Method

Input: a convex function given by a first order oracle

[Lemaréchal78,Kiwiel90] improve cutting model in \bar{y}

1. Find a candidate by solving the quadratic model

$$
\min _{y} \max _{\omega \in \mathcal{W}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

2. Evaluate the function and determine a subgradient (oracle)
3. Decide on

- null step
- descent step

4. Update model to contain at least aggregate and new minorant and iterate

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem $\min _{y} \max _{\omega \in \widehat{\mathcal{W}}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}$

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem

$$
\min _{y} \max _{\omega \in \mathcal{W}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}=\min _{y} \max _{\substack{\xi \in \pm \geq 0 \\ \sum \xi=1 \\ \xi_{\omega}=1}} \sum_{(\gamma, g) \in \widehat{\mathcal{W}}} \xi_{\omega}\left(\gamma+g^{\top} y\right)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem

$$
\min _{y} \max _{\omega \in \mathcal{W}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}=\max _{\substack{\xi \omega \geq 0 \\ \sum \xi_{\omega}=1}} \min _{y} \sum_{(\gamma, g) \in \widehat{\mathcal{W}}} \xi_{\omega}\left(\gamma+g^{\top} y\right)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem

$$
\min _{y} \max _{\omega \in \mathcal{W}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}=\max _{\substack{\xi \in \geq 0 \\ \sum \xi_{\omega}=1}} \min _{y} \sum_{(\gamma, g) \in \widehat{\mathcal{W}}} \xi_{\omega}\left(\gamma+g^{\top} y\right)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

Determining the saddle point $(\bar{y}, \bar{\omega})$ over $\mathbb{R}^{n} \times$ conv $\widehat{\mathcal{W}}$ yields

- $\bar{\omega}=(\bar{\gamma}, \bar{g})$, the aggregate (the "best" minorant in conv $\widehat{\mathcal{W}})$,
- $\bar{y}=\hat{y}-\frac{1}{\mu} \bar{g}$, the next candidate for evaluation.

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem
$\min _{y} \max _{\omega \in \widehat{\mathcal{W}}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}=\max _{\substack{\xi \omega \geq 0 \\ \sum \xi_{\omega}=1}} \min _{y} \sum_{(\gamma, g) \in \widehat{\mathcal{W}}} \xi_{\omega}\left(\gamma+g^{\top} y\right)+\frac{\mu}{2}\|y-\hat{y}\|^{2}$
Determining the saddle point $(\bar{y}, \bar{\omega})$ over $\mathbb{R}^{n} \times$ conv $\widehat{\mathcal{W}}$ yields

- $\bar{\omega}=(\bar{\gamma}, \bar{g})$, the aggregate (the "best" minorant in conv $\widehat{\mathcal{W}})$,
- $\bar{y}=\hat{y}-\frac{1}{\mu} \bar{g}$, the next candidate for evaluation.

The progress $f(\hat{y})-f(\bar{y})$ is compared to the predicted decrease

$$
f(\hat{y})-f_{\bar{\omega}}(\bar{y})=f(\hat{y})-\bar{\gamma}-\langle\hat{y}, \bar{g}\rangle+\frac{1}{\mu}\|\bar{g}\|^{2} \geq 0,
$$

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem
$\min _{y} \max _{\omega \in \widehat{\mathcal{W}}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}=\max _{\substack{\xi_{\omega} \geq 0 \\ \sum \xi_{\omega}=1}} \min _{y} \sum_{(\gamma, g) \in \widehat{\mathcal{W}}} \xi_{\omega}\left(\gamma+g^{\top} y\right)+\frac{\mu}{2}\|y-\hat{y}\|^{2}$
Determining the saddle point $(\bar{y}, \bar{\omega})$ over $\mathbb{R}^{n} \times \operatorname{conv} \widehat{\mathcal{W}}$ yields

- $\bar{\omega}=(\bar{\gamma}, \bar{g})$, the aggregate (the "best" minorant in conv $\widehat{\mathcal{W}}$),
- $\bar{y}=\hat{y}-\frac{1}{\mu} \bar{g}$, the next candidate for evaluation.

The progress $f(\hat{y})-f(\bar{y})$ is compared to the predicted decrease

$$
f(\hat{y})-f_{\bar{\omega}}(\bar{y})=f(\hat{y})-\bar{\gamma}-\langle\hat{y}, \bar{g}\rangle+\frac{1}{\mu}\|\bar{g}\|^{2} \geq 0,
$$

This decides on descent step $(\hat{y} \leftarrow \bar{y})$ or null step $(\hat{y} \leftarrow \hat{y}$, new ω).

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem

$$
\min _{y} \max _{\omega \in \mathcal{W}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}=\max _{\substack{\xi \in \geq 0 \\ \sum \xi=0 \\ \xi_{\omega}=1}} \min _{y} \sum_{(\gamma, g) \in \widehat{\mathcal{W}}} \xi_{\omega}\left(\gamma+g^{\top} y\right)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

Determining the saddle point $(\bar{y}, \bar{\omega})$ over $\mathbb{R}^{n} \times$ conv $\widehat{\mathcal{W}}$ yields

- $\bar{\omega}=(\bar{\gamma}, \bar{g})$, the aggregate (the "best" minorant in conv $\widehat{\mathcal{W}})$,
- $\bar{y}=\hat{y}-\frac{1}{\mu} \bar{g}$, the next candidate for evaluation.

