An Interior Point-Proximal Method of Multipliers for Positive Semi-Definite Programming

Technical Report ERGO-20-006

S. Pougkakiotis and J. Gondzio

Abstract
In this paper we combine an infeasible Interior Point Method (IPM) with the Proximal Method of Multipliers (PMM) and interpret the algorithm (IP-PMM) as a primal-dual regularized IPM, suitable for solving linear positive Semi-Definite Programming (SDP) problems. We apply few iterations of an IPM to each sub-problem of the PMM until a satisfactory solution is found. We then update the PMM parameters, form a new IPM neighbourhood, and repeat this process. Given this framework, we prove polynomial complexity of the algorithm, under mild assumptions, and without requiring exact computations for the Newton directions. We furthermore provide a necessary condition for lack of strong duality, which can be used as a basis for constructing detection mechanisms for identifying pathological cases within IP-PMM.

Key words: Proximal method of multipliers, Interior point methods, Semidefinite programming.


Text
PDF ERGO-20-006.pdf.

History:
Written: October 27, 2020.