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The Bundle Method for Nonsmooth Convex Optimization

min f (y) s.t. y ∈ Rm

with f : Rm → R convex (nonsmooth)

f is specified by a first order oracle:
given ȳ ∈ Rm it returns
• f (ȳ) ∈ R function value
• g(ȳ) ∈ Rm some subgradient

(not nec. unique)

satisfying f (y) ≥ f (ȳ) + 〈g(ȳ), y − ȳ〉 ∀y ∈ Rm (subg. ineq.)

Each ω = (γ, g), γ = f (ȳ)− 〈g , ȳ〉 generates a linear minorant of f

fω(y) := γ + 〈g , y〉 ≤ f (y) ∀y ∈ Rm

The collected minorants form the bundle, from this we select a model

Ŵ ⊆ conv{(γ, g) : g = g(ȳ i ), γ = f (ȳ i )−
〈
g , ȳ i

〉
, i = 1, . . . , k},
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• f (ȳ) ∈ R function value
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Any closed proper convex function is the sup over its linear minorants,

f (y) = sup
(γ,g)∈W

γ + 〈g , y〉 , choose compact Ŵ ⊆ W.
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Maximizing over all ω ∈ Ŵ gives a cutting model minorizing f ,

fŴ(y) := max
ω∈Ŵ

fω(y) ≤ f (y) ∀y ∈ Rm
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]

Input: a convex function
given by a first order oracle

convex function
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1. Find a candidate by solving the quadratic model

min
y

max
ω∈Ŵ

fω(y) + µ
2 ‖y − ŷ‖2

2. Evaluate the function and determine a subgradient (oracle)

3. Decide on
• null step
• descent step

4. Update model to contain at least aggregate and new minorant
and iterate
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Input: a convex function
given by a first order oracle

convex function

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

1−1

−0.5

0

0.5

1

1.5

2

2.5

3

y

1. Find a candidate by solving the quadratic model

min
y

max
ω∈Ŵ
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2. Evaluate the function and determine a subgradient (oracle)

3. Decide on
• null step
• descent step

4. Update model to contain at least aggregate and new minorant
and iterate



Bundle Method SDP SB Method Second Order Approaches SB Adaptation Experiments Conclusions

The Aggregate and Convergence
Given weight µ > 0, the quadratic subproblem is a saddle point problem

min
y

max
ω∈Ŵ

fω(y)+µ
2 ‖y−ŷ‖

2= min
y

max
ξω≥0∑
ξω=1

∑
(γ,g)∈W

ξω(γ + g>y) + µ
2 ‖y − ŷ‖2

Determining the saddle point (ȳ , ω̄) over Rn × conv Ŵ yields

• ω̄ = (γ̄, ḡ), the aggregate (the “best” minorant in conv Ŵ),
• ȳ = ŷ − 1

µ ḡ , the next candidate for evaluation.

The progress f (ŷ)− f (ȳ) is compared to the predicted decrease

f (ŷ)− fω̄(ȳ) = f (ŷ)− γ̄ − 〈ŷ , ḡ〉+ 1
µ‖ḡ‖

2 ≥ 0,

This decides on descent step (ŷ ← ȳ) or null step (ŷ ← ŷ , new ω).

Theorem (e.g. [BoGiLeSa2003])
Let ŷk denote the center of iteration k, then f (ŷk)→ inf f .
If, in addition, ŷk0 = ŷk for k ≥ k0 (finitely many descent steps)
then ŷk0 minimizes f and (f (ŷk)− fω̄k (ȳk))k>k0 ↓ 0.

f bounded below ⇒ ‖ḡk‖ K→ 0
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Theorem (e.g. [BoGiLeSa2003])
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fω(y)+µ
2 ‖y−ŷ‖
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ξω(γ + g>y) + µ
2 ‖y − ŷ‖2
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ξω(γ + g>y) + µ
2 ‖y − ŷ‖2
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ξω(γ + g>y) + µ
2 ‖y − ŷ‖2
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Theorem (e.g. [BoGiLeSa2003])
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2 = max
ξω≥0∑
ξω=1

min
y

∑
(γ,g)∈Ŵ
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• ω̄ = (γ̄, ḡ), the aggregate (the “best” minorant in conv Ŵ),
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The bundle framework offers a lot of flexibility and can be extended in
many directions:

• add scaling/“second order” information via the proximal term

• allow constraints on y

• Lagrangian relaxation/decomposition or sums of convex functions

• generate good primal approximations in Lagrangian relaxation

• solve the dual to primal cutting plane approaches

• use specialized cutting models (quadratic subproblem solvable?)