The progress $f(\hat{y})-f(\bar{y})$ is compared to the predicted decrease

$$
f(\hat{y})-f_{\bar{\omega}}(\bar{y})=f(\hat{y})-\bar{\gamma}-\langle\hat{y}, \bar{g}\rangle+\frac{1}{\mu}\|\bar{g}\|^{2} \geq 0,
$$

This decides on descent step $(\hat{y} \leftarrow \bar{y})$ or null step $(\hat{y} \leftarrow \hat{y}$, new ω).
Theorem (e.g. [BoGiLeSa2003])
Let \hat{y}^{k} denote the center of iteration k, then $f\left(\hat{y}^{k}\right) \rightarrow \inf f$. If, in addition, $\hat{y}^{k_{0}}=\hat{y}^{k}$ for $k \geq k_{0}$ (finitely many descent steps) then $\hat{y}^{k_{0}}$ minimizes f and $\left(f\left(\hat{y}^{k}\right)-f_{\bar{\omega}^{k}}\left(\bar{y}^{k}\right)\right)_{k>k_{0}} \downarrow 0$.

The Aggregate and Convergence

Given weight $\mu>0$, the quadratic subproblem is a saddle point problem

$$
\min _{y} \max _{\omega \in \mathcal{W}} f_{\omega}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}=\max _{\substack{\xi \in \geq 0 \\ \sum \xi=0 \\ \xi_{\omega}=1}} \min _{y} \sum_{(\gamma, g) \in \widehat{\mathcal{W}}} \xi_{\omega}\left(\gamma+g^{\top} y\right)+\frac{\mu}{2}\|y-\hat{y}\|^{2}
$$

Determining the saddle point $(\bar{y}, \bar{\omega})$ over $\mathbb{R}^{n} \times$ conv $\widehat{\mathcal{W}}$ yields

- $\bar{\omega}=(\bar{\gamma}, \bar{g})$, the aggregate (the "best" minorant in conv $\widehat{\mathcal{W}})$,
- $\bar{y}=\hat{y}-\frac{1}{\mu} \bar{g}$, the next candidate for evaluation.

The progress $f(\hat{y})-f(\bar{y})$ is compared to the predicted decrease

$$
f(\hat{y})-f_{\bar{\omega}}(\bar{y})=f(\hat{y})-\bar{\gamma}-\langle\hat{y}, \bar{g}\rangle+\frac{1}{\mu}\|\bar{g}\|^{2} \geq 0,
$$

This decides on descent step $(\hat{y} \leftarrow \bar{y})$ or null step $(\hat{y} \leftarrow \hat{y}$, new ω).
Theorem (e.g. [BoGiLeSa2003])
Let \hat{y}^{k} denote the center of iteration k, then $f\left(\hat{y}^{k}\right) \rightarrow \inf f$.
If, in addition, $\hat{y}^{k_{0}}=\hat{y}^{k}$ for $k \geq k_{0}$ (finitely many descent steps)
then $\hat{y}^{k_{0}}$ minimizes f and $\left(f\left(\hat{y}^{k}\right)-f_{\bar{\omega}^{k}}\left(\bar{y}^{k}\right)\right)_{k>k_{0}} \downarrow 0$.
f bounded below $\Rightarrow\left\|\bar{g}^{k}\right\| \xrightarrow{K} 0$

The bundle framework offers a lot of flexibility and can be extended in many directions:

- add scaling/ "second order" information via the proximal term
- allow constraints on y
- Lagrangian relaxation/decomposition or sums of convex functions
- generate good primal approximations in Lagrangian relaxation
- solve the dual to primal cutting plane approaches
- use specialized cutting models (quadratic subproblem solvable?)
- asynchronous parallel approaches

For me it offers the potential for
"A general tool like the simplex method for LP"
\rightarrow ConicBundle, contains much but not yet all of this ...
Here: choose model and proximal term $+\frac{1}{2}\|y-\hat{y}\|_{H}^{2}$ for the maximum eigenvalue function/semidefinite prog.

LP \leftrightarrow SDP

$$
\begin{aligned}
\max & \langle c, x\rangle & \max & \langle C, X\rangle \\
\text { s.t. } & A x=b & \text { s.t. } & \mathcal{A} X=b \\
& x \geq 0 & & X \succeq 0
\end{aligned}
$$

$x \in \mathbb{R}_{+}^{n} \quad$ nonneg. orthant $\quad X \in S_{+}^{n} \quad$ pos. semidef. matrices (polyhedral)
(non-polyhedral)

$$
\begin{gathered}
\langle c, x\rangle=\sum_{i} c_{i} x_{i} \\
A x=\left(\begin{array}{c}
\left\langle a_{1}, x\right\rangle \\
\vdots \\
\left\langle a_{m}, x\right\rangle
\end{array}\right) \\
A^{T} y=\sum_{i} a_{i} y_{i}
\end{gathered}
$$

$$
\langle C, X\rangle=\sum_{i, j} C_{i j} X_{i j}
$$

$$
\mathcal{A} X=\left(\begin{array}{c}
\left\langle A_{1}, X\right\rangle \\
\vdots \\
\left\langle A_{m}, X\right\rangle
\end{array}\right)
$$

$$
\mathcal{A}^{T} y=\sum_{i} A_{i} y_{i}
$$

$$
\begin{aligned}
\min & \langle b, y\rangle \\
\text { s.t. } & A^{T} y-z=c \\
& z \geq 0
\end{aligned}
$$

$$
\min \langle b, y\rangle
$$

$$
\text { s.t. } \mathcal{A}^{T} y-Z=C
$$

$$
Z \succeq 0
$$

Example

```
\begin{array} { c l } { \operatorname { m a x } } & { \langle C , X \rangle } \\ { \text { s.t. } } & { \langle I , X \rangle = 1 } \\ { } & { X \succ 0 } \end{array}
min y
s.t. Z = yl - C\succeq0
```


