
Training very large scale nonlinear SVMs using Alternating

Direction Method of Multipliers coupled with the Hierarchically

Semi-Separable kernel approximations

S. Cipolla *1 and J.Gondzio � 1

1 The University of Edinburgh, School of Mathematics

ERGO Technical Report 21-005
August 9, 2021

Abstract

Typically, nonlinear Support Vector Machines (SVMs) produce significantly higher clas-
sification quality when compared to linear ones but, at the same time, their computational
complexity is prohibitive for large-scale datasets: this drawback is essentially related to the
necessity to store and manipulate large, dense and unstructured kernel matrices. Despite
the fact that at the core of training a SVM there is a simple convex optimization problem,
the presence of kernel matrices is responsible for dramatic performance reduction, making
SVMs unworkably slow for large problems. Aiming to an efficient solution of large-scale non-
linear SVM problems, we propose the use of the Alternating Direction Method of Multipliers
coupled with Hierarchically Semi-Separable (HSS) kernel approximations. As shown in this
work, the detailed analysis of the interaction among their algorithmic components unveils
a particularly efficient framework and indeed, the presented experimental results demon-
strate a significant speed-up when compared to the state-of-the-art nonlinear SVM libraries
(without significantly affecting the classification accuracy).

1 Introduction

Support vector machine (SVM) is one of the most well-known supervised classification method
which has been extensively used in different fields. At its core, training nonlinear SVMs classifier
boils down to a solution of a convex Quadratic Programming (QP) problem whose running time

*Email: scipolla@ed.ac.uk
�Email: j.gondzio@ed.ac.uk

1

heavily depends on the way the quadratic term interacts with the chosen optimizer. Typically,
such interaction, is represented by the solution of a linear system involving the quadratic term
(perhaps in some suitably modified version). However, in the nonlinear SVM case, the quadratic
term involves a kernel matrix which (except for the linear kernel) is a dense and unstructured
matrix. Solving (or merely storing) a linear system involving such matrices may result in un-
workably slow algorithms for large scale problems. Although the use of kernel approximations
in SVMs classification has been for a long time a relevant research question, see Section 1.1 for
references, the existing structured approximations are not always able to capture the essential
features of the kernel (see, once more, Section 1.1 for a detailed explanation of this statement)
and, moreover, the selected structure for the kernel approximation may not be exploitable by
the chosen optimizer. Aim of this work is to devise a computational framework based on the
use of the Alternating Direction Method of Multipliers (ADMM) [5] coupled with Hierarchically
Semi-Separable (HSS) [6] kernel approximations. Indeed, the latter choice, if on one hand al-
lows to produce kernel approximations essentially in a matrix-free regime and with guaranteed
accuracy [9], on the other, allows the efficient solution of (shifted) linear systems involving it. In
turn, when QP problems are solved using ADMM, the solution of shifted kernel linear systems
is the main expensive computational task. Such a harmonized interaction between the kernel
approximation and the optimizer not only allows a fast training phase but also makes possible
a fast grid search for optimal hyperparameters selection through caching the HSS approxima-
tion/factorization.

1.1 Background

Support vector machines (SVMs) [3, 11] are useful and widely used classification methods.
Training a nonlinear SVM has at its core (in its dual form) the solution of the following convex
quadratic optimization problem:

min
x∈Rd

f(x) :=
1

2
xTY KY x− eTx

s.t. yTx = 0,

xi ∈ [0, C] for all i = 1, . . . , d,

(1)

where yi ∈ {−1, 1} are target labels, Y := diag(y), Kij := K(fi, fj) is a Positive Definite Kernel
[21, Def. 3], fi ∈ Rr are feature vectors and e is the vector of all ones.

Once a solution x̄ of problem (1) has been computed, the classification function for an
unlabelled data f can be determined by

ỹ = sign(
d∑
i=1

yix̄iK(fi, f) + b).

The bias term b is computed using the support vectors that lie on the margins, i.e., considering
j s.t. 0 < x̄j < C, the following formula is used:

2

b =
d∑
i=1

yix̄iK(fi, fj)− yj . (2)

Despite their simplicity, when compared with Neural Networks (NNs), nonlinear SVMs are
still recognised by practitioners of Machine Learning and Data Science as the preferred choice
for classification tasks in some situations. In particular, the community seems to widely agree
on the fact that NNs are not efficient on low-dimensional input data because of their huge
overparametrisation and, in this case, SVMs may represent the state of the art for classification.
Indeed, SVMs have only two hyperparameters (say the choice of a kernel-related parameter
h and the penalization constant C), so they are very easy to tune to specific problems: the
parameter tuning is usually performed by a simple grid-search through the parameter space.

On the other hand, even if the SVM training is related to a convex optimization problem
for which there exist efficient solution methods, training SVMs for large scale datasets may be
a computationally challenging option essentially due to the fact that, in order to be able to use
the Kernel Trick, SVMs cache a value for the kernelized “distance” between any two pairs of
points: for this reason an O(d2) storage requirement is to be expected. In general, without any
particular specialization, training SVMs is unworkably slow for sets beyond, say, 104 datapoints.

