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Abstract

A surprising result is presented in this paper with possible far reaching consequences
for any optimization technique which relies on Krylov subspace methods employed
to solve the underlying linear equation systems. In this paper the advantages of
the new technique are illustrated in the context of Interior Point Methods (IPMs).
When an iterative method is applied to solve the linear equation system in IPMs, the
attention is usually placed on accelerating their convergence by designing appropriate
preconditioners, but the linear solver is applied as a black box solver with a standard
termination criterion which asks for a sufficient reduction of the residual in the linear
system. Such an approach often leads to an unnecessary “oversolving” of linear
equations. In this paper a new specialized termination criterion for Krylov methods
used in IPMs is designed. It is derived from a deep understanding of IPM needs and
is demonstrated to preserve the polynomial worst-case complexity of these methods.
The new criterion has been adapted to the Conjugate Gradient (CG) and to the
Minimum Residual method (MINRES) applied in the IPM context. The new criterion
has been tested on a set of linear and quadratic optimization problems including
compressed sensing, image processing and instances with partial differential equation
constraints. Evidence gathered from these computational experiments shows that the
new technique delivers significant improvements in terms of inner (linear) iterations
and those translate into significant savings of the IPM solution time.

Keywords: Quadratic Programming, Interior Point Methods, Conjugate Gradient, MIN-
RES, Stopping criterion.

1 Introduction

Interior Point Methods (IPMs) represent the state-of-the-art for the solution of convex
optimization problems. Being second-order methods, they usually converge in merely a
few iterations and if the cost of a single iteration is kept small they are able to outperform
the first-order methods, especially when it comes to problems of very large dimensions.
In these instances, the linear system that arises at each iteration is usually solved with
an iterative Krylov subspace method, either Conjugate Gradient or MINRES, depending
on the approach chosen. The ill-conditioning of the matrices involved has given rise
to a wide collection of preconditioning strategies for various applications of IPMs (e.g.
[7, 8, 9, 10, 18, 23, 32, 34, 39]). Recent developments have also been made regarding the
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impact of the numerical linear algebra inexactness (e.g. [13, 29, 30]) and in particular
on the effect that an inexact linear solver has on the convergence properties of IPMs
([6, 11, 24, 28]). Many other improvements have been made regarding predictor-correctors
strategies [12, 21], regularization strategies [3, 19, 36] or the use of quasi-Newton approaches
[14, 15, 26].

When an iterative linear solver is used, the common approach is to employ a stopping
criterion based on the reduction of the residual, i.e. the internal solver is stopped as soon
as the initial residual is reduced by a certain predetermined factor. Different strategies
have been developed in order to choose a stopping tolerance that allows the outer IPM
iterations to converge, without requiring too many inner (linear solver) iterations. However,
these techniques always rely on a tolerance imposed on the residual of the linear system.
This approach does not necessarily represent the best choice, since the overall goal is not
obtaining an accurate solution to the sequence of linear systems, but finding a suitable
(though inexact) search direction for the optimization problem; in particular, it may be
possible to obtain a Newton direction that would be considered too rough from a purely
linear algebra perspective (i.e. its residual still would be too high and any standard stopping
criterion would reject it) but that could be good enough to perform the next iteration of
IPM successfully (i.e. the direction guarantees sufficient reductions of infeasibilities and the
duality gap). If we are able to derive a stop criterion that accepts a direction not based on
its residual, but based on a potential improvement it can bring to the outer IPM iterations,
then we could reduce the number of inner iterations required at each outer step, with little
or no disadvantage to the overall convergence properties of the IPM.

Early stopping strategies have been used in other fields: in [27, 31, 37] a CG stop
criterion is applied to the Jacobi-Davidson eigensolver, when finding eigenvalues of large
matrices; early stopping is also used in inverse problems and machine learning as a
regularizer, to avoid the phenomenon known as semiconvergence (see e.g. [20]); in [4, 5]
other stopping criteria are derived for various applications. However, to the best of our
knowledge, an early stopping criterion, specifically designed to be applied in IPMs, has not
yet been derived. This paper fills the gap.

In order to obtain such a criterion, we need to be able to estimate the convergence
indicators of IPM (i.e. primal and dual infeasibility and complementarity) while performing
the inner iterations with CG or MINRES. The main problem is that, to compute the
full direction (∆x,∆y,∆s) and to compute the infeasibilities, we would need to perform
additional matrix-vector products at each inner iteration. Since in general we do only
one matrix-vector product and one preconditioner application per iteration, adding extra
matrix applications would slow down the linear solver immensely. Fortunately, with some
clever implementation and exploiting the matrix operations that are already executed, we
can estimate the IPM convergence indicators using only vector operations, resulting in a
minimal increase in the cost of a single linear iteration.

We propose two stopping criteria for the solution of the linear system at each IPM
iteration: a theoretical one, that we use to prove the polynomial complexity result and a
practical one, that we use in the numerical tests. The latter, called Interior Point Conjugate
Gradient (IPCG) or Interior Point MINRES (IPMINRES), depending on the approach
chosen, is highly specialized for the specific task that it needs to solve and shows significant
improvements with respect to the standard CG or MINRES on the problems that we tested,
which include quadratic programs derived from image processing, compressed sensing and
Partial Differential Equation (PDE) constrained optimization. In particular, we are able
to avoid unnecessary inner iterations in the early stage of the IPM, while retaining the
good behaviour of the method in its late iterations.

2



The rest of the paper is organized as follows: in Section 2 we present the Interior Point
Method; in Section 3 we show the new IPCG and IPMINRES iterations, that allow to
estimate the convergence of IPM; in Section 4 we introduce a theoretical stopping criterion,
for which we prove polynomial complexity of IPM, and the criterion used in practice; in
Section 5 we present the test problems and show the numerical results.

Notation In the following, e indicates the vector (1, 1, . . . , 1)T and I represents the
identity matrix; their size will be clear from the context. Given a vector v, the diagonal
matrix V is defined as V = diag(v) and we say that vkj represents the j-th component of
vector v at the k-th iteration. The notation v > 0 indicates that each component vj is
strictly positive. ‖ · ‖ represents the Euclidean norm.

2 Interior Point Method

Let us consider a pair of primal-dual convex quadratic programming problems in standard
form:

min
x

cTx+ 1
2x

TQx, s.t. Ax = b, x ≥ 0, (1)

max
y, s

bT y − 1
2x

TQx, s.t. AT y + s−Qx = c, s ≥ 0, (2)

where x, s, c ∈ Rn, y, b ∈ Rm, A ∈ Rm×n, Q ∈ Rn×n positive semidefinite.
An Interior Point Method (IPM) looks for an approximation of the solution to (1)-(2)

in the interior of the feasible region; the non-negativity constraint is enforced using a
logarithmic barrier term, so that the Lagrangian takes the form

L(x, y, µ) = cTx+ 1
2x

TQx− yT (Ax− b)− µ
n∑
i=1

log(xj).