• asynchronous parallel approaches

For me it offers the potential for
“A general tool like the simplex method for LP”

→ ConicBundle, contains much but not yet all of this . . .

Here: choose model and proximal term + 1
2‖y − ŷ‖2

H

Here: for the maximum eigenvalue function/semidefinite prog.
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LP ↔ SDP

max 〈c , x〉
s.t. Ax = b

x ≥ 0

max 〈C ,X 〉
s.t. AX = b

X � 0

x ∈ Rn
+ nonneg. orthant X ∈ Sn

+ pos. semidef. matrices
(polyhedral) (non-polyhedral)

〈c , x〉 =
∑

i cixi 〈C ,X 〉 =
∑

i,j CijXij

Ax =

 〈a1, x〉
...

〈am, x〉

 AX =

 〈A1,X 〉
...

〈Am,X 〉


AT y =

∑
i aiyi ATy =

∑
i Aiyi

min 〈b, y〉
s.t. AT y − z = c

z ≥ 0

min 〈b, y〉
s.t. ATy − Z = C

Z � 0
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Example

max 〈C ,X 〉
s.t. 〈I ,X 〉 = 1

X � 0

min y
s.t. Z = yI − C � 0

[→ y∗ = λmax(C )]

W := {X � 0 : 〈I ,X 〉 = 1} = conv
{
vvT :

〈
I , vvT

〉
= vT v = 1

}
max
X∈W

〈C ,X 〉 = max
‖v‖2=1

〈
C , vvT

〉
= max

‖v‖=1
vTCv = λmax(C )

set of primal optimal solutions:

conv
{
vvT :

〈
I , vvT

〉
= 1, vTCv = λmax(C )

}
[v = Pu]

= conv
{
PuuTPT :

〈
I , uuT

〉
= 1
}

=
{
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Spectral Bundle Method [H.,Rendl00]
For constant trace, the dual is an eigenvalue optimization problem

max 〈C ,X 〉
s.t. 〈I ,X 〉 = a

AX = b
X � 0,

min
y ∈ Rm

aλmax(C −ATy) + 〈b, y〉

For bounded trace, the dual is

max 〈C ,X 〉
s.t. 〈I ,X 〉 ≤ a

AX = b
X � 0,

min
y ∈ Rm

max{0, aλmax(C −ATy)}+ 〈b, y〉

In the following we consider constant trace with a = 1,
and solve the eigenvalue problem by a specialized bundle approach.

The matrix C −
∑

i Aiyi inherits the structure of cost matrix and
constraints [→ λmax by iterative methods like Lanczos]



Bundle Method SDP SB Method Second Order Approaches SB Adaptation Experiments Conclusions

A semidefinite model for f (y) := λmax(C −ATy) + bTy

With W = {W � 0 : trW = 1}

f (y) = max
W∈W

〈
W ,C −ATy

〉
+ bT y

evaluate by computing λmax(C −ATy), [Lanczos]
any eigenvector v to λmax, ‖v‖ = 1, yields a subgradient via vvT ∈ W

For any subset Ŵk ⊆ W one obtains a cutting model

fŴk
(y) = max

W∈Ŵk

〈
W ,C −ATy

〉
+ bT y ≤ f (y) ∀y ∈ Rm

We use

Ŵk =
{
PkUP

T
k + αX k : trU + α = 1,U � 0, α ≥ 0

}
⊆ W

with parameters Pk ∈ Rn×r , PT
k Pk = Ir , and an “aggregate” X k ∈ W.