Without any doubts, the most successful class of methods designed to handle storage difficul-
ties, is represented by decomposition methods [15, 23, 30, 31]: unlike most optimization methods
which update all the variables in each step of an iterative process, decomposition methods mod-
ify only a subset of these at every iteration leading, hence, to a small sub-problem to be solved
in each iteration. A prominent example in this class is represented by [8] which delivers, some-
how, a standard benchmark comparison in the SVMs training panorama. It is important to
note at this stage that since only few variables are updated per iteration, for difficult/large-scale
problems, decomposition methods may suffer from a slow convergence.

On the other hand, an alternative way to overcome storage issues is to approximate the kernel
matrix K and, indeed, there is a rich literature concerned with the acceleration of kernel methods
which are usually based on the efficient approximation of the kernel map. The most popular
approach is to construct a low-rank matrix approximation of the kernel matrix reducing the
arithmetic and storage cost [12, 13, 16, 18–20, 25, 26, 35, 45]. We mention explicitly Nyström-
type methods [18, 24, 41] and random feature maps to approximate the kernel function directly
[32] or as a preconditioner [1]. However, the numerical rank of the kernel matrix depends on
parameters, which are, in turn, data-dependent: the Eckart–Young–Mirsky theorem, see [39,
Sec. 2.11.1] justifies low rank approximations only when the kernel matrix is characterized by
a sufficiently fast decay of the singular values. For example, the Gaussian kernel matrix, i.e.,

Kij = exp−
‖fi−fi‖

2

2h2 , is approximately low-rank only if h > 0 is sufficiently large (see the left panel
in Figure 1 for an example) but, for classification purposes, a small value of h may be required.

Several methods were proposed to overcome the fact that K is not necessarily approximately
low-rank. The main idea, in this context, relies on the initial splitting of the data into clusters,

3

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

10
5

Figure 1: Left Panel: decay of the singular values for Gaussian Kernel matrices. Right
Panel: Gaussian Kernel matrices obtained with/without preliminary data clustering. Dataset:
heart scale [8].

so that between-classes interactions in the kernel matrix may be represented/well approximated
by either sparse or low-rank matrices [36, 40, 44] (see right panel in Figure 1 for a pictorial
representation of this idea).

1.2 Contribution

Aim of this work is to propose and analyse the use of the Hierarchically Semi-Separable (HSS)
matrix representation [6] for the solution of large scale kernel SVMs. Indeed, the use of HSS
approximations of kernel matrices has been already investigated in [9, 33] for the solution of
large scale Kernel Regression problems. The main reason for the choice of the HSS structure in
this context can be summarised as follows:

� using the STRUctured Matrix PACKage (STRUMPACK) [34] it is possible to obtain HSS
approximations of the kernel matrices without the need to store/compute explicitly the
whole matrix K. Indeed, for kernel matrix approximations, STRUMPACK uses a partially
matrix-free strategy (see [9]) essentially based on an adaptive randomized sampling which
requires only a black-box matrix-times-vector multiplication routine and the access to
selected elements from the kernel matrix;

� in the preprocessing step employed in STRUMPACK, clustering algorithms are employed to
find groups of points with large inter-group distances and small intra-group distances. This
feature permits to fully exploit the underlying data geometry to obtain valuable algebraic
approximations of the kernel matrix;

� the resulting approximations allow fast approximate kernel matrix computations with lin-
ear scalability for the computation of matrix-vector products and solution of linear systems.

4

In particular, we trace the main contribution of this work in unveiling a particularly efficient
interaction between the HSS structure and ADMM [5] in the SVMs case, see Section 2. When
problem (1) is suitably reformulated in a form exploitable by ADMM, just the solution of one
linear system involving the (shifted) kernel matrix is required per ADMM iteration: kernel
matrices approximated using the HSS structure allow highly efficient solutions of such linear
systems. Indeed, in this framework, approximating the kernel matrix with an HSS structure
(h fixed) results in a highly efficient optimization phase for a fixed value of C (see Section
3.3). It is important to note, moreover, that the computational footprint related to the kernel
matrix approximation phase is fully justified by the fact that the same approximation can
be reused for training the model with different values of C; this feature makes our proposal
particularly attractive when a fine grid is used for the tuning of the penalization parameter C.
It is important to note, at this stage, that also the works [22, 43] analyse the use of ADMM
for SVMs: in [43] ADMM has been used to solve linear SVMs with feature selection whereas
in [22] a hardware-efficient nonlinear SVM training algorithm has been presented in which the
Nyström approximation is exploited to reduce the dimension of the kernel matrices. Both works
represent and use, somehow, different frameworks and techniques from those presented here.

2 The computational framework

Problem (1) can be written as follows:

min
x, z∈Rd

1

2
xTY KY x− eTx + IyTx=0(x) + I[0,C](z)

s.t. x− z = 0,

(3)

where, for a given subset S ⊂ Rd, IS(x) is the indicator function of the set S, defined as

IS(x) :=

{
0 if x ∈ S
+∞ if x /∈ S.