The optimality conditions for this perturbed problem are
Ax = b

AT y + s−Qx = c

XSe = µe

(x, s) ≥ 0.

The Newton method applied to the previous mildly nonlinear system of equations produces
the following linear system, to be solved at each IPM iteration A 0 0

−Q AT I
S 0 X

∆x
∆y
∆s

 =

rPrD
rµ

 =

 b−Ax
c+Qx−AT y − s

σµe−XSe

 , (3)

where σ is the parameter responsible for the reduction in the complementarity measure µ.
System (3) is usually reduced to the augmented systemï

−Q−Θ−1 AT

A 0

ò ï
∆x
∆y

ò
=
ï
rD −X−1rµ

rP

ò
(4)

where Θ = XS−1, and solved using an indefinite factorization or an iterative method for
symmetric indefinite systems (e.g. MINRES [33]), or it is further reduced to the normal
equations

A(Q+ Θ−1)−1AT∆y = rP +A(Q+ Θ−1)−1(rD −X−1rµ) (5)
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and solved with a Cholesky factorization or using the Conjugate Gradient (CG) method.
The direction is then used to compute the stepsize α and to find the next point (x +
α∆x, y + α∆y, s+ α∆s). The outer iterations are stopped as soon as the approximation
satisfies the following IPM stopping criterion

‖b−Ax‖
‖b‖

≤ τP ,
‖c+Qx−AT y − s‖

‖c‖
≤ τD, µ ≤ τµ, (6)

where τP , τD and τµ are predetermined tolerances. In recent years a lot of effort has been
put into designing efficient preconditioners for the augmented system and for the normal
equations (e.g. [7, 8, 9, 10, 23, 32]). The major difficulty originates from the extreme ill
conditioning of the matrices in (4) and (5) when µ gets close to zero; regularization is a
common strategy employed to improve the conditioning of the problem (see [3, 19, 23, 36]).

The most successful implementations of the primal-dual Interior Point Methods are
the path-following methods, where the approximations computed throughout the IPM
iterations are forced to follow the central path and stay in the appropriately chosen
neighbourhood of it. These algorithms show polynomial complexity, both in the feasible
and infeasible case (see e.g. [22, 41]). A common neighbourhood of the central path used
in the infeasible case is defined as follows: at iteration k, the point (xk, yk, sk) is in the
neighbourhood N∞(γ, β) if it satisfies

(xk, sk) > 0, (7a)

γµk ≤ xkj skj ≤ µk/γ, ∀j, (7b)

‖rkP ‖ ≤ ‖r0
P ‖βµk/µ0, ‖rkD‖ ≤ ‖r0

D‖βµk/µ0, (7c)

where 0 < γ < 1 and β ≥ 1 are two constants chosen at the beginning of the IPM algorithm.
In this paper we focus both on the augmented system approach (4), when dealing with
generic QPs, and on the normal equations approach (5), when dealing with LPs or special
cases of QPs.

3 Estimating the convergence of the outer iterations

In this section, we want to understand how to estimate the IPM convergence indicators
throughout the CG or MINRES iterations, so as to stop the inner solver as soon as the
outer iteration can be performed successfully. The main indicators that are commonly
used, as shown in (6), are the primal and dual infeasibilities and the complementarity gap.
We develop algorithms and stopping criteria both for CG and MINRES, to be used for
LPs and QPs respectively.

In the case of the normal equations for an LP, we apply the CG to system (5) with
Q = 0; this means that at every inner iteration we update the approximation for ∆y. In
order to estimate the IPM indicators, we need also ∆x and ∆s, which are computed as
follows

∆x = (S−1rµ −ΘrD) + ΘAT∆y,

∆s = X−1rµ −Θ−1∆x.

When using the augmented system instead, ∆x and ∆y are readily available and we just
need to compute ∆s.
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We can see that these two formulas contain the first term, which is constant during the
inner iterations, and the second term which varies as the Krylov method progresses. Once
we know the full direction, the stepsizes can be computed as

αx = min
j : ∆xj<0

− xj
∆xj

, αs = min
j : ∆sj<0

− sj
∆sj

. (8)

3.1 IPCG for LP

Let us consider now the normal equations approach for an LP (i.e. Q = 0). If we suppose
to stop the CG at a certain iteration for which we computed the full direction (∆x,∆y,∆s)
and also the stepsizes αx and αs, and if we indicate the new point that we obtain by
(x̄, ȳ, s̄), then the infeasibilities could be written as

Ax̄− b = (Ax− b) + αx

(
(AΘAT∆y) + (AS−1rµ −AΘrD)

)
,

AT ȳ + s̄− c = (AT y + s− c) + αs(AT∆y + ∆s).

The problematic terms in these formulas are given by AT∆y and AΘAT∆y, and would
require extra matrix operations to be computed. Let us define the vectors v1 = X−1rµ,
v2 = S−1rµ −ΘrD, v3 = AS−1rµ −AΘrD, ξ1 = AT∆y, ξ2 = AΘAT∆y; then, the previous
expressions become

∆x = v2 + Θξ1, ∆s = v1 −Θ−1∆x, (9)

Ax̄− b = (Ax− b) + αx(ξ2 + v3), (10)

AT ȳ + s̄− c = (AT y + s− c) + αs(ξ1 + ∆s). (11)

Vectors v1, v2 and v3 remain constant during the CG iterations and can be computed once
at the beginning of the algorithm. Recall that, during the CG process, the approximation
∆y is updated as

∆y = ∆y + αu

where α is the CG stepsize and u is the CG direction. Therefore, we can update also the
quantities ξ1 and ξ2 in a similar way:

ξ1 = ξ1 + αATu, ξ2 = ξ2 + αAΘATu.

The quantity AΘATu is already computed during the CG algorithm, because it is needed
to find the stepsize α and to update the residual. While computing it, we can obtain as a
byproduct also the quantity ATu:

w1 = ATu, w2 = AΘw1.

In this way, we see that it is possible to update the quantities ξ1 and ξ2 at each inner
iteration inexpensively, which in turn allows us to compute the IPM convergence indicators
at each CG iteration using only vector operations. Notice that the products with matrix Θ
needed to compute the directions in (9), in practice are performed as vector operations,
since Θ is diagonal. Notice also that we need to compute w1 and w2 at the beginning of the
CG process, to initialize the residual; thus, we do not add operations to initialize ξ1 and
ξ2. However, we do add one single matrix-vector product with matrix A at the beginning
of the algorithm, to compute the constant vector v3. Algorithm IPCG summarizes the
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process just described: the main differences with the standard CG algorithm are in lines 2,
17, 18, 26, 27, 28, which are also highlighted in blue. We estimate the IPM convergence
indicators only after a number itstart of iterations. The algorithm does not contain any
stopping criterion for now, it simply computes the primal and dual infeasibilities and the
duality gap at each CG iteration, if we were to stop the CG process at that iteration. The
choice of the stopping criterion based on these indicators will be discussed in the following
sections.