Example

$$
\begin{aligned}
\max & \langle C, X\rangle \\
\text { s.t. } & \langle I, X\rangle=1 \\
& X \succeq 0
\end{aligned}
$$

$$
\begin{array}{cl}
\min & y \\
\text { s.t. } & Z=y l-C \succeq 0 \quad\left[\rightarrow y_{*}=\lambda_{\max }(C)\right]
\end{array}
$$

Example

$$
\begin{array}{rlrl}
\max & \langle C, X\rangle & \min & y \\
\text { s.t. } & \langle I, X\rangle=1 \quad & \text { s.t. } & Z=y I-C \succeq 0 \quad\left[\rightarrow y_{*}=\lambda_{\max }(C)\right] \\
& X \succeq 0 &
\end{array}
$$

$$
\begin{aligned}
& \mathcal{W}:=\{X \succeq 0:\langle I, X\rangle=1\}=\operatorname{conv}\left\{v v^{T}:\left\langle I, v v^{T}\right\rangle=v^{T} v=1\right\} \\
& \max _{X \in \mathcal{W}}\langle C, X\rangle=\max _{\|v\|^{2}=1}\left\langle C, v v^{T}\right\rangle=\max _{\|v\|=1} v^{T} C v=\lambda_{\max }(C)
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
\max & \langle C, X\rangle & \min & y \tag{C}\\
\text { s.t. } & \langle I, X\rangle=1 \quad & \text { sit. } \quad Z=y I-C \succeq 0 \quad\left[\rightarrow y_{*}=\lambda_{\max }(\right.
\end{array}
$$

$$
\begin{aligned}
& \mathcal{W}:=\{X \succeq 0:\langle I, X\rangle=1\}=\operatorname{conv}\left\{v v^{\top}:\left\langle I, v v^{\top}\right\rangle=v^{\top} v=1\right\} \\
& \max _{X \in \mathcal{W}}\langle C, X\rangle=\max _{\|v\|^{2}=1}\left\langle C, v v^{\top}\right\rangle=\max _{\|v\|=1} v^{\top} C v=\lambda_{\max }(C)
\end{aligned}
$$

set of primal optimal solutions:

$$
\begin{aligned}
& \operatorname{conv}\left\{v v^{T}:\left\langle I, v v^{T}\right\rangle=1, v^{T} C v=\lambda_{\max }(C)\right\} \quad[v=P u] \\
= & \operatorname{conv}\left\{P u u^{T} P^{T}:\left\langle I, u u^{T}\right\rangle=1\right\} \\
= & \left\{P U P^{T}:\langle I, U\rangle=1, U \succeq 0\right\}
\end{aligned}
$$

columns of P form an orthonormal basis of the eigenspace of $\lambda_{\max }(C)$.

Spectral Bundle Method
 [H.,Rendl00]

For constant trace, the dual is an eigenvalue optimization problem

$$
\begin{aligned}
\max & \langle C, X\rangle \quad \min _{\text {s.t. }} a \lambda_{\max }\left(C-\mathcal{A}^{T} y\right)+\langle b, y\rangle \\
& \langle I, X\rangle=a \quad y \in \mathbb{R}^{m} \\
& \mathcal{A} X=b \\
& X \succeq 0,
\end{aligned}
$$

For bounded trace, the dual is

$$
\begin{aligned}
\max & \langle C, X\rangle \quad \min \quad \max \left\{0, a \lambda_{\max }\left(C-\mathcal{A}^{T} y\right)\right\}+\langle b, y\rangle \\
\text { s.t. } & \langle I, X\rangle \leq a \quad \\
& \mathcal{A} X=b \\
& X \succeq 0,
\end{aligned}
$$

In the following we consider constant trace with $a=1$, and solve the eigenvalue problem by a specialized bundle approach.

The matrix $C-\sum_{i} A_{i} y_{i}$ inherits the structure of cost matrix and constraints $\quad\left[\rightarrow \lambda_{\max }\right.$ by iterative methods like Lanczos]

A semidefinite model for $f(y):=\lambda_{\max }\left(C-\mathcal{A}^{T} y\right)+b^{T} y$
With $\mathcal{W}=\{W \succeq 0: \operatorname{tr} W=1\}$

$$
f(y)=\max _{W \in \mathcal{W}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y
$$

evaluate by computing $\lambda_{\max }\left(C-\mathcal{A}^{\top} y\right)$,
[Lanczos] any eigenvector v to $\lambda_{\text {max }},\|v\|=1$, yields a subgradient via $v v^{\top} \in \mathcal{W}$

A semidefinite model for $f(y):=\lambda_{\max }\left(C-\mathcal{A}^{T} y\right)+b^{T} y$
With $\mathcal{W}=\{W \succeq 0: \operatorname{tr} W=1\}$

$$
f(y)=\max _{W \in \mathcal{W}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y
$$

evaluate by computing $\lambda_{\max }\left(C-\mathcal{A}^{\top} y\right)$,
[Lanczos] any eigenvector v to $\lambda_{\text {max }},\|v\|=1$, yields a subgradient via $v v^{\top} \in \mathcal{W}$

For any subset $\widehat{\mathcal{W}}_{k} \subseteq \mathcal{W}$ one obtains a cutting model

$$
f_{\widehat{W_{k}}}(y)=\max _{W \in \widehat{W_{k}}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