The Augmented Lagrangian corresponding to (3) reads as

Lβ(x, z,µ) =
1

2
xTY KY x− eTx + IyTx=0(x) + I[0,C](z)− µT (x− z) +

β

2
‖x− z‖2. (4)

Reformulation (3) with an extra copy of variable x makes it easier to exploit partial separability
and facilitates a direct application of ADMM to solve it. Indeed, ADMM [5] is our choice of an
(efficient) solution technique for problem (3). In Algorithm 1 we summarize its main steps:

5

1 for k = 0, 1, . . . do
2 xk+1 = minx∈Rd Lβ(x, zk,µk) ; /* x minimization */

3 zk+1 = minz∈Rd Lβ(xk+1, z,µk) ; /* z minimization */

4 µk+1 = µk − β(xk+1 − zk+1) ; /* Multiplier Update */

5 end
Algorithm 1: ADMM

2.1 ADMM details

Let us observe that the solution of the problem in Line 2 of Algorithm 1 is equivalent to the
solution of the problem

min
x∈Rd

1

2
xTY (K + βI)︸ ︷︷ ︸

=:Kβ

Y x− (e + µk + βzk)T︸ ︷︷ ︸
=:qk

x

s.t. yTx = 0.

(5)

Writing the KKT conditions of problem (5), i.e.,[
Y KβY −y
−yT 0

] [
x
λ

]
=

[
e + µk + βzk

0

]
,

and eliminating the variable λ, it is possible to write its solution in a closed form:

xk+1 = Y K−1
β Y qk −

eTK−1
β Y qk

eTK−1
β e

Y K−1
β e,

where we used the fact that Y y = e. Moreover, the problem at Line 3 of Algorithm 1 can be
written alternatively as

arg min
z∈[0,C]

g(z) :=
β

2
zT z− βzTxk+1 + zTµk,

which also has a closed-form solution (see [2, Example 2.2.1]):

zk+1 = Π[0,C](x
k+1 − 1

β
µk), (6)

where Π[0,C] is the component-wise projection onto the interval [0, C]. Summarizing the obser-
vations carried out in this section, we observe that Algorithm 1 can be written in closed form
as in Algorithm 2:

6

1 for k = 0, 1, . . . do

2 xk+1 = Y K−1
β Y qk − eTK−1

β Y qk

eTK−1
β e

Y K−1
β e ; /* x minimization */

3 zk+1 = Π[0,C](x
k+1 − 1

βµ
k) ; /* z minimization */

4 µk+1 = µk − β(xk+1 − zk+1) ; /* Multiplier Update */

5 end
Algorithm 2: Closed form ADMM for problem (3)

2.1.1 Computational Cost and Convergence

Algorithm 2 requires the solution of a linear system involving the matrix Kβ at every itera-
tion (the vector Y K−1

β e can be precomputed) plus a series of operations of linear complexity.
Moreover, since Algorithm 2 is a particular instance of ADMM, it is convergent, see [5].

3 Experiments

3.1 Hierarchically Semi-Separable matrix representation

As already pointed out previously, one of the main computational issues associated with prob-
lem (1) relates to the fact that the matrix K is usually dense and of large dimension: the cubic
computational complexity of application and the quadratic storage requirements for kernel ma-
trices limit the applicability of kernel methods for SVM in large scale applications. To overcome
this problem many different approaches have been proposed in literature, see the discussion in
Section 1. The one we decide to take into account here, is the Hierarchically Semi-Separable
(HSS) approximation of the kernel matrix in the form proposed in [9]. In general, the HSS
approximation of a given matrix uses a hierarchical block 2× 2 partitioning of the matrix where
all off-diagonal blocks are compressed, or approximated, using a low-rank product [6]. The accu-
rate description of such techniques in the case of kernel matrices is out of the scope of this work
and, for this reason, we refer the reader to [9, Sec. II.B – II.C] for the full details. Instead, for
our purposes, we mention explicitly the peculiarities of the approach prosed in [9] (HSS-ANN)
which have driven our choice:

� it uses a randomized sampling [28] which requires just a partially matrix-free method:
the construction process involves only the exploitation of (multiple) matrix-times-vector
products and access to individual elements of K;

� the matrix-times-vector operation is further approximated using a column sampling based
on a Approximate Nearest Neighbours (ANN) of the data points [27, 42] which uses the
similarity between them to identify the dominating entries of the kernel matrix, see [9,
Sec. II.B];

7

� the overall complexity of the HSS-ANN construction (excluding the preprocessing phase
on the data) is O(r2d) where r is the maximum HSS rank, i.e., the maximum rank over
all off-diagonal blocks in the HSS hierarchy, see [9, Sec. II.C and Alg. 3]. The storage
complexity of HSS-ANN is O(dr);

� after the construction, the (shifted) HSS kernel matrix approximation can be factorized
into a ULV form [7], where L is lower triangular and U and V are orthogonal. This
factored form, computed just once for fixed h in our approach, can be used to solve linear
systems involving the (shifted) kernel matrix.

3.2 Implementation details

In Algorithm 3 we summarise the pseudo-code of our implementation. It is based on STRUMPACK

library (Version 5.1.0) [17, 37], which provides efficient routines for the approximation K̃ of a
kernel matrix K (see Line 1 of Algorithm 3). Moreover, once K̃ is obtained, it provides efficient
routines for the solution of linear systems of the form K̃βx = b through the exploitation of a
ULV factorization (see Line 3 of Algorithm 3). It is worth noting that for a fixed kernel value h
the approximation K̃ and the factorization ULV of K̃β are computed just once and then reused
for all the values C in the grid search.