At each iteration, the standard CG algorithm performs one matrix-vector product,
one preconditioner application, two scalar products and three axpy operations; what we
propose to add in the IPCG algorithm requires, at each iteration, the equivalent of three
scalar products (to compute µ, Θξ1, Θ−1∆x), approximately ten axpy operations and the
computation of the stepsizes (which involves only vector operations). Therefore, we expect
the computational cost of the IPCG iteration to be only slightly larger than that of the
standard CG step, especially if the applications of the matrix or the preconditioner are
particularly expensive.

Remark 1. Notice that if we use a predictor-corrector strategy during the IPM, the
algorithm just proposed works only when computing the predictor direction. For the corrector
we need to modify equations (10)-(11). In particular, if we call (∆xP ,∆yP ,∆sP ) the
predictor computed previously, we need to add the term A∆xP to the expression for the
primal residual (10) and the term AT∆yP +∆sP to the expression for the dual residual (11);
they can be computed at the beginning since they are constant, but they add matrix operations
to be performed at every call of the algorithm. Alternatively, these can be avoided by saving
the final values of the vectors ξ1 and ξ2 from the previous IPCG call that computed the
predictor direction.

3.2 IPMINRES for QP

Similarly, in the case of the augmented system for a QP, we see that the infeasibilities can
be written as

Ax̄− b = (Ax− b) + αx(A∆x)

AT ȳ + s̄−Qx̄− c = (AT y + s−Qx− c) + αs(AT∆y + ∆s)− αx(Q∆x).

Thus, at each inner iteration, we need to update the quantities ξx = A∆x, ξy = AT∆y,
ξQ = Q∆x; this can be done at little extra cost by exploiting the matrix-vector products
already present in the MINRES algorithm, similarly to what we have earlier done for the
CG. The implementation is slightly more complicated, since the MINRES updates the
approximation using the two previous iterations; Algorithm IPMINRES shows the standard
MINRES method, according to the implementation in [2], with the additional operations
required: the main differences with the standard MINRES algorithm are in lines 3, 7, 17,
19, 21, 23, 24, 25, which are also highlighted in blue. The estimation of the residual is more
complicated than in the CG case; we do not show it to avoid further overcomplicating of
the displayed algorithm and because it is not affected by the new approach. As before, the
additional cost is given only by vector operations (scalar products, axpy operations and
stepsizes computation).

In the following, we will call IPM-I the IPM with inexact directions computed using
either IPCG or IPMINRES.

Remark 2. Notice that Algorithms IPCG and IPMINRES are just prototypical algorithms;
in order to obtain the maximum efficiency, a specialized method can be derived for the
specific problem that we have to solve. The structure of the method will resemble the one
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Algorithm IPCG Interior Point Conjugate Gradient method
Input: rhs f , tolerance τCG, max iterations itmax, matrices A,Θ, preconditioner P , initial
approximation ∆y, minimum iterations itstart
Input from IPM: current point (x, y, s), vectors rP , rD, rµ

1 Initialize:
2 v1 = X−1rµ, v2 = Θ(v1 − rD), v3 = Av2
3 ξ1 = AT∆y
4 ξ2 = AΘξ1
5 r0 = f − ξ2
6 r = r0
7 z = P−1r
8 u = z
9 ρ = rT z

10 iter = 0
11 while ‖r‖ > τCG‖r0‖ and iter < itmax do
12 iter = iter + 1
13 w1 = ATu
14 w2 = AΘw1
15 α = ρ/wT2 u
16 ∆y = ∆y + αu
17 ξ1 = ξ1 + αw1
18 ξ2 = ξ2 + αw2
19 r = r − αw2
20 z = P−1r
21 ρN = rT z
22 β = ρN/ρ
23 u = z + βu
24 ρ = ρN

25 if (iter ≥ itstart) then
26 Compute Newton directions: ∆x = v2 + Θξ1, ∆s = v1 −Θ−1∆x
27 Compute stepsizes αx, αs using x, ∆x, s, ∆s
28 Compute convergence indicators:

pinf = −rP + αx(ξ2 + v3), dinf = −rD + αs(ξ1 + ∆s),

µ = (x+ αx∆x)T (s+ αs∆s)

29 end if
30 end while
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Algorithm IPMINRES Interior Point Minimum Residual method
Input: rhs f , tolerance τminres, max iterations itmax, matrices A,Θ,Q, preconditioner P ,
minimum iterations itstart
Input from IPM: current point (x, y, s), vectors rP , rD, rµ

1 Initialize:
2 ψ = P−1f , r1 = f , r2 = r1, β =

√
fTψ, w = 0, w2 = 0, cs = −1, sn = 0, ϕ̄ = β, ε = 0,

∆ = 0, iter = 0
3 wv = 0, wv2 = 0, ξ = 0, ζ = X−1rµ
4 while residual > τminres and iter < itmax do
5 iter = iter + 1

6 v =
ñ
v1
v2

ô
= 1
β
ψ

7 ψ =
ñ
−Q−Θ−1 AT

A 0

ô ñ
v1
v2

ô
, with byproduct zv =

 Qv1
Av1
AT v2


8 if iter ≥ 2 then ψ = ψ − (β/β0)r1 end if
9 α = vTψ

10 ψ = ψ − (α/β)r2
11 r1 = r2, r2 = ψ

12 ψ = P−1r2
13 β0 = β, β =

»
rT2 ψ

14 ε0 = ε, δ = csδ̄ + snα, ḡ = snδ̄ − csα, ε = snβ, δ̄ = −csβ, r =
√
ḡ2 + δ̄2

15 γ = max(
√
ḡ2 + β2, ε)

16 cs = ḡ/γ, sn = β/γ, ϕ = csϕ̄, ϕ̄ = snϕ̄

17 w1 = w2, w2 = w, wv1 = wv2 , wv2 = wv

18 w = (v − ε0w1 − δw2)/γ
19 wv = (zv − ε0wv1 − δwv2)/γ

20 ∆ =
ñ
∆x
∆y

ô
= ∆ + ϕw

21 ξ =

ξQξx
ξy

 = ξ + ϕwv

22 if (iter ≥ itstart) then
23 Compute Newton direction: ∆s = ζ −Θ−1∆x
24 Compute stepsizes αx, αs using x, ∆x, s, ∆s
25 Compute convergence indicators:

pinf = −rP + αxξx, dinf = −rD + αs(ξy + ∆s)− αxξQ,

µ = (x+ αx∆x)T (s+ αs∆s)

26 end if
27 end while
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that we propose, but there may be differences. Notice also that IPCG can be applied to
QPs for which it is possible to form the normal equations, e.g. because there are no linear
constraints or because matrix Q is diagonal.

4 Stopping criterion

We now address the problem of how to choose a stopping criterion based on the convergence
indicators that are estimated by the IPCG or IPMINRES algorithms. In this section, we
propose a theoretical criterion, that allows us to prove a polynomial complexity result for
the IPM-I. Then, we propose a practical criterion, based on the experimental evidence.

Remark 3. In this section we use α to indicate the IPM stepsize, while in the previous
section we used it for the CG stepsize. Since they are both standard notation widely used
in these fields, we did not change them.