A semidefinite model for $f(y):=\lambda_{\max }\left(C-\mathcal{A}^{T} y\right)+b^{T} y$
With $\mathcal{W}=\{W \succeq 0: \operatorname{tr} W=1\}$

$$
f(y)=\max _{W \in \mathcal{W}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y
$$

evaluate by computing $\lambda_{\max }\left(C-\mathcal{A}^{\top} y\right)$,
[Lanczos] any eigenvector v to $\lambda_{\max },\|v\|=1$, yields a subgradient via $v v^{\top} \in \mathcal{W}$

For any subset $\widehat{\mathcal{W}}_{k} \subseteq \mathcal{W}$ one obtains a cutting model

$$
f_{\widehat{W}_{k}}(y)=\max _{W \in \widehat{\mathcal{W}}_{k}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

We use

$$
\widehat{\mathcal{W}}_{k}=\left\{P_{k} U P_{k}^{T}+\alpha \bar{X}_{k}: \operatorname{tr} U+\alpha=1, U \succeq 0, \alpha \geq 0\right\} \quad \subseteq \mathcal{W}
$$

with parameters $P_{k} \in \mathbb{R}^{n \times r}, P_{k}^{T} P_{k}=I_{r}$, and an "aggregate" $\bar{X}_{k} \in \mathcal{W}$.

A semidefinite model for $f(y):=\lambda_{\max }\left(C-\mathcal{A}^{T} y\right)+b^{T} y$
With $\mathcal{W}=\{W \succeq 0: \operatorname{tr} W=1\}$

$$
f(y)=\max _{W \in \mathcal{W}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y
$$

evaluate by computing $\lambda_{\max }\left(C-\mathcal{A}^{\top} y\right)$, any eigenvector v to $\lambda_{\max },\|v\|=1$, yields a subgradient via $v v^{\top} \in \mathcal{W}$

For any subset $\widehat{\mathcal{W}}_{k} \subseteq \mathcal{W}$ one obtains a cutting model

$$
f_{\widehat{W}_{k}}(y)=\max _{W \in \widehat{\mathcal{W}}_{k}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y \quad \leq f(y) \quad \forall y \in \mathbb{R}^{m}
$$

We use

$$
\widehat{\mathcal{W}}_{k}=\left\{P_{k} U P_{k}^{T}+\alpha \bar{X}_{k}: \operatorname{tr} U+\alpha=1, U \succeq 0, \alpha \geq 0\right\} \quad \subseteq \mathcal{W}
$$

with parameters $P_{k} \in \mathbb{R}^{n \times r}, P_{k}^{T} P_{k}=I_{r}$, and an "aggregate" $\bar{X}_{k} \in \mathcal{W}$. Convergence: $\quad P=v$ and \bar{X} or no \bar{X} and big r with $\binom{r+1}{2} \leq m$.

Spectral Bundle Model

cutting plane and augmented model

Solving the augmented model $\min f_{\widehat{W}}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}$

$$
\begin{aligned}
& \min _{y} \max _{W \in \widehat{\mathcal{W}}}\left\langle C-\mathcal{A}^{\top} y, W\right\rangle+\langle b, y\rangle+\frac{\mu}{2}\|y-\hat{y}\|^{2} \\
= & \max _{W \in \widehat{\mathcal{W}}} \min _{y}\langle C, W\rangle+\langle b-\mathcal{A} W, y\rangle+\frac{\mu}{2}\|y-\hat{y}\|^{2}
\end{aligned}
$$

Solving the augmented model $\min f_{\widehat{W}}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}$

$$
\begin{aligned}
& \min _{y} \max _{W \in \widehat{\mathcal{W}}}\left\langle C-\mathcal{A}^{T} y, W\right\rangle+\langle b, y\rangle+\frac{\mu}{2}\|y-\hat{y}\|^{2} \\
= & \max _{W \in \widehat{\mathcal{W}}} \min _{y}\langle C, W\rangle+\langle b-\mathcal{A} W, y\rangle+\frac{\mu}{2}\|y-\hat{y}\|^{2}
\end{aligned}
$$

Solve unconstrained quadratic inner optimization over y explicitly:

$$
y_{+}(W)=\hat{y}-\frac{1}{\mu}(b-\mathcal{A} W) \quad[\mu \text { "step size/trust region control" }]
$$

Solving the augmented model $\min f_{\widehat{\mathcal{W}}}(y)+\frac{\mu}{2}\|y-\hat{y}\|^{2}$

$$
\begin{aligned}
& \min _{y} \max _{W \in \widehat{\mathcal{W}}}\left\langle C-\mathcal{A}^{T} y, W\right\rangle+\langle b, y\rangle+\frac{\mu}{2}\|y-\hat{y}\|^{2} \\
= & \max _{W \in \widehat{\mathcal{W}}} \min _{y}\langle C, W\rangle+\langle b-\mathcal{A} W, y\rangle+\frac{\mu}{2}\|y-\hat{y}\|^{2}
\end{aligned}
$$

Solve unconstrained quadratic inner optimization over y explicitly:

$$
y_{+}(W)=\hat{y}-\frac{1}{\mu}(b-\mathcal{A} W) \quad[\mu \text { "step size/trust region control"] }
$$

Substitute for y to obtain a quadratic semidefinite problem in W,

$$
\begin{array}{lll}
\hline & \min & \frac{1}{2 \mu}\|b-\mathcal{A} W\|^{2}-\left\langle W, C-\mathcal{A}^{T} \hat{y}\right\rangle-\langle b, \hat{y}\rangle \\
(\mathrm{QSP}) & \text { s.t. } & W=P U P^{T}+\alpha \bar{X} \\
& \operatorname{tr} U+\alpha=1 \\
& U \succeq 0, \alpha \geq 0 .
\end{array}
$$

small if r is small $\left(U \in S_{+}^{r}\right) \rightarrow$ interior point system matrix $\binom{r+1}{2}+1[!]$
\rightarrow "best (eps)subgradient" $W_{+}=P U_{+} P^{T}+\alpha_{+} \bar{X}$
\rightarrow new candidate $y_{+}=y_{+}\left(W_{+}\right)$.

Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200*]
Local quadratic convergence for correct multiplicity t in the optimum y^{*},

$$
\begin{gathered}
C-\mathcal{A}^{T} y^{*}=\left[Q_{1}^{*} Q_{2}^{*}\right]\left[\begin{array}{cc}
\Lambda_{1}^{*} & 0 \\
0 & \Lambda_{2}^{*}
\end{array}\right]\left[Q_{1}^{*} Q_{2}^{*}\right]^{T} \\
\lambda_{1}^{*}=\cdots=\lambda_{t}^{*}>\lambda_{t+1}^{*}>\cdots>\lambda_{n}^{*}
\end{gathered}
$$

Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200*]
Local quadratic convergence for correct multiplicity t in the optimum y^{*},

$$
\begin{gathered}
C-\mathcal{A}^{T} y^{*}=\left[Q_{1}^{*} Q_{2}^{*}\right]\left[\begin{array}{cc}
\Lambda_{1}^{*} & 0 \\
0 & \Lambda_{2}^{*}
\end{array}\right]\left[Q_{1}^{*} Q_{2}^{*}\right]^{T} \\
\lambda_{1}^{*}=\cdots=\lambda_{t}^{*}>\lambda_{t+1}^{*}>\cdots>\lambda_{n}^{*}
\end{gathered}
$$

1. Guess t_{k}, compute Q_{1}^{k}, Q_{2}^{k} and an interior subgradient U_{k} by

$$
\min \left\|b-\mathcal{A} Q_{1} U Q_{1}^{T}\right\|^{2} \text { s.t. } \operatorname{tr} U=1, U \succeq 0
$$

Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200*]
Local quadratic convergence for correct multiplicity t in the optimum y^{*},

$$
\begin{gathered}
C-\mathcal{A}^{T} y^{*}=\left[Q_{1}^{*} Q_{2}^{*}\right]\left[\begin{array}{cc}
\Lambda_{1}^{*} & 0 \\
0 & \Lambda_{2}^{*}
\end{array}\right]\left[Q_{1}^{*} Q_{2}^{*}\right]^{T} \\
\lambda_{1}^{*}=\cdots=\lambda_{t}^{*}>\lambda_{t+1}^{*}>\cdots>\lambda_{n}^{*}
\end{gathered}
$$

1. Guess t_{k}, compute Q_{1}^{k}, Q_{2}^{k} and an interior subgradient U_{k} by

$$
\min \left\|b-\mathcal{A} Q_{1} U Q_{1}^{T}\right\|^{2} \text { s.t. } \operatorname{tr} U=1, U \succeq 0
$$

2. Compute the Newton candidate by solving

$$
\begin{array}{ll}
\min & \frac{1}{2}\left\|y-\hat{y}_{k}\right\|_{H_{k}}^{2}+\langle b, y\rangle+\delta \\
\text { s.t. } & \delta I=Q_{1}^{T}\left(C^{-}-\mathcal{A}^{T} y\right) Q_{1}
\end{array}
$$

where

$$
H_{k}=2 \mathcal{A}\left(\left(Q_{1} U_{k} Q_{1}^{T}\right) \otimes\left(Q_{2}\left[\lambda_{1}^{k} I-\Lambda_{2}^{k}\right]^{-1} Q_{2}^{T}\right)\right) \mathcal{A}^{T} \quad[\text { regularity } \succ 0]
$$

Adaptation of Step 2 for Spectral Bundle

 $\begin{array}{lll}\text { Step } 2 & \min & \frac{1}{2}\|y-\hat{y}\|_{H}^{2}+\langle b, y\rangle+\delta \\ \text { s.t. } & \delta l=Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1}\end{array} \quad$ is relaxed to$$
\begin{array}{ll}
\min & \frac{1}{\|}\|y-\hat{y}\|_{H}^{2}+\langle b, y\rangle+\delta \\
\text { s.t. } & \delta I \succeq Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1},
\end{array} \Rightarrow \delta=\lambda_{\max }\left(Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1}\right) .
$$

Adaptation of Step 2 for Spectral Bundle

Step 2

$$
\begin{array}{ll}
\min & \frac{1}{2}\|y-\hat{y}\|_{H}^{2}+\langle b, y\rangle+\delta \\
\text { s.t. } & \delta I=Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1}
\end{array}
$$

is relaxed to

$$
\begin{array}{ll}
\min & \frac{1}{2}\|y-\hat{y}\|_{H}^{2}+\langle b, y\rangle+\delta \\
\text { s.t. } & \delta / \succeq Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1},
\end{array} \Rightarrow \delta=\lambda_{\max }\left(Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1}\right) .
$$

With $\widehat{\mathcal{W}}:=\left\{Q_{1} U Q_{1}^{T}: \operatorname{tr} U=1, U \succeq 0\right\}$ the problem reads

$$
\min _{y} \max _{W \in \widehat{\mathcal{W}}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y+\frac{1}{2}\|y-\hat{y}\|_{H}^{2}
$$

Adaptation of Step 2 for Spectral Bundle

Step 2

$$
\begin{array}{ll}
\min & \frac{1}{2}\|y-\hat{y}\|_{H}^{2}+\langle b, y\rangle+\delta \\
\text { s.t. } & \delta I=Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1}
\end{array}
$$

$$
\begin{array}{ll}
\min & \frac{1}{2}\|y-\hat{y}\|_{H}^{2}+\langle b, y\rangle+\delta \\
\text { s.t. } & \delta / \succeq Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1},
\end{array} \Rightarrow \delta=\lambda_{\max }\left(Q_{1}^{T}\left(C-\mathcal{A}^{T} y\right) Q_{1}\right)
$$