It is also important to note that in practice the bias b is obtained averaging over all the
support vectors that lie on the margin instead of using equation (2). Indeed, defining M :=
{j | 0 < x̄j < C} and ēj = 1 if j ∈M or ēj = 0 otherwise, the bias b is often computed using

b =
1

|M |
∑
j ∈M

(
d∑
i=1

yix̄iK(fi, fj)− yj) =
1

|M |
(x̄TyKē−

∑
j ∈M

yj), (7)

where (x̄y)j := yj x̄j . If the full kernel matrix K is not available, computing (7) may be time
consuming for large datasets since it requires a series of kernel evaluations. On the other hand,
the right-hand side of equation (7) suggests that if an approximation K̃ of K is available for
which matrix vector products can be inexpensively evaluated, the bias computation requires
exactly just one matrix vector product and one scalar product. This is indeed the case when
an HSS approximation of the kernel matrix is available and we exploit this property in our
implementation, see Line 17 in Algorithm 3.

Finally, to conclude this section, we address briefly the problem of relating the solution x̃ of
the approximated SVM problem

min
x∈Rd

f̃(x) :=
1

2
xTY K̃Y x− eTx

s.t. yTx = 0,

xi ∈ [0, C] for all i = 1, . . . , d,

(8)

8

Input: K kernel function, h kernel parameter, β ADMM parameter, Ftrain ∈ Rr×d,
ytrain ∈ Rd, Ftest ∈ Rr×m , ytest ∈ Rm – training and testing data.

1 K̃ = HSScompression(K(Ftrain, Ftrain), h) ;

2 K̃β = K̃ + βI;

3 [U,L, V] = ULVfactorization(K̃β) ;
4 w = (ULV)−1e;
5 w1 = eTw;
6 w = Ytrainw ;
7 for C ∈ {C1, . . . , Cmax} do
8 Initialize x0, z0,µ0 ;
9 for k = 0, 1, . . . ,MaxIt do

10 w2 = wTxk;

11 xk+1 = Y (ULV)−1Y xk − w2
w1w ; /* x minimization */

12 zk+1 = Π[0,C](x
k+1 − 1

βµ
k) ; /* z minimization */

13 µk+1 = µk − β(xk+1 − zk+1) ; /* Multiplier Update */

14 end
15 Define zy = Ytrainz

MaxIt ; /* Computing Bias */

16 Define ēj = 1 if 0 < (zMaxIt)j < C or ēj = 0 otherwise ;

17 b = 1
‖ē‖1 (zy

T K̃ē−
∑

j :ēj 6=0(ytrain)j) ;

18 for j = 1, . . . ,m do

19 (ỹtest)j = sign(
∑d

i=1(zy)iK((ftrain)i, (ftest)j) + b) ; /* Label Assignement */

20 end

21 end
Algorithm 3: SVM training/testing using Strumpack and ADMM

to the solution x̄ of the original problem (1). Indeed, using a similar technique to the one
presented in [16, Sec. 4.1.], for any unitary invariant form we obtain

|f(x̄)− f̃(x̃)| ≤ max{1

2
|x̃TY (K̃ −K)Y x̃|, 1

2
|x̄TY (K − K̃)Y x̄|}

≤ 1

2
max{‖x̃‖2, ‖x̄‖2}‖K̃ −K‖.

(9)

Using the boundedness of 1
2 max{‖x̃‖2, ‖x̄‖2}, we obtain that for K̃ → K it holds f̃(x̃)→ f(x̄).

Equation (9) suggests that for increasingly accurate approximations K̃ of K, the accuracy
classification performance of the approximate SVM classifier (8) matches increasingly closely
the accuracy classification performance of the exact SVM classifier (1). Nonetheless, we will
show experimentally, that this may be also true when quite poor approximations are used, see

9

Table 4 in the following section.

3.3 Numerical results

Our code is written in C++ and the numerical experiments are performed on a Dell PowerEdge
R920 machine running Scientific Linux 7 and equipped with Four Intel Xeon E7-4830 v2 2.2GHz,
20M Cache, 7.2 GT/s QPI, Turbo (4x10Cores) 256 GB RAM.

Dataset Features Training Set Dim. |Train+| Test Set Dim. |Test+|
a8a 122 22696 5506 9865 2335
w7a 300 24692 740 25057 739
rcv1.binary 47236 20242 10491 135480 71326
a9a 122 32561 7841 16281 3846
w8a 300 49749 1479 14951 454
ijcnn1 22 49990 4853 91701 8712
cod.rna 8 59535 19845 271617 90539
skin.nonskin* 3 171540 135986 73517 58212
webspam.uni* 254 245000 148717 105000 63472
susy* 18 3500000 1601659 1500000 686168

Table 1: Problem Set Details. * = Test Set obtained using Random 30% of the original Train-
ing Set.