4.1 Polynomial complexity

In this section, we will follow [41, chapter 6], with the difference that here we are dealing
with a quadratic program. We make some standard assumptions: the neighbourhood is
defined by (7); we choose σk ∈ [σmin, σmax], σmax ≤ 0.5; we consider a single stepsize αk
instead of two different ones for the primal and dual direction; we choose the stepsize such
that the next point is inside the neighbourhood and it satisfies the Armijo condition

µk+1 ≤ (1− 0.01αk)µk. (12)

We already know that, when dealing with an LP and using an exact method to find the
direction, there is a minimum stepsize that can be taken, αk ≥ ᾱ, and both the primal and
dual infeasibilities are reduced by a factor (1 − αk). Moreover, from the third equation
in (3), we can obtain that

∆xkj
xkj

+
∆skj
skj

= −1 + σkµk
xkj s

k
j

, ∀j. (13)

Notice that the right hand side in the last equation is O(1), due to condition (7b). Therefore,
given these facts, we choose our stopping criterion as follows: we accept the direction
produced by the inner solver as soon as

max
j

∣∣∣∆xkj
xkj

∣∣∣ ≤M, max
j

∣∣∣∆skj
skj

∣∣∣ ≤M (14)

for some fixed constant M . Moreover, we also require that

‖rk+1
P ‖ ≤ ηk‖rkP ‖, ‖rk+1

D ‖ ≤ ηk‖rkD‖, (15)

where ηk ≥ 1 − αk, since we cannot reasonably assume that an inexact direction would
do as well as the exact one. Thus, we suppose that ηk = 1− ωkαk, for some ωk ≤ 1; the
choice of ωk will be clarified in the next Lemma. We also suppose that the equation

Sk∆xk +Xk∆sk = σkµke−XkSke (16)

continues to hold even if the direction is inexact; this is the case if we build ∆s from ∆x,
as it usually happens when employing the normal equations or the augmented system.
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Algorithm IPM-I Interior Point Method with early stopping of the linear solver
Input: γ ∈ [0, 1], β ≥ 1, 0 < σmin < σmax ≤ 0.5; M > 0, 0 < δ < σmin

1 Choose (x0, y0, s0) with (x0, s0) > 0
2 while (6) is not satisfied do
3 Choose σk ∈ [σmin, σmax]
4 Choose ωk ∈ [1− σk + δ, 1]
5 Apply IPCG or IPMINRES to find a direction (∆xk,∆yk,∆sk) such that

max
j

∣∣∣∆xkj
xkj

∣∣∣ ≤M, max
j

∣∣∣∆skj
skj

∣∣∣ ≤M,

‖rk+1
P ‖ ≤ (1− ωkαk)‖rkP ‖, ‖rk+1

D ‖ ≤ (1− ωkαk)‖rkD‖,

Sk∆xk +Xk∆sk = σkµke−XkSke.

6 Choose αk as the largest α ∈ [0, 1] such that

(xk + α∆xk, yk + α∆yk, sk + α∆sk) ∈ N∞(γ, β),

(xk + α∆xk)T (sk + α∆sk) ≤ (1− 0.01α)(xk)T (sk).

7 Set
(xk+1, yk+1, sk+1) = (xk + αk∆xk, yk + αk∆yk, sk + αk∆sk)

8 end while

Algorithm IPM-I summarizes the choices made here and shows also some other features
that will be clear during the proof of Lemma 1.

We will now prove that, if we choose the direction using the stopping criterion defined
by (14)-(15), then there still exists a minimum stepsize α̃ that we can take at each iteration.
In the following, we will omit the iteration index k, for sake of clarity.

Lemma 1. There exists a value α̃ ∈ (0, 1) such that the following conditions are satisfied
for all α ∈ [0, α̃] at each IPM iteration and for all components j:

(xj + α∆xj)(sj + α∆sj) ≥ γ(x+ α∆x)T (s+ α∆s)/n, (17a)

(xj + α∆xj)(sj + α∆sj) ≤ (1/γ)(x+ α∆x)T (s+ α∆s)/n, (17b)

(x+ α∆x)T (s+ α∆s)/n ≤ (1− 0.01α)µ, (17c)

(x+ α∆x)T (s+ α∆s) ≥ ηxT s. (17d)

Proof. Let us start by noticing that (14) implies these two facts

1. the positivity constraints x+ α∆x > 0 and s+ α∆s > 0 are automatically satisfied
for any α ∈ [0, 1

M ];

2. the following bounds hold

|∆xj∆sj | ≤
M2

γ
µ, |∆xT∆s| ≤M2nµ. (18)
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Using(18), (16) and (7b), it is easy to show that the following inequalities hold

(xj + α∆xj)(sj + α∆sj) ≥ (1− α)γµ+ ασµ− α2M2µ

γ
, (19a)

(xj + α∆xj)(sj + α∆sj) ≤ (1− α)µ
γ

+ ασµ+ α2M2µ

γ
, (19b)

(x+ α∆x)T (s+ α∆s)/n ≥ (1− α)µ+ ασµ− α2M2µ, (19c)

(x+ α∆x)T (s+ α∆s)/n ≤ (1− α)µ+ ασµ+ α2M2µ. (19d)

Using (19a) and (19d), we obtain

(xj + α∆xj)(sj + α∆sj)− γ(x+ α∆x)T (s+ α∆s)/n ≥

≥ (1− α)γµ+ ασµ− α2M2µ

γ
− γ((1− α)µ+ ασµ+ α2M2µ) ≥

≥ ασminµ(1− γ)− α2M2µ(γ + 1/γ)

and thus (17a) is satisfied if the final expression is non-negative, i.e.

α ≤ σminγ(1− γ)
M2(1 + γ2) .

Using (19b) and (19c), we obtain

(1/γ)(x+ α∆x)T (s+ α∆s)/n− (xj + α∆xj)(sj + α∆sj) ≥

≥ (1/γ)((1− α)µ+ ασµ− α2M2µ)− (1− α)µ
γ
− ασµ− α2M2µ

γ
≥

≥ ασminµ(1/γ − 1)− 2α2M2µ/γ

and thus (17b) is satisfied if the final expression is non-negative, i.e.

α ≤ σmin(1− γ)
2M2 .

Using (19d), we obtain

(1− 0.01α)µ− (x+ α∆x)T (s+ α∆s)/n ≥
≥ (1− 0.01α)µ− (1− α)µ− ασµ− α2M2µ ≥
≥ 0.99αµ− ασmaxµ− α2M2µ

and thus (17c) is satisfied if the final expression is non-negative, i.e.

α ≤ 0.99− σmax
M2 .

Using (19c) and setting η = 1− ωα, we obtain

(x+ α∆x)T (s+ α∆s)− (1− ωα)xT s ≥
≥ (1− α)xT s+ ασxT s− α2M2xT s− (1− ωα)xT s ≥
≥ α(σ + ω − 1)xT s− α2M2xT s
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and thus (17d) is satisfied if the final expression is non-negative, i.e.