With $\widehat{\mathcal{W}}:=\left\{Q_{1} U Q_{1}^{T}: \operatorname{tr} U=1, U \succeq 0\right\}$ the problem reads

$$
\min _{y} \max _{W \in \widehat{\mathcal{W}}}\left\langle W, C-\mathcal{A}^{T} y\right\rangle+b^{T} y+\frac{1}{2}\|y-\hat{y}\|_{H}^{2}
$$

Dualize, then

$$
y_{+}(W)=\hat{y}-H^{-1}(b-\mathcal{A} W)
$$

$$
\begin{array}{ll}
\min & \frac{1}{2}\|b-\mathcal{A} W\|_{H^{-1}}^{2}-\left\langle W, C-\mathcal{A}^{T} \hat{y}\right\rangle-\langle b, \hat{y}\rangle \\
\text { s.t. } & W=Q_{1} U Q_{1}^{J^{\prime}} \\
& \operatorname{tr} U=1 \\
& U \succeq 0 .
\end{array}
$$

Scope of a second order bundle method

If QSP is solved by an interior point method with r columns, each iteration of QSP requires the factorization of a $\binom{r+1}{2}$ matrix.

For m constraints we can expect $r \approx \sqrt{m}$.
\rightarrow Several $O\left(m^{3}\right)$ operations for each solution of QSP.

Scope of a second order bundle method

If QSP is solved by an interior point method with r columns, each iteration of QSP requires the factorization of a $\binom{r+1}{2}$ matrix.

For m constraints we can expect $r \approx \sqrt{m}$.
\rightarrow Several $O\left(m^{3}\right)$ operations for each solution of QSP.
Typically, a full interior point code requires several $O\left(n^{3}\right)$ and one $O\left(m^{3}\right)$ operation per iteration.
\rightarrow Second order SB is unlikely to be attractive for $m \geq n$, but might be relevant for small $m \leq n$ or if r is small.
\rightarrow Emphasis on large n and rather small m.

Scaling Variants

- No scaling, bounded bundle (SB)

Scaling Variants

- No scaling, bounded bundle (SB)
- No scaling, fat bundle (CB)

Scaling Variants

- No scaling, bounded bundle (SB)
- No scaling, fat bundle (CB)
- Modified Newton (CB-fN): full eigenvalue decomposition, minimum norm subgradient, compute full Newton $H(+\rho /)$

Scaling Variants

- No scaling, bounded bundle (SB)
- No scaling, fat bundle (CB)
- Modified Newton (CB-fN): full eigenvalue decomposition, minimum norm subgradient, compute full Newton $H(+\rho /)$
- Low-Rank Newton (CB-IrN): collect approximate subspace to large eigenvalues, compute min. norm subgradient for this, low rank approximation of Newton matrix $(+\rho I)$

Scaling Variants

- No scaling, bounded bundle (SB)
- No scaling, fat bundle (CB)
- Modified Newton (CB-fN): full eigenvalue decomposition, minimum norm subgradient, compute full Newton $H(+\rho I)$
- Low-Rank Newton (CB-IrN): collect approximate subspace to large eigenvalues, compute min. norm subgradient for this, low rank approximation of Newton matrix $(+\rho I)$
- Approximate Low-Rank Newton (CB-alrN): collect approx. subspace to large eigenvalues, use subgradient induced by W_{+}of (QSP), approximate Newton matrix with available low rank information $(+\rho I)$

Scaling Variants

- No scaling, bounded bundle (SB)
- No scaling, fat bundle (CB)
- Modified Newton (CB-fN): full eigenvalue decomposition, minimum norm subgradient, compute full Newton $H(+\rho I)$
- Low-Rank Newton (CB-IrN): collect approximate subspace to large eigenvalues, compute min. norm subgradient for this, low rank approximation of Newton matrix $(+\rho I)$
- Approximate Low-Rank Newton (CB-alrN): collect approx. subspace to large eigenvalues, use subgradient induced by W_{+}of (QSP), approximate Newton matrix with available low rank information $(+\rho I)$
- Diagonal Low-Rank (CB-diag): Collect approximate subspace to large eigenvalues, use subgradient W_{+}of (QSP) and the diagonal of the approximate Newton matrix $(+\rho I)$

Low Rank Structure

$$
H=2 \mathcal{A}\left(\left(Q_{1} \cup Q_{1}^{T}\right) \otimes\left(Q_{2}\left[\lambda_{1} I-\Lambda_{2}\right]^{-1} Q_{2}^{T}\right)\right) \mathcal{A}^{T}
$$

decompose $U=Q_{u} \wedge_{u} Q_{u}^{T}$, set $\bar{Q}_{1}=Q_{1} Q_{u}$ and rewrite H as

$$
H=2 \mathcal{A}\left(\left(\bar{Q}_{1} \otimes Q_{2}\right)\left(\Lambda_{u} \otimes\left[\lambda_{1} I-\Lambda_{2}\right]^{-1}\right)\left(\bar{Q}_{1} \otimes Q_{2}^{T}\right)\right) \mathcal{A}^{T}
$$

Truncate $\left[\lambda_{1} /-\Lambda_{2}\right]_{1, \ldots, h}$ and $Q_{2} \rightarrow Q_{h}$,