Convergence: P = v and X or no X and big r with
(
r+1

2

)
≤ m.
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Spectral Bundle Model

cutting plane and augmented model
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Solving the augmented model min fŴ(y) + µ
2‖y − ŷ‖2

min
y

max
W ∈ Ŵ

〈
C −ATy ,W

〉
+ 〈b, y〉+

µ

2
‖y − ŷ‖2

= max
W ∈ Ŵ

min
y
〈C ,W 〉+ 〈b −AW , y〉+

µ

2
‖y − ŷ‖2

Solve unconstrained quadratic inner optimization over y explicitly:

y+(W ) = ŷ − 1
µ (b −AW ) [µ “step size/trust region control”]

Substitute for y to obtain a quadratic semidefinite problem in W ,

(QSP)

min 1
2µ ‖b −AW ‖

2 −
〈
W ,C −ATŷ

〉
− 〈b, ŷ〉

s.t. W = PUPT + αX
trU + α = 1
U � 0, α ≥ 0.

small if r is small (U ∈ S r
+) → interior point system matrix

(
r+1

2

)
+ 1 [!]

→ “best (eps)subgradient” W+ = PU+P
T + α+X

→ new candidate y+ = y+(W+).
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s.t. W = PUPT + αX
trU + α = 1
U � 0, α ≥ 0.

small if r is small (U ∈ S r
+) → interior point system matrix

(
r+1

2

)
+ 1 [!]

→ “best (eps)subgradient” W+ = PU+P
T + α+X

→ new candidate y+ = y+(W+).



Bundle Method SDP SB Method Second Order Approaches SB Adaptation Experiments Conclusions

Solving the augmented model min fŴ(y) + µ
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Second Order Approaches
[Overton8*, OvertonWomersley95, Oustry200*]
Local quadratic convergence for correct multiplicity t in the optimum y∗,

C −ATy∗ = [Q∗1Q
∗
2 ]

[
Λ∗1 0
0 Λ∗2

]
[Q∗1Q

∗
2 ]T

λ∗1 = · · · = λ∗t > λ∗t+1 > · · · > λ∗n

1. Guess tk , compute Qk
1 , Qk

2 and an interior subgradient Uk by

min ‖b −AQ1UQ
T
1 ‖2 s.t. trU = 1, U � 0

2. Compute the Newton candidate by solving

min 1
2‖y − ŷk‖2

Hk
+ 〈b, y〉+ δ

s.t. δI = QT
1 (C −AT y)Q1

where

Hk = 2A
(
(Q1UkQ

T
1 )⊗ (Q2[λk1 I − Λk

2 ]−1QT
2 )
)
AT [regularity � 0]
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Adaptation of Step 2 for Spectral Bundle

Step 2
min 1

2‖y − ŷ‖2
H + 〈b, y〉+ δ

s.t. δI = QT
1 (C −AT y)Q1

is relaxed to

min 1
2‖y − ŷ‖2

H + 〈b, y〉+ δ
s.t. δI � QT

1 (C −AT y)Q1,
⇒ δ = λmax(QT

1 (C −AT y)Q1).

With Ŵ := {Q1UQ
T
1 : trU = 1,U � 0} the problem reads

min
y

max
W∈Ŵ

〈
W ,C −AT y

〉
+ bT y +

1

2
‖y − ŷ‖2

H

Dualize, then y+(W ) = ŷ − H−1(b −AW )

(QSP)

min 1
2‖b −AW ‖

2
H−1 −

〈
W ,C −ATŷ

〉
− 〈b, ŷ〉

s.t. W = Q1UQ
T
1

trU = 1
U � 0.
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Scope of a second order bundle method

If QSP is solved by an interior point method with r columns,
each iteration of QSP requires the factorization of a

(r+1
2

)
matrix.

For m constraints we can expect r ≈
√
m.

→ Several O(m3) operations for each solution of QSP.

Typically, a full interior point code requires several O(n3) and one
O(m3) operation per iteration.

→ Second order SB is unlikely to be attractive for m ≥ n,
but might be relevant for small m ≤ n or if r is small.