α ≤ σ + ω − 1
M2 .

This condition makes sense only if ω > 1 − σ; therefore, at each IPM iteration, after
choosing σ, we should choose ω ∈ ]1 − σ, 1]. Notice what this means: in the early IPM
iterations, σ is closer to 1 and thus ω can be closer to 0, which makes the stop criterion
easier to satisfy. In the later iterations, σ might get closer to 0 and thus ω is closer to 1,
which makes the stop criterion harder to satisfy. If we choose ω such that ω ≥ 1− σ + δ,
with δ a fixed constant, δ < σmin, then ω + σ − 1 ≥ δ and we obtain

α ≤ δ

M2 ⇒ α ≤ σ + ω − 1
M2 .

This explains the choice of ω made in Algorithm IPM-I.
Therefore, the minimum stepsize that we can take at each IPM iteration is given by

α̃ = min
(σminγ(1− γ)
M2(1 + γ2) ,

σmin(1− γ)
2M2 ,

0.99− σmax
M2 ,

δ

M2 , 1
)
. (20)

We highlight that inequalities (17a)-(17b) imply that the next IPM iteration satisfies
condition (7b); the inequality (17c) represents the Armijo condition, while inequality (17d)
implies that

‖rkP ‖
µk
≤ ηk‖rk−1

P ‖
µk

≤ ‖r
k−1
P ‖
µk−1 ≤

β‖r0
P ‖

µ0

and similarly for the dual residual, which is equivalent to condition (7c). If α is larger
than 1/M , then also condition (7a) is satisfied. Therefore, we can say that we can always
take a minimum stepsize equal to min(α̃, 1/M) and be sure to end up still inside the
neighbourhood N∞(γ, β).

To obtain a polynomial complexity result, we need to specify the value of M . The next
lemma helps us in this sense.

Lemma 2. There exists a starting point (x0, y0, s0) for which, when solving an LP or a
QP, the exact direction satisfies (14) with M = O(n2).

Proof. We know that for a specific choice of the starting point, the minimum stepsize when
using the exact direction satisfies ᾱ ≥ C1n

−2, for some C1 > 0. This is a standard result
that can be found in [41, Lemma 6.7] for the LP case or in [40, Theorem 3.5] for the QP
case.

Using (8), this implies that

−xj
∆xj

≥ C1
n2 ∀j s.t. ∆xj < 0, −sj

∆sj
≥ C1
n2 ∀j s.t. ∆sj < 0.

Therefore

−∆xj
xj

≤ n2

C1
∀j s.t. ∆xj < 0, −∆sj

sj
≤ n2

C1
∀j s.t. ∆sj < 0.

There are now two possibilities for each component j:

12



• ∆xj > 0 and ∆sj > 0 (or ∆xj < 0 and ∆sj < 0); then to satisfy (13) it must be

∆xj
xj

= O(1), ∆sj
sj

= O(1).

• ∆xj < 0 and ∆sj > 0 (or vice versa); then it follows from (13) that

∆sj
sj

= O(1)− ∆xj
xj
≤ O(1) + n2

C1
= O(n2).

Thus, we see that ∣∣∣∆xj
xj

∣∣∣ ≤ O(n2),
∣∣∣∆sj
sj

∣∣∣ ≤ O(n2), ∀j.

If the exact direction satisfies (14) with M = O(n2), then it is reasonable to assume
that in our stop criterion we can choose M = O(nq), q ≥ 2, since we cannot do better
than the exact direction. Moreover, since we know that the linear solver will find the exact
solution, which satisfies (14) with q = 2, at some point (in exact arithmetic), we can expect
that before this final iteration it is possible to stop choosing q ≥ 2.

We can thus characterize better the minimum stepsize in (20): choosing M = O(nq), it
follows that α̃ ≥ O(n−2q). We can now prove the polynomial complexity of IPM-I.

Theorem 1. Suppose that the starting point satisfies µ0 ≤ 1/νκ for some positive constant
κ. Suppose to use a constant M = O(nq), q ≥ 2. Then there exists an index K with

K = O(n2q| log ν|)

such that µk ≤ ν for all k ≥ K.

Proof. We notice that the Armijo condition (12), together with the previous characterization
of α̃, implies that

µk+1 ≤
Å

1− C2
n2q

ã
µk.

for some C2 > 0. From here, we apply [41, Theorem 3.2] and conclude.

We have thus shown that the proposed inexact IPM retains polynomial convergence.
In the best case where M = O(n2), the result suggests that the number of iterations
is proportional to n4, instead of n2 when using the exact IPM. We underline that our
approach is different from the ones in e.g. [6, 24], because we do not assume to solve the
linear system (3) obtaining a small residual, but we merely require that the direction
satisfies (14)-(15). This means that we have moved the attention from the residual of the
linear system (that has little to do with the convergence of the outer IPM iterations), to
other quantities that are directly related to the convergence of IPM. In this way, we hope
to obtain a stopping criterion for the linear solver that avoids unnecessary inner iterations.

Remark 4. In this section, we have used the results from [41, Chapter 6]; it is worth
pointing out that the results presented there are obtained using a neighbourhood without the
upper bound in (7b). However, with some simple calculations, it is possible to see that the
final results do not change adding the upper bound. A similar conclusion was obtained in
[12], where the upper bound was added in the case of a feasible algorithm.
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4.2 Practical stopping criterion

In this section, we discuss the behaviour of the IPM convergence indicators for one of the
test problems and we derive the stopping criterion used in practice. The problem used here,
which will be formally introduced in the next section, is a QP without linear constraints
that arises from tomographic imaging; thus, we can use the normal equations approach,
but only consider the dual infeasibility.

We start by displaying in Figure 1 the behaviour of the dual infeasibility, complementar-
ity, primal and dual stepsizes at the tenth and twentieth IPM iteration; they are computed
at every inner CG iteration, using Algorithm IPCG.

We can see that, for all these indicators, there is a stagnation during the CG iterations.
This means that after approximately half of the number of CG iterations required, the
approximate direction is already able to produce a new IPM point with values of the
convergence indicators very close to the ones that we would obtain using the standard
residual test. It is therefore reasonable to think of stopping the CG iterations as soon as
the stagnation occurs. However, we expect to need a very accurate direction in the late
phase of IPM, which means that stagnation may fail to appear in the last iterations. Thus,
we propose to use a stopping criterion that keeps the standard residual reduction test,
but that is able to stop in advance if a stagnation in the IPM convergence indicators is
detected.