Low Rank Structure

$$
H=2 \mathcal{A}\left(\left(Q_{1} \cup Q_{1}^{T}\right) \otimes\left(Q_{2}\left[\lambda_{1} I-\Lambda_{2}\right]^{-1} Q_{2}^{T}\right)\right) \mathcal{A}^{T}
$$

decompose $U=Q_{u} \wedge_{u} Q_{u}^{T}$, set $\bar{Q}_{1}=Q_{1} Q_{u}$ and rewrite H as

$$
H=2 \mathcal{A}\left(\left(\bar{Q}_{1} \otimes Q_{2}\right)\left(\Lambda_{u} \otimes\left[\lambda_{1} I-\Lambda_{2}\right]^{-1}\right)\left(\bar{Q}_{1} \otimes Q_{2}^{T}\right)\right) \mathcal{A}^{T}
$$

Truncate $\left[\lambda_{1} I-\Lambda_{2}\right]_{1, \ldots, h}$ and $Q_{2} \rightarrow Q_{h}$, compute a QR-decomposition of $\mathcal{A}\left(\bar{Q}_{1} \otimes Q_{h}\right) \rightarrow Q_{\mathcal{A}} R$

$$
\begin{aligned}
& H_{h}=2 Q_{\mathcal{A}} \underbrace{R\left(\Lambda_{u} \otimes\left[\lambda_{1} I-\Lambda_{2}\right]_{1, \ldots, h}^{-1}\right) R^{T}} Q_{\mathcal{A}}^{T} \\
& \rightarrow \tilde{Q} \Lambda_{H} \tilde{Q}^{T}, Q_{H}:=Q_{\mathcal{A}} \tilde{Q}
\end{aligned}
$$

truncate $\Lambda_{H} \rightarrow \hat{\Lambda}_{H}, \hat{Q}_{H}$

$$
\rightarrow \hat{H}=\rho I+2 \hat{Q}_{H} \hat{\Lambda}_{H} \hat{Q}_{H}^{T}
$$

for some regularization parameter $\rho>0$.

Implementation Details

Multiplicity Detection.

Use Tapia indicators based on the development of the eigenvalues of the last two iterates of the (QSP) solver.

Implementation Details

Multiplicity Detection.

Use Tapia indicators based on the development of the eigenvalues of the last two iterates of the (QSP) solver.

Bundle Update.

- maintain approximate subspace \bar{Q} to large eigenvalues
- old P : keep the active subspace of (QSP) and that having a large contribution to $\operatorname{diag}(H)$
- add the (5) top most Ritz vectors of \bar{Q}

Implementation Details

Multiplicity Detection.

Use Tapia indicators based on the development of the eigenvalues of the last two iterates of the (QSP) solver.

Bundle Update.

- maintain approximate subspace \bar{Q} to large eigenvalues
- old P : keep the active subspace of (QSP) and that having a large contribution to $\operatorname{diag}(H)$
- add the (5) top most Ritz vectors of \bar{Q}

Update of Q_{2} for the Low Rank Representation?
Heuristic: dynamically enlarge \bar{Q} in case of too many null steps

Numerical Experiments

Sparse SDP Random Generator: A_{i} nonzero submatrices of order p small instances:

$$
n \in\{100,300,500\}, m \in\{100,500,1000\}, p \in\{3,5,7\}
$$

larger instances:

$$
n \in\{1, \ldots, 6\} \cdot 1000, m \in\{1,3,5\} \cdot 1000, p \in\{3,4,5\}
$$

Intel(R) Core(TM) i7 CPU 920 machines 8 MB cache, 12 GB RAM, openSUSE Linux 11.1 ($\times 86 _64$) in single processor mode

ConicBundle: start scaling at 10^{-2}
Termination: 10^{-8} or 10000 evaluations
compare to SDPT3 4.0 beta
[ToddTohTütüncü]