→ Emphasis on large n and rather small m.
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Scaling Variants

• No scaling, bounded bundle (SB)

• No scaling, fat bundle (CB)

• Modified Newton (CB-fN): full eigenvalue decomposition,
minimum norm subgradient, compute full Newton H (+ρI )

• Low-Rank Newton (CB-lrN): collect approximate subspace
to large eigenvalues, compute min. norm subgradient for this,
low rank approximation of Newton matrix (+ρI )

• Approximate Low-Rank Newton (CB-alrN): collect
approx. subspace to large eigenvalues, use subgradient induced
by W+ of (QSP), approximate Newton matrix with available
low rank information (+ρI )

• Diagonal Low-Rank (CB-diag): Collect approximate
subspace to large eigenvalues, use subgradient W+ of (QSP)
and the diagonal of the approximate Newton matrix (+ρI )
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Low Rank Structure

H = 2A
(

(Q1UQ
T
1 )⊗ (Q2[λ1I − Λ2]−1QT

2 )
)
AT

decompose U = QuΛuQ
T
u , set Q̄1 = Q1Qu and rewrite H as

H = 2A
(

(Q̄1 ⊗ Q2)(Λu ⊗ [λ1I − Λ2]−1)(Q̄1 ⊗ QT
2 )
)
AT

Truncate [λ1I − Λ2]1,...,h and Q2 → Qh,

compute a QR-decomposition of A(Q̄1 ⊗ Qh) → QAR

Hh = 2QA R(Λu ⊗ [λ1I − Λ2]−1
1,...,h)RT︸ ︷︷ ︸

→ Q̃ΛHQ̃
T , QH := QAQ̃

QT
A

truncate ΛH → Λ̂H , Q̂H

→ Ĥ = ρI + 2Q̂H Λ̂HQ̂
T
H

for some regularization parameter ρ > 0.
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H = 2A
(

(Q̄1 ⊗ Q2)(Λu ⊗ [λ1I − Λ2]−1)(Q̄1 ⊗ QT
2 )
)
AT

Truncate [λ1I − Λ2]1,...,h and Q2 → Qh,
compute a QR-decomposition of A(Q̄1 ⊗ Qh) → QAR

Hh = 2QA R(Λu ⊗ [λ1I − Λ2]−1
1,...,h)RT︸ ︷︷ ︸

→ Q̃ΛHQ̃
T , QH := QAQ̃

QT
A

truncate ΛH → Λ̂H , Q̂H

→ Ĥ = ρI + 2Q̂H Λ̂HQ̂
T
H

for some regularization parameter ρ > 0.
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Implementation Details

Multiplicity Detection.

Use Tapia indicators based on the development of the eigenvalues of
the last two iterates of the (QSP) solver.

Bundle Update.

• maintain approximate subspace Q to large eigenvalues

• old P: keep the active subspace of (QSP)
and that having a large contribution to diag(H)

• add the (5) top most Ritz vectors of Q

Update of Q2 for the Low Rank Representation?

Heuristic: dynamically enlarge Q in case of too many null steps
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Numerical Experiments

Sparse SDP Random Generator: Ai nonzero submatrices of order p
small instances:

n ∈ {100, 300, 500}, m ∈ {100, 500, 1000}, p ∈ {3, 5, 7}
larger instances:

n ∈ {1, . . . , 6} · 1000, m ∈ {1, 3, 5} · 1000, p ∈ {3, 4, 5}

Intel(R) Core(TM) i7 CPU 920 machines
8 MB cache, 12 GB RAM, openSUSE Linux 11.1 (x86 64)
in single processor mode

ConicBundle: start scaling at 10−2

Termination: 10−8 or 10000 evaluations

compare to SDPT3 4.0 beta [ToddTohTütüncü]
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Small Instances: n ∈ {100, 300, 500} and m = 100
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Five instances per choice of n and constraint support order ∈ {3, 5, 7}
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Small Instances: n ∈ {100, 300, 500} and m = 500
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Five instances per choice of n and constraint support order ∈ {3, 5, 7}
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Small Instances: n ∈ {100, 300, 500} and m = 1000
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Five instances per choice of n and constraint support order ∈ {3, 5, 7}
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Larger Instances: n ∈ {1, . . . , 6} · 1000 and m = 1000
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Five instances per choice of n and constraint support order ∈ {3, 4, 5}
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Larger Instances: n ∈ {1, . . . , 6} · 1000 and m = 3000
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Five instances per choice of n and constraint support order ∈ {3, 4, 5}
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Larger Instances: n ∈ {1, . . . , 6} · 1000 and m = 5000
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Five instances per choice of n and constraint support order ∈ {3, 4, 5}
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Max-Cut 3D-Grids: n3, n ∈ {10, 15, 20, 25}
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Five instances with random ±1 edge weights per choice of n
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Number of Descent Steps, Small Instances