In order to detect stagnation, we need to compute a measure of the deviation of the
most recent values of the convergence indicators from their mean. We used the following
heuristic: at CG iteration j, we compute the new convergence indicators pjinf, d

j
inf, µj , and

then we evaluate the relative variations with respect to the values of the previous iteration

varPj =
∣∣∣∣∣‖pjinf‖ − ‖p

j−1
inf ‖

‖pj−1
inf ‖

∣∣∣∣∣, varDj =
∣∣∣∣∣‖djinf‖ − ‖d

j−1
inf ‖

‖dj−1
inf ‖

∣∣∣∣∣, varµj =
∣∣∣∣∣µj − µj−1

µj−1

∣∣∣∣∣.
In order to decide if the stagnation occurred, we compute the averages of the last five
variations; as soon as those fall below a prescribed tolerance ε we activate the stopping
criterion

1
5

4∑
i=0

varPj−i < ε ∧ 1
5

4∑
i=0

varDj−i < ε ∧ 1
5

4∑
i=0

varµj−i < ε.

Typical values of ε that we used are 10−2, 10−3 or 10−4. We could equivalently use a test
on the variance of the last five values of the indicators, but we preferred to use this criterion,
since it has an immediate interpretation which makes it easier to tune the tolerance for
the various problems. Indeed, a value ε = 0.01 means that we stop the CG as soon as the
values of the convergence indicators of IPM have changed on average less that 1% in the
last five iterations.

The practical criterion presented above is clearly different from the theoretical one shown
in Algorithm IPM-I. However, the condition S∆x+X∆s = σµe−XSe is automatically
satisfied if we reconstruct ∆x from ∆s; moreover, due to the stagnation when we decide
to stop the CG, the values of the stepsizes and of the infeasibilities are close to the ones
that we would obtain computing the exact direction; thus, it is reasonable to assume
that the theoretical criterion on the residual (15) is also satisfied, with ω close to the
value 1. Concerning the remaining theoretical condition (14), we notice that there is
also a stagnation of the quantities max |∆xj/xj | and max |∆sj/sj |, as shown in Figure 2.
Thus, the practical stopping criterion, despite being different from the one that we use to
prove polynomial complexity, allows to obtain a direction that is likely to satisfy also the
theoretical stopping criterion. Therefore, we expect the new IPM-I, that exploits the novel
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Figure 1: Infeasibility, complementarity and stepsizes computed at every CG iteration, for
the 10th and 20th IPM iteration.
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stopping criterion, to converge in a number of iterations similar or slightly larger than the
original IPM, provided that the tolerance ε is chosen appropriately.

Figure 2: Values of max |∆xj/xj | and max |∆sj/sj | throughout the CG iterations at the
20th IPM iteration.

5 Numerical results

In this section we introduce test problems and show the results that we obtained with the
standard CG or MINRES and with the novel IPCG or IPMINRES. We show overall results
in terms of IPM iterations, inner iterations and computational time, and then provide also
an insight into the individual IPM iterations to demonstrate where the gains resulting from
the new method are the most significant.

All the numerical experiments were performed using MATLAB R2019a, on a computer
with a quad-core 1.7GHz processor and 16GB of RAM.

5.1 Tomographic reconstruction

Our first test problem involves the reconstruction of an image obtained with a dual-energy
x-ray tomography [25]. This is a classical inverse problem in many practical fields, from
medicine to industrial applications. The noise in the measurements and the requirement
of using as few angles of measurement as possible (e.g. to minimize the radiation dose to
a patient), make this kind of problem challenging. The goal is to understand a spatial
distribution of two different materials, for example the bone and soft tissue; to do so, we
discretize the domain of interest and introduce two vectors x1, x2 ∈ Rn, which contain
information about the concentration of the two materials in the points of the discretization.
In [25], the authors propose a new regularization technique which replaces the standard Joint
Total Variation approach and exploits the inner product xT1 x2 to enforce the separation of
the two materials.

If we stack together the vectors x1 and x2 into a single vector x ∈ R2n, the optimization
problem that arises takes the following form

min
x≥0

‖m− Gx‖2 + ρ‖x‖2 + 2η xT1 x2,

where m is the measurement vector and G is an operator that incorporates information
about the geometry of the problem and the materials used; we have used two coefficients,
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ρ for the Tikhonov regularization and η for the novel regularizer. Written as a standard
QP, the problem reads

min
x≥0

1
2x

TQx−mTGx,

where
Q =

ï
c2

11 + c2
21 c11c12 + c21c22

c11c12 + c21c22 c2
12 + c2

22

ò
⊗RTR+

ï
ρ η
η ρ

ò
⊗ I.

Here c11, c12, c21 and c22 describe the attenuation constants of the two materials for the two
x-ray energies used, while R contains information about the geometry of the measurements
and can only be accessed via matrix-vector products performed using the Radon transform;
⊗ denotes the Kronecker product.

This optimization problem does not have linear equality constraints; if we apply an
interior point method and formulate the normal equations, we obtain a linear system
with matrix Q+X−1S. The structure of matrix RTR allows the use of a block-diagonal
preconditioner

P =
ï

(c2
11 + c2

21)νI + ρI (c11c12 + c21c22)νI + ηI
(c11c12 + c21c22)νI + ηI (c2

12 + c2
22)νI + ρI

ò
+X−1S,

where ν approximates the main diagonal of the blocks in RTR. Therefore, it is possible to
apply the CG with this positive definite preconditioner to find the IPM direction. The
application of the matrix of the system is particularly expensive, since it involves the call
of the Radon and inverse Radon transforms, to apply R and RT respectively; thus, a single
CG iteration is particularly expensive and we expect that the IPCG can bring a substantial
benefit.

We show in Tables 1 and 2 the results of the application of IPM to this problem: we
used 3 centrality correctors and an IPM tolerance of 10−8; the CG tolerance was set to
10−6, the IPCG tolerance ε was 0.01 or 0.001 and we chose a value itstart = 5, which
means that we perform 5 standard CG iterations before starting to use the new stop
criterion. The parameter q indicates how fine the discretization is; we show also the size
of the matrix, equal to 2q2. We report the number of IPM iterations, CG iterations and
the computational time for both methods; in the last two columns, we show the reduction
of the number of CG iterations and time when using IPCG instead of the standard CG.
(Both methods CG and IPCG use the same preconditioner.)

Table 1: Comparison of the results with the standard CG and the IPCG with ε = 1%.

Standard CG IPCG, ε = 0.01 Inner It Time

q Size IPM Inner It Time IPM Inner It Time red % red %

32 2,048 18 3,810 7.46 19 586 1.44 84.6 80.7
64 8,192 20 6,301 35.04 24 1,149 6.29 81.8 82.0

128 32,768 23 9,249 140.91 26 1,366 23.02 85.2 83.7
256 131,072 26 15,115 817.45 32 1,763 106.36 88.3 87.0
512 524,288 29 25,112 5,174.26 49 2,639 639.92 89.5 87.6

It is worth observing that when using IPM with the new stopping criterion, the number
of outer (IPM) iterations is very close to the one obtained with the original IPM; this
confirms that the inexact direction that we compute is sufficiently precise so as not to
destroy the convergence properties of IPM. In particular, we see that using a lower tolerance
ε guarantees an IPM iteration count closer to the original one, as we could expect.
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Table 2: Comparison of the results with the standard CG and the IPCG with ε = 0.1%.