Table 1 summarizes the details for the chosen dataset. In Tables 4 and 5 we report the results
obtained using our proposal for different parameters related to the accuracy of the HSS-ANN
approximation (increasing accuracy) where all the other non specified HSS-ANN parameters have
to be considered the default ones. In our experiments we choose, in Algorithm 3, MaxIt = 10

and the Gaussian Kernel function K(fi, fj) = exp−
‖fi−fi‖

2

2h2 . Indeed, it is important to observe
that the choice of making a prescribed number of ADMM iterations instead of using a standard
stopping criterion, is motivated by the fact that for machine learning applications going for
accurate optimal solution does not necessarily have to deliver the best classification accuracy.
On the other hand, the fact that one choice of the ADMM parameter MaxIt permits to obtain
satisfactory classification accuracy for all the problems in our dataset confirms the robustness
of our approach (also if we should mention the experimental observation concerning the fact
that for particular problems, a different choice of this parameter may led to better classification
performance). Finally, concerning the choice of the ADMM parameter β, we observed that for
larger problems an increasing value of β is recommended: we chose β = 102 if the training size
d ∈ [104, 105], β = 103 if d ∈ [105, 106] and β = 104 if d ≥ 106.

In Table 2 we report the results obtained using LIBSVM Version 3.25 [8], which implements
specialized algorithms to address the SVM problem (LIBSVM uses a Sequential Minimal Op-

10

timization type decomposition method [4, 14, 31]). In Table 3 we report the results obtained
using RACQP [29] (where a multi-block generalization of ADMM is employed, see also [10, 38]
for related theoretical analysis).

In particular, the kernel parameter h and the penalization term C were estimated by running
a grid-check when instances are solved using our proposal (the HSS-ANN accuracy parameters
used are those specified in Table 5 since our proposal achieves (generally) the best classification
accuracy in this case). Those pairs were then used to solve the instances with LIBSVM and
RACQP. The pairs were chosen from a relatively coarse grid, h, C ∈ {0.1, 1, 10} because the goal
of this experiment is to demonstrate that although our approach uses kernel approximations, it
can still achieve comparable classification accuracy but with a reduced runtime when compared
with other algorithms for the solution of SVM problems which use the true kernel matrices.

The first important observation concerning Tables 4 and 5 is that, unexpectedly (see equa-
tion (9)), increasing the HSS accuracy parameters (generally) does not lead to a significant
increase of classification accuracy: we obtain quite good classification accuracy despite using
very rough approximations (see Table 4). The problem which benefited most an improved ker-
nel approximation is webspam.uni. Indeed, the classification accuracy has increased by nearly
1% in this case. At the same time, increasing the HSS accuracy parameters adversely affects the
Compression and Factorization time. It is important to note also that the ADMM Time needed
to train the model is completely negligible when compared to the time needed to produce the
HSS-ANN approximations. As was already pointed out, this feature allows for a very fast grid-
search on the parameter C (for the largest considered problem it takes roughly 10s to train the
model for a fixed C). Indeed, the choice of the parameter C may greatly affect the performance
of the classification accuracy (see Figure 2 for some examples).

Concerning the comparison of our approach with LIBSVM and RACQP (compare Tables 4
and 5 with Tables 2 and 3, respectively) several remarks are in order. The first one concerns
the coherence of the HSS-ANN approximations with the classification accuracy: the accuracy
results obtained for the grid-selected h and C are always comparable to those obtained using
LIBSVM and generally better than those obtained using RACQP (both approaches use, in
different ways, the true kernel matrices). The second one concerns the computational time: for
smallest problems or problems with high dimensional features, our proposal may not be the
best performer (see, e.g., the problems w7a, rcv1.binary and w8a) but, on the contrary, when
the dimension of the training set increases and the number of features is small, the approach
proposed in this paper becomes a clear winner (see problems ijcnn, cod.rna, webspam.uni and
susy): the goodness and advantages of our approach are further underpinned observing that
the total training time needed for the grid search on the parameter C (h fixed) can be roughly
obtained multiplying the values in the column ADMM Time by the number of grid values selected
for C (in our case 3). This is not true for LIBSVM and RACQP where the training phase is
restarted from scratch for all the values C (considering also in this case h fixed).

Finally, for the sake of fairness, concerning the comparison of running times of our proposal
with those from RACQP, we should mention the fact that RACQP is implemented in Matlab,

11

0.1 1 10

C

0.1

1

10

h

Dataset: a9a

76.39 76.83 76.83

82.53

82.29

83.48

81.65

83.48

81.65

77

78

79

80

81

82

83

0.1 1 10

C

0.1

1

10

h

Dataset: ijcnn1

13.27

91.45

88.63

92.31

86.65

90.35

92.31

86.65

90.35

20

30

40

50

60

70

80

90

Figure 2: Heatmap of the classification accuracy for the datasets a9a and ijcnn1.

Dataset Runtime [s] Accuracy [%]

a8a 123.308 83.953
w7a 148.110 97.904
rcv1.binary 261.399 93.247
a9a 305.913 82.697
w8a 508.232 99.444
ijcnn1 345.805 96.007
cod.rna 110.997 90.374
skin.nonskin 344.938 99.960
webspam.uni 13354.384 99.081
susy ††

Table 2: LIBSVM. †† = stopped after 10h.