relative precision 10−6, average and variance over 15 instances

n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 37 (6.11) 20 (3.44) 33 (6.86) 33 (6.09) 38 (21.3) 11 (0.573) *43 (10.4)
300 100 43 (5.96) 22 ( 4.7 ) 38 ( 8.5 ) 39 (9.86) 37 (8.65) 13 ( 0.49 ) 53 (10.2)
500 100 58 (12.7) 27 (6.67) 50 (11.1) 51 (11.2) 52 ( 20 ) 14 (0.611) 69 (25.1)
100 500 42 (5.44) 27 (3.07) 42 (5.56) 42 ( 5.3 ) 50 (15.4) 11 (0.499) *48 (3.35)
300 500 59 (11.1) 34 (5.04) 56 (10.2) 57 (11.3) 57 (11.6) 13 (0.806) 54 ( 6.3 )
500 500 66 (11.5) 37 (5.23) 62 (12.2) 63 (12.4) 59 (15.9) 14 (0.596) 64 (15.6)
100 1000 51 ( 7 ) 32 (3.25) 50 (8.13) 49 (8.26) 60 (17.9) 10 (0.249) *55 (2.46)
300 1000 59 (6.76) 36 (5.84) 59 (6.81) 59 (6.31) 60 ( 7.8 ) 12 (0.442) *55 (3.26)
500 1000 67 (10.8) 42 (5.44) 67 (11.2) 67 (11.1) 67 (10.5) 13 (0.442) *58 (3.64)
∗ not all instances achieved the required precision
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Number of Oracle Calls, Small Instances

relative precision 10−6, average and variance over 15 instances

n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 75 (25.6) 44 (24.9) 49 (15.8) 52 (15.6) 54 (31.3) 11 (0.573) 255 ( 504 )
300 100 155 (60.4) 75 (44.2) 104 (41.4) 110 (49.1) 86 (29.3) 13 ( 0.49 ) 279 ( 171 )
500 100 314 ( 135 ) 95 (44.6) 195 ( 102 ) 199 ( 108 ) 163 ( 132 ) 14 (0.611) 464 ( 399 )
100 500 83 (18.8) 68 (27.8) 69 (13.7) 68 (12.6) 76 (20.7) 11 (0.499) *119453 (1.03·105)
300 500 178 ( 110 ) 142 ( 132 ) 125 (46.3) 127 (54.4) 107 (32.3) 13 (0.806) 289 ( 207 )
500 500 295 ( 211 ) 180 ( 129 ) 187 (99.9) 188 (99.8) 143 (75.5) 14 (0.596) 532 ( 462 )
100 1000 117 (35.6) 90 (25.4) 96 ( 21 ) 97 (22.6) 113 ( 34 ) 10 (0.249) *213306 (3.65·104)
300 1000 151 (41.8) 110 (59.8) 123 (23.3) 124 (24.1) 118 (19.9) 12 (0.442) *25553 (3.58·104)
500 1000 238 ( 159 ) 152 (65.1) 177 (83.8) 178 (86.7) 148 ( 37 ) 13 (0.442) *15803 (3.12·104)
∗ not all instances achieved the required precision
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Conclusions

Scaling works well and behaves as (or even better than) expected:

• The number of oracle calls is reduced significantly
Newton < Low Rank < fat Bundle

• CB-diag is more stable, accurate, and efficient than SB

• Newton is attractive for small matrices and many constraints,
but interior point methods seem preferable.

[In the end the QSP system is of size O(m).]

• Diagonal low rank scaling is attractive for large matrices and
few constraints.

• Scaling allows a relative precision of 10−6 routinely with fast
initial convergence.

• The cost of solving QSP might be reducible by Toh’s approach.

→ Scope of scaled CB: fast low precision results, cutting plane
approaches, high precision results with large matrices and few
constraints.
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Thank you for your attention!
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