Small Instances: $n \in\{100,300,500\}$ and $m=100$

Time required for relative precision $1 \mathrm{e}-06$

Five instances per choice of n and constraint support order $\in\{3,5,7\}$

Small Instances: $n \in\{100,300,500\}$ and $m=500$

Time required for relative precision 0.0001

Time required for relative precision $1 \mathrm{e}-06$

Five instances per choice of n and constraint support order $\in\{3,5,7\}$

Small Instances: $n \in\{100,300,500\}$ and $m=1000$

Time required for relative precision $1 \mathrm{e}-06$

Five instances per choice of n and constraint support order $\in\{3,5,7\}$

Larger Instances: $n \in\{1, \ldots, 6\} \cdot 1000$ and $m=1000$

Time required for relative precision 0.0001

Time required for relative precision $1 \mathrm{e}-06$

Five instances per choice of n and constraint support order $\in\{3,4,5\}$

Larger Instances: $n \in\{1, \ldots, 6\} \cdot 1000$ and $m=3000$

Time required for relative precision 0.0001

Time required for relative precision 1e-06

Five instances per choice of n and constraint support order $\in\{3,4,5\}$

Larger Instances: $n \in\{1, \ldots, 6\} \cdot 1000$ and $m=5000$

Time required for relative precision 0.0001

Time required for relative precision $1 \mathrm{e}-06$

Five instances per choice of n and constraint support order $\in\{3,4,5\}$

Max-Cut 3D-Grids: $n^{3}, n \in\{10,15,20,25\}$

Time required for relative precision 0.0001

Time required for relative precision $1 \mathrm{e}-06$

Five instances with random ± 1 edge weights per choice of n

Number of Descent Steps, Small Instances

relative precision 10^{-6}, average and variance over 15 instances

n	m	CB-ns	CB-fN	CB-IrN	CB-alrN	CB-diag	SDPT3	SB
100	100	$37(6.11)$	$20(3.44)$	$33(6.86)$	$33(6.09)$	$38(21.3)$	$11(0.573)$	$* 43(10.4)$
300	100	$43(5.96)$	$22(4.7)$	$38(8.5)$	$39(9.86)$	$37(8.65)$	$13(0.49)$	$53(10.2)$
500	100	$58(12.7)$	$27(6.67)$	$50(11.1)$	$51(11.2)$	$52(20)$	$14(0.611)$	$69(25.1)$
100	500	$42(5.44)$	$27(3.07)$	$42(5.56)$	$42(5.3)$	$50(15.4)$	$11(0.499)$	$* 48(3.35)$
300	500	$59(11.1)$	$34(5.04)$	$56(10.2)$	$57(11.3)$	$57(11.6)$	$13(0.806)$	$54(6.3)$
500	500	$66(11.5)$	$37(5.23)$	$62(12.2)$	$63(12.4)$	$59(15.9)$	$14(0.596)$	$64(15.6)$
100	1000	$51(7)$	$32(3.25)$	$50(8.13)$	$49(8.26)$	$60(17.9)$	$10(0.249)$	${ }^{*} 55(2.46)$
300	1000	$59(6.76)$	$36(5.84)$	$59(6.81)$	$59(6.31)$	$60(7.8)$	$12(0.442)$	${ }^{*} 55(3.26)$
500	1000	$67(10.8)$	$42(5.44)$	$67(11.2)$	$67(11.1)$	$67(10.5)$	$13(0.442)$	$* 58(3.64)$

* not all instances achieved the required precision

Number of Oracle Calls, Small Instances

relative precision 10^{-6}, average and variance over 15 instances

				CB-IrN	CB-alrN		SDPT3	SB
100	100	75 (25.6)	44	49 (15.8	52 (15.6)	, $)$	11 (0.57	(
300	100	155 (60.4)	75	104 (41.4)	110 (49.1)	86 (29.3)	13 (0.49	79 (
500	100	314 (135)	(4	195 (102)	199	163 (132)	14 (0.611)	64
00	500	(18.8)	68 (27	69 (13.7)	68 (12.6)	76 (20.7)	11	9453 (1.03-10
00	500	178 (110	142 (132)	125 (46.3)	127 (54.4)	107 (32.3)	13 (289 (207
500	500	295 (211)	180 (129)	187 (99.9)	188 (99.8	143 (75.5)	14 (0	532 (462
		117 (35.6)	90 (25.)	96(21	97 (22.	113 (34)	10	(3.65.1
		151 (41.8)	110 (59	123 (23.3)	12	118		
		238 (15)	152 (65	177	178 (86		13 (0.4	*15803 (3.12.10)

* not all instances achieved the required precision

Conclusions

Scaling works well and behaves as (or even better than) expected:

- The number of oracle calls is reduced significantly Newton < Low Rank < fat Bundle

Conclusions

Scaling works well and behaves as (or even better than) expected:

- The number of oracle calls is reduced significantly Newton < Low Rank < fat Bundle
- CB-diag is more stable, accurate, and efficient than SB

Conclusions

Scaling works well and behaves as (or even better than) expected:

- The number of oracle calls is reduced significantly Newton < Low Rank < fat Bundle
- CB-diag is more stable, accurate, and efficient than SB
- Newton is attractive for small matrices and many constraints, but interior point methods seem preferable.
[In the end the QSP system is of size $O(m)$.]

Conclusions

Scaling works well and behaves as (or even better than) expected:

- The number of oracle calls is reduced significantly Newton < Low Rank < fat Bundle
- CB-diag is more stable, accurate, and efficient than SB
- Newton is attractive for small matrices and many constraints, but interior point methods seem preferable.
[In the end the QSP system is of size $O(m)$.]
- Diagonal low rank scaling is attractive for large matrices and few constraints.

Conclusions

Scaling works well and behaves as (or even better than) expected:

- The number of oracle calls is reduced significantly Newton < Low Rank < fat Bundle
- CB-diag is more stable, accurate, and efficient than SB
- Newton is attractive for small matrices and many constraints, but interior point methods seem preferable.
[In the end the QSP system is of size $O(m)$.]
- Diagonal low rank scaling is attractive for large matrices and few constraints.
- Scaling allows a relative precision of 10^{-6} routinely with fast initial convergence.

Conclusions

Scaling works well and behaves as (or even better than) expected:

- The number of oracle calls is reduced significantly Newton < Low Rank < fat Bundle
- CB-diag is more stable, accurate, and efficient than SB
- Newton is attractive for small matrices and many constraints, but interior point methods seem preferable.
[In the end the QSP system is of size $O(m)$.]
- Diagonal low rank scaling is attractive for large matrices and few constraints.
- Scaling allows a relative precision of 10^{-6} routinely with fast initial convergence.
- The cost of solving QSP might be reducible by Toh's approach.

Conclusions

Scaling works well and behaves as (or even better than) expected:

- The number of oracle calls is reduced significantly Newton < Low Rank < fat Bundle
- CB-diag is more stable, accurate, and efficient than SB
- Newton is attractive for small matrices and many constraints, but interior point methods seem preferable.
[In the end the QSP system is of size $O(m)$.]
- Diagonal low rank scaling is attractive for large matrices and few constraints.
- Scaling allows a relative precision of 10^{-6} routinely with fast initial convergence.
- The cost of solving QSP might be reducible by Toh's approach.
\rightarrow Scope of scaled CB: fast low precision results, cutting plane approaches, high precision results with large matrices and few constraints.

Thank you for your attention!