Dataset Runtime [s] Accuracy [%]

a8a 98.269 79.757
w7a 82.838 97.050
rcv1.binary 67.830 71.987
a9a 206.527 82.237
w8a 348.122 97.806
ijcnn1 427.551 91.460
cod.rna 531.787 33.333
skin.nonskin 4689.815 97.649
webspam.uni 21669.329 92.830
susy ††

Table 3: RACQP. †† = stopped after 10h.

which is presumably slower than a compiled language such as C++.

4 Conclusions

In this work we proposed an ADMM-based scheme (see Algorithm 3) which employs HSS-ANN
approximations (see [9] and Section 3) to train SVMs. Numerical experiments obtained using
STRUMPACK [37] in a sequential architecture, show that our proposal compares favourably with
LIBSVM [8] and RACQP [29] in terms of computational time and classification accuracy when the
dimension of the training set increases. Indeed, both LIBSVM and RACQP use different decompo-
sition methods for the exact kernel matrix, which may be slow for large scale problems. Our
proposal, instead, resorting on an all-at-once optimal exploitation of structured approximations
of the kernel matrices, is less prone to the curse of dimensionality allowing us to train datasets
of larger dimensions.

Acknowledgements: This work was supported by Oracle Labs.

12

D
a
ta
se
t

H
S
S
C
o
n
st
ru
ct
io
n

A
D
M
M

T
im

e
[s
]

B
es
t
P
a
ra
m
et
er
s

A
cc
u
ra
cy

[%
]

C
o
m
p
re
ss
io
n
[s
]

F
a
ct
o
ri
za
ti
o
n
[s
]

M
em

o
ry

[M
B
]

h
C

a
8
a

1
3
5
.9
2
3

6
.1
8
1

1
1
2
.9
6
8

0
.3
0
0

1
1
,1
0

8
3
.3
1
4

w
7
a

2
1
6
1
.9
2
0

1
4
.4
4
2

9
9
.3
4
5

0
.4
8
6

1
1
,1
0

9
7
.4
6
5

rc
v
1
.b
in
a
ry

6
3
1
9
.7
8
0

1
.6
6
5

5
8
.8
3
9

0
.1
7
3

1
0

1
,1
0

8
9
.9
4
0

a
9
a

2
5
6
.0
3
2

8
.1
6
2

1
7
9
.1
9
2

0
.4
7
1

1
1
,1
0

8
3
.4
7
7

w
8
a

1
0
4
7
6
.2
0
0

1
0
7
.7
1

2
7
3
.1

1
.4
9
8

1
1
,1
0

9
7
.6
7
9

ij
cn

n
9
.7
7
2

1
.9
8
0

1
5
3
.5
8
6

0
.4
7
0

0
.1

1
,1
0

9
2
.4
0
3

co
d
.r
n
a

2
.9
0
0

2
.8
6
3

1
8
1
.4
7

0
.4
4
4

1
0

0
.1

8
9
.3
0
5

sk
in
.n
o
n
sk
in

1
1
2
7
.7
9

1
1
.0
7
8

5
3
8
.3
4
9

1
.2
1
9

1
0

0
.1
,1
,1
0

9
9
.8
4
6

w
eb

sp
a
m
.u
n
i

5
8
0
9
.6

3
.2
2
8

7
5
7
.9
6
9

0
.9
0
9

0
.1

0
.1
,1
,1
0

9
5
.5
5
1

su
sy

3
9
3
8
.6
8

2
5
.6
1
4

1
3
5
9
9
.4

9
.4
7
1

1
0
.1
,1
,1
0

7
2
.3
3
8

T
a
b

le
4
:

S
tr

u
m

p
ac

k
&

A
D

M
M

.
S

tr
u

m
p

ac
k

p
ar

am
et

er
s:

h
s
s
r
e
l
t
o
l
=

1,
h
s
s
a
b
s
t
o
l
=

0.
1
,
h
s
s
m
a
x
r
a
n
k
=

2
0
0
,

h
s
s
a
p
p
r
o
x
i
m
a
t
e
n
e
i
g
h
b
o
r
s
=

64
.

D
a
ta
se
t

H
S
S
C
o
n
st
ru
ct
io
n

A
D
M
M

T
im

e
[s
]

B
es
t
P
a
ra
m
et
er
s

A
cc
u
ra
cy

[%
]

C
o
m
p
re
ss
io
n
[s
]

F
a
ct
o
ri
za
ti
o
n
[s
]