Standard CG IPCG, ε = 0.001 Inner It Time

q Size IPM Inner It Time IPM Inner It Time red % red %

32 2,048 18 3,810 7.46 19 1,038 2.25 72.8 69.8
64 8,192 20 6,301 35.04 24 1,484 7.90 76.4 77.5

128 32,768 23 9,249 140.91 25 1,986 32.69 78.5 76.8
256 131,072 26 15,115 817.45 28 2,678 157.79 82.3 80.7
512 524,288 29 25,112 5,174.26 34 3,772 881.90 85.0 83.0

Next, we notice that the overall CG iterations are reduced by a factor going from 72 to
90%; this suggests that most of the inner iterations usually performed inside the IPM are
not necessary at all, since an accurate direction can be found much more easily. The lower
iteration count produces a strong reduction of the computational time, from 70 to 88%:
this reflects the high cost of the matrix-vector product inside the CG, which implies a very
low cost of the operations added in Algorithm IPCG. If we compare the results in the last
row of Table 1, we can see that the time per CG iteration goes from 206ms in the case of
standard CG to 243ms for the IPCG, an increase of only 18% against a 90% reduction of
the number of iterations.

We can see that using ε = 0.001 produces a smaller reduction of CG iterations, but a
more stable IPM iterations count; we also highlight the fact that the problem is initialized
randomly and with the more inaccurate version (ε = 0.01) it might happen in some runs
that the IPM does not converge. We thus think that it is better to use a smaller value of ε
especially when the dimension of the problem becomes very large.

Figure 3: Comparison of the number of CG iterations needed at each IPM iteration, for
the case q = 128 and ε = 0.001.

Next, we want to understand how the gain of IPCG is distributed during the IPM
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iterations. To do this, we recorded the number of CG iterations at each IPM iteration
(summing together the inner iterations for predictors and correctors) in three different
situations: when using CG with tolerance 10−6; when using IPCG with ε = 10−3; when
using CG with a variable tolerance, so that for a third of the outer iterations we set the
tolerance at 10−2, for another third at 10−4 and for the last third at 10−6. We highlight
that this last approach, that we call smarttol, is not viable in practice, since we would
need to know a priori an estimate of the number of IPM iterations; however, it is interesting
to compare this approach with the IPCG. Figure 3 shows the comparison of the iterations
for the problem with q = 128.

We can see that, when using standard CG with fixed tolerance, the number of iterations
decreases at the end, since less correctors are computed; when using IPCG, we do not
observe this decrease, since the smaller number of correctors is balanced by the increased
accuracy needed. Indeed, in the late IPM phase, the new stop criterion is not triggered
and IPCG stops with the standard reduction test; the reader may observe that the two
graphs overlap in the last iterations. However, in the initial phase, we observe a significant
advantage of IPCG over the standard CG. Even if a variable tolerance is used, the standard
(varying) stopping criterion is still unable to match the performance of the method proposed
in this paper. In particular, the IPCG delivers a significant gain in the initial phase of
IPM.

We also analyzed the CG final relative residual at each CG call (for predictors and
correctors), in the case of standard CG with tolerance 10−6 and IPCG, which is shown in
Figure 4; since we compute on average 3 or 4 directions at each IPM iteration, the number
of CG calls is approximately three times larger than the number of outer iterations. We can
see that the final residual of IPCG displays noticeable irregularity: in particular, it seems
that it is possible to stop the computation of the corrector directions much earlier than
that of the predictors. Given this surprising behaviour of the final residual, it is impossible
to match the performance of the new stopping criterion using a standard residual test.

The graphs displayed in these two figures undeniably confirm that a high accuracy in
the first IPM iterations is not needed at all, and that the best method to decide when a
direction is sufficiently precise to perform the next IPM iteration successfully should be
based on the IPM indicators and not on the residual of the linear system.

5.2 Compressed sensing

The second test problem arises from compressed sensing [18]: we look for a sparse solution
to an undetermined linear system Ax = b, where sparsity is enforced by means of a 1-norm
regularization. If we linearize the 1-norm by adding extra variables, the optimization
problem that arises is the following

min
z≥0

τeT z + 1
2‖F

T z − b‖2,

where τ > 0, z =
[
u ; v

]
, u and v being the positive and negative parts of vector x, and

F T =
[
A −A

]
. Rewriting it as a standard quadratic program and formulating the IPM

normal equations, we see that the matrix of the linear system to be solved is

H =
ï

1 −1
−1 1

ò
⊗ATA+ Θ−1.
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Figure 4: Comparison of the final relative residual for CG and IPCG.

Due to the structure of matrix A, which satisfies the restricted isometry property (see [18]
for all the details), matrix H can be efficiently preconditioned by the block diagonal matrix

P =
ï

1 −1
−1 1

ò
⊗ ηI + Θ−1

for an appropriate constant η. The difference with respect to the first test problem is that
now the IPM direction is computed using a very low accuracy for the CG: the residual
tolerance is just 10−2 throughout all the IPM iterations.

The test problems are taken from the Sparco collection [38]; of the 18 problems
considered in [18], 5 did not show any improvement when using IPCG instead of CG (in
part because they were easy enough and the CG was already performing a low number
of iterations). We show the results for the remaining 13 that did show improvement in
Table 3. The IPM tolerance varies between 10−6 and 10−10 according to the problem being
solved and no corrector direction is used. The default values for IPCG are ε = 0.01 and
itstart = 5, but some problems required different parameters, which are indicated in the
Table. The dual residual did not show consistent stagnation during the CG iterations, thus
we applied IPCG using only the stagnation of complementarity as the stop criterion.

We can see that all these problems display an impressive reduction in the number of
CG iterations and CPU time, even if the standard CG tolerance is very high. The added
cost of IPCG varies throughout the problems, but on average is roughly 35− 40% of the
original iteration cost. Sometimes we see also a reduction in IPM iterations; this may be
because our inexact method is finding by chance a direction that is better than the exact
one.

5.3 PDE constrained optimization

As a last test problem, we considered PDE constrained optimization problems (see e.g.
[34]) and we used the augmented system approach, in order to test Algorithm IPMINRES.
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Table 3: Results for Compressed sensing IPM; stop criterion based only on complementarity.

Standard CG IPCG Inner It Time

ID Size IPM Inner It Time IPM Inner It Time red % red %

6 4,096 22 2,128 41.53 19 180 4.38 91.5 89.5
9 256 11 382 0.13 11 165 0.08 56.8 37.6

10 2,048 12 2,210 0.64 12 768 0.28 65.2 56.3
11 †* 2,048 19 663 1.55 21 536 1.22 19.2 21.3

401 114,688 14 160 15.20 12 55 6.31 65.6 58.5
402 † 172,032 14 238 29.70 12 59 9.61 75.2 67.6

403 393,216 19 2,282 203.55 25 280 34.56 87.7 83.0
601 8,192 20 2,146 105.90 17 462 19.33 78.5 81.7
602 8,192 22 2,280 118.38 20 453 18.83 80.1 84.1
603 8,192 16 1,085 17.53 12 72 2.19 93.4 87.5

701 † 131,072 12 1,028 39.25 12 216 12.39 79.0 68.4
702 32,768 8 926 14.75 8 128 3.48 86.2 76.4

903 † 2,048 13 1,794 2.18 17 979 1.27 45.4 41.7

†: ε = 0.1% instead of 1%, *: itstart = 20 instead of 5

In this section, we will indicate with v̂ and v respectively the continuous and discretized
version of a variable v. The kind of problems we used involve PDE as constraints and they
take the standard form

min
y,u

1
2‖ŷ − ŷ0‖2L2 + β

2 ‖û‖
2
L2

s.t. −∇2ŷ = û+ f̂ , ŷ ∈ Ω
ŷ = ĝ, ŷ ∈ ∂Ω
ûa ≤ û ≤ ûb

where Ω is the domain of evolution of the problem, ŷ, û are the state and control variables, ŷ0
is the desired state function, f̂ , ĝ, ûa, ûb are given functions and β > 0 is the regularization
parameter. The objective of this formulation is to keep the state ŷ close to the fixed desired
state ŷ0 and minimize the control û, while satisfying the PDE and bound constraints.

We apply a standard IPM to this problem, using the discretize-than-optimize approach,
as described in [34], and obtain the discretized quantities y, u, y0, ua, ub; we introduce the
variables za and zb defined as (za)j = µ/(u − ua)j and (zb)j = µ/(ub − u)j . We use a
standard Q1 finite elements discretization, formulate the augmented system, and obtainM 0 K

0 βM + Θ −J
K −J 0

∆y
∆u
∆λ

 =

ryru
rλ

 ,
where M ∈ Rn×n is the finite elements mass matrix, J ∈ Rn×n is the same matrix but
with boundary conditions applied, K ∈ Rn×n is the stiffness matrix, Θ = Za(U − Ub)−1 +
Zb(Ua−U)−1, λ ∈ Rn is the vector of Lagrange multipliers. The dimension of the matrices
n is determined by the discretization parameter nc, as n = (2nc + 1)2; the whole augmented
system has size 3n.

We can solve this linear system using MINRES, provided that we use a positive definite
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preconditioner; exploiting the ideas in [34] and [35], we use the following preconditioner

P =

M̃ 0 0
0 βM̃ + Θ 0
0 0 S̃

 ,
where M̃ contains only the diagonal of M and S̃ is an approximation of the Schur
complement

S̃ =
Å
K + 1√

β
J

ã
M−1

Å
K + 1√

β
J

ã
.

The Schur complement preconditioner is constant throughout the IPM iterations and to
apply it we compute the Cholesky factorization of (K + J/

√
β) once at the beginning of

the algorithm.
We computed the finite element matrices using the IFISS package [1, 16, 17]. We used

an IPM tolerance of 10−8 and a MINRES standard tolerance of 10−8, with 400 maximum
iterations; we did not apply any predictor-corrector strategy. Applying the IPMINRES,
we noticed that only the complementarity µ was able to reach stagnation, like in the case
of compressed sensing problems; hence, we used a stopping criterion that checks only the
complementarity µ. In Table 4, we show the parameters of the problems that we considered,
in terms of values of nc and β, size of the linear system, IPMINRES parameters ε and
itstart that produced the best results. In Table 5 instead we show the comparison of
the results obtained using MINRES and IPMINRES, in terms of IPM iterations, MINRES
iterations and computational time.

Table 4: Size of the augmented system, IPMINRES tolerance ε and parameter itstart
for all the combinations of β and nc used.

β = 10−4 β = 10−5 β = 10−6

nc Size ε itstart ε itstart ε itstart

5 3,267 10−3 15 10−3 15 10−4 20
6 12,675 10−3 15 10−3 15 10−4 15
7 49,932 10−3 15 10−3 15 10−4 15
8 198,147 10−3 15 10−3 15 10−4 15

We can see that using the IPMINRES produces a significant reduction of inner iterations
and computational time, like in the previous test problems; the IPM iterations grow slightly
as a result of the less exact directions used. We highlight also that, when β becomes
smaller, making the linear system harder to solve, the gain of IPMINRES grows; moreover,
the gain in computational time is larger for larger problems. This is encouraging, because
it means that the method proposed in this paper is not adversely affected when the linear
systems become more ill conditioned.

This last test problem shows that the IPMINRES approach applied to the augmented
system is viable and can produce significant improvements with respect to the standard
techniques; it also shows that our stopping criterion can be applied to a wide range of
different problems, delivering consistent improvement across the board.

6 Conclusion

We have shown that it is possible to stop the inner Krylov iterations during an interior
point method much earlier than it was previously thought, provided that the stopping
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Table 5: Results with standard MINRES and the new IPMINRES for the PDE constrained
optimization problem.

MINRES IPMINRES Inner It Time

β nc IPM Inner It Time IPM Inner It Time red % red %

10−4

5 24 958 0.55 29 504 0.34 47.4 38.2
6 25 1,003 5.08 29 494 2.83 50.7 44.3
7 26 1,041 45.12 31 523 24.51 49.8 45.7
8 30 1,159 450.91 34 592 237.58 48.9 47.3

10−5

5 23 1,631 0.87 32 745 0.47 54.3 46.0
6 27 1,944 9.64 34 751 4.40 61.4 54.4
7 29 2,125 90.69 37 835 38.08 60.7 58.0
8 31 2,262 878.72 40 959 378.55 57.6 56.9

10−6

5 26 3,702 1.75 37 1,645 0.98 55.6 44.0
6 30 4,502 27.80 39 1,626 9.01 63.9 67.6
7 31 4,950 210.03 41 1,869 82.13 62.2 60.9
8 35 5,640 2,121.84 41 1,817 714.84 67.8 66.3

criterion used is based on the IPM convergence indicators and not only on the reduction
of the residual of the linear system. We have given a polynomial complexity proof in the
case of a quadratic program with an ideal stopping criterion and we have proposed two
practical algorithms for the normal equations and augmented system approaches. They
exploit the stagnation of some of the IPM indicators, depending on the problem, and are
only marginally more computationally expensive then the original algorithms.

We have provided computational evidence for a wide range of problems, from image
processing, compressed sensing and PDE-constrained applications; they all display a
significant reduction in the number of inner Krylov iterations and computational time. In
particular, the largest gain appears in the early IPM phase, where it is already known
that a lower accuracy of Newton directions is sufficient; however, we have shown that it is
extremely difficult to mimic the behaviour of our stopping criterion using only a residual
test, since the residual of the optimal stopping point may vary drastically during the IPM
iterations. This fact strongly supports our claim that a good stopping criterion for CG or
MINRES should be based on the IPM convergence indicators. For some test problems,
the numerical results seem to suggest that the relative performance of the new stopping
criterion improves when the size of the problem grows and/or its ill-conditioning increases.

We strongly believe that many other practical optimization algorithms in which a
Krylov subspace method is used to solve the linear equation systems are likely to benefit
from a specialized stopping criterion developed with an understanding of the specific needs
of the method.
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