M
em

o
ry

[M
B
]

h
C

a
8
a

7
9
5
.5
9
7

1
6
.2
7
6

2
1
8
.6
7
3

0
.5
8
8

1
1
,1
0

8
3
.4
7
6

w
7
a

2
3
1
1
.3
3
0

1
5
.2
2
9

1
0
7
.3
9
3

0
.6
2
1

1
1
,1
0

9
7
.4
6
5

rc
v
1
.b
in
a
ry

1
4
2
1
1
.0

1
.4
2
5

5
8
.8
4

0
.2
1
0

1
0

1
,1
0

8
7
.9
2
1

a
9
a

1
1
7
6
.9
9

2
1
.3
9
0
9

3
7
9
.8
5
2

0
.9
8
6

1
1
,1
0

8
3
.6
4
3

w
8
a

1
0
7
7
4
.9
0
0

1
2
4
.0
7
6

2
9
6
.4
7
2

1
.7
3
8

1
1
,1
0

9
7
.6
7
2

ij
cn

n
2
1
.3
9
3

2
.0
4
1

1
6
8
.0
0
7

0
.2
9
8

0
.1

1
,1
0

9
2
.3
1
4

co
d
.r
n
a

2
3
.2
4
2

2
.3
7
7

1
8
2
.4
2
4

0
.2
8
0

1
0

1
,1
0

8
9
.3
0
8

sk
in
.n
o
n
sk
in

1
2
3
2
.7
3
0

7
.5
6
0

5
4
4
.5
4
4

0
.9
7
2

1
0

0
.1
,1
,1
0

9
9
.8
5
5

w
eb

sp
a
m
.u
n
i

7
0
0
3
.5
2

5
.6
4
0

8
6
1
.5
4
2

1
.2
9
7

0
.1

0
.1
,1
,1
0

9
6
.1
2
3

su
sy

1
4
4
9
5
.9

1
5
9
.9
7
2

1
8
2
6
4
.2

1
5
.8
8
9

1
0
.1
,1
,1
0

7
2
.0
4
7

T
a
b

le
5
:

S
tr

u
m

p
a
ck

&
A

D
M

M
.

S
tr

u
m

p
ac

k
p

ar
am

et
er

s:
h
s
s
r
e
l
t
o
l
=

0.
5
,

h
s
s
a
b
s
t
o
l
=

0
.0

5
,

h
s
s
m
a
x
r
a
n
k
=

20
00

,
h
s
s
a
p
p
r
o
x
i
m
a
t
e
n
e
i
g
h
b
o
r
s
=

51
2.

13

References

[1] H. Avron, K. L. Clarkson, and D. P. Woodruff. “Faster kernel ridge regression using
sketching and preconditioning”. In: SIAM J. Matrix Anal. Appl. 38.4 (2017), pp. 1116–
1138. issn: 0895-4798. doi: 10.1137/16M1105396. url: https://doi.org/10.1137/
16M1105396.

[2] D. P. Bertsekas. Nonlinear programming. Second. Athena Scientific Optimization and Com-
putation Series. Athena Scientific, Belmont, MA, 1999, pp. xiv+777. isbn: 1-886529-00-0.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for optimal margin
classifiers”. In: Proceedings of the fifth annual workshop on Computational learning theory.
1992, pp. 144–152.

[4] L. Bottou and C.-J. Lin. “Support vector machine solvers”. In: Large scale kernel machines
3.1 (2007), pp. 301–320.

[5] S. Boyd, N. Parikh, and E. Chu. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Now Publishers Inc, 2011.

[6] S. Chandrasekaran, M. Gu, and W. Lyons. “A fast adaptive solver for hierarchically
semiseparable representations”. In: Calcolo 42.3-4 (2005), pp. 171–185. issn: 0008-0624.
doi: 10.1007/s10092-005-0103-3. url: https://doi.org/10.1007/s10092-005-
0103-3.

[7] S. Chandrasekaran, M. Gu, and T. Pals. “A fast ULV decomposition solver for hierarchi-
cally semiseparable representations”. In: SIAM J. Matrix Anal. Appl. 28.3 (2006), pp. 603–
622. issn: 0895-4798. doi: 10.1137/S0895479803436652. url: https://doi.org/10.
1137/S0895479803436652.

[8] C.-C. Chang and C.-J. Lin. “LIBSVM: A library for support vector machines”. In: ACM
Transactions on Intelligent Systems and Technology 2 (3 2011). Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm, 27:1–27:27.

[9] G. Chávez et al. “Scalable and Memory-Efficient Kernel Ridge Regression”. In: 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 2020, pp. 956–965.
doi: 10.1109/IPDPS47924.2020.00102.

[10] S. Cipolla and J. Gondzio. Random multi-block ADMM: an ALM based view for the QP
case. 2020. arXiv: 2012.09230 [math.OC].

[11] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine learning 20.3 (1995),
pp. 273–297.

[12] P. Drineas and M. W. Mahoney. “On the Nyström method for approximating a Gram
matrix for improved kernel-based learning”. In: J. Mach. Learn. Res. 6 (2005), pp. 2153–
2175. issn: 1532-4435.

14

[13] P. Drineas et al. “Fast approximation of matrix coherence and statistical leverage”. In: J.
Mach. Learn. Res. 13 (2012), pp. 3475–3506. issn: 1532-4435.

[14] R.-E. Fan, P.-H. Chen, and C.-J. Lin. “Working set selection using second order informa-
tion for training support vector machines”. In: J. Mach. Learn. Res. 6 (2005), pp. 1889–
1918. issn: 1532-4435.

[15] R.-E. Fan et al. “Working set selection using second order information for training support
vector machines.” In: Journal of machine learning research 6.12 (2005).

[16] S. Fine and K. Scheinberg. “Efficient SVM training using low-rank kernel representations”.
In: Journal of Machine Learning Research 2.Dec (2001), pp. 243–264.

[17] P. Ghysels et al. “A robust parallel preconditioner for indefinite systems using hierarchical
matrices and randomized sampling”. In: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE. 2017, pp. 897–906.

[18] A. Gittens and M. W. Mahoney. “Revisiting the Nyström method for improved large-scale
machine learning”. In: J. Mach. Learn. Res. 17 (2016), Paper No. 117, 65. issn: 1532-4435.

[19] G. H. Golub and C. F. Van Loan. Matrix computations. Vol. 3. JHU Press, 2012.

[20] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding structure with randomness: prob-
abilistic algorithms for constructing approximate matrix decompositions”. In: SIAM Rev.
53.2 (2011), pp. 217–288. issn: 0036-1445. doi: 10.1137/090771806. url: https://doi.
org/10.1137/090771806.

[21] T. Hofmann, B. Schölkopf, and A. J. Smola. “Kernel methods in machine learning”. In:
Ann. Statist. 36.3 (2008), pp. 1171–1220. issn: 0090-5364. doi: 10.1214/009053607000000677.
url: https://doi.org/10.1214/009053607000000677.

[22] S.-A. Huang and C.-H. Yang. “A hardware-efficient ADMM-based SVM training algorithm
for edge computing”. In: arXiv preprint arXiv:1907.09916 (2019).

[23] T. Joachims. Making large-scale SVM learning practical. In, B. Scholkopf, C. Burges, A.
Smola,(eds.): Advances in Kernel Methods-Support Vector Learning. 1998.

[24] S. Kumar, M. Mohri, and A. Talwalkar. “Sampling methods for the Nyström method”.
In: J. Mach. Learn. Res. 13 (2012), pp. 981–1006. issn: 1532-4435.

[25] E. Liberty et al. “Randomized algorithms for the low-rank approximation of matrices”.
In: Proc. Natl. Acad. Sci. USA 104.51 (2007), pp. 20167–20172. issn: 0027-8424. doi:
10.1073/pnas.0709640104. url: https://doi.org/10.1073/pnas.0709640104.

[26] M. W. Mahoney. “Randomized algorithms for matrices and data”. In: Found. Trends
Mach. Learn. 123–224.3 (2011).

[27] W. B. March, B. Xiao, and G. Biros. “ASKIT: approximate skeletonization kernel-independent
treecode in high dimensions”. In: SIAM J. Sci. Comput. 37.2 (2015), A1089–A1110. issn:
1064-8275. doi: 10.1137/140989546. url: https://doi.org/10.1137/140989546.

15

[28] P. G. Martinsson. “A fast randomized algorithm for computing a hierarchically semisepara-
ble representation of a matrix”. In: SIAM J. Matrix Anal. Appl. 32.4 (2011), pp. 1251–1274.
issn: 0895-4798. doi: 10.1137/100786617. url: https://doi.org/10.1137/100786617.

[29] K. Mihic, M. Zhu, and Y. Ye. “Managing Randomization in the Multi-Block Alternating
Direction Method of Multipliers for Quadratic Optimization”. In: Math. Program. Comp.
(2020). doi: https://doi.org/10.1007/s12532-020-00192-5.

[30] E. Osuna, R. Freund, and F. Girosit. “Training support vector machines: an application to
face detection”. In: Proceedings of IEEE computer society conference on computer vision
and pattern recognition. IEEE. 1997, pp. 130–136.

[31] J Platt. Fast training of support vector machines using sequential minimal optimization,
In, B. Scholkopf, C. Burges, A. Smola,(eds.): Advances in Kernel Methods-Support Vector
Learning. 1998.

[32] A. Rahimi, B. Recht, et al. “Random Features for Large-Scale Kernel Machines.” In: NIPS.
Vol. 3. 4. Citeseer. 2007, p. 5.

[33] E. Rebrova et al. “A study of clustering techniques and hierarchical matrix formats for
kernel ridge regression”. In: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE. 2018, pp. 883–892.

[34] F.-H. Rouet et al. “A distributed-memory package for dense hierarchically semi-separable
matrix computations using randomization”. In: ACM Trans. Math. Software 42.4 (2016),
Art. 27, 35. issn: 0098-3500. doi: 10.1145/2930660. url: https://doi.org/10.1145/
2930660.

[35] T. Sarlos. “Improved approximation algorithms for large matrices via random projections”.
In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06).
IEEE. 2006, pp. 143–152.

[36] S. Si, C.-J. Hsieh, and I. S. Dhillon. “Memory efficient kernel approximation”. In: J. Mach.
Learn. Res. 18 (2017), Paper No. 20, 32. issn: 1532-4435.

[37] STRUMPACK website. http://portal.nersc.gov/project/sparse/strumpack/..

[38] R. Sun, Z.-Q. Luo, and Y. Ye. “On the efficiency of random permutation for ADMM and
coordinate descent”. In: Math. Oper. Res. 45.1 (2020), pp. 233–271. issn: 0364-765X. doi:
10.1287/moor.2019.0990. url: https://doi.org/10.1287/moor.2019.0990.

[39] E. E. Tyrtyshnikov. A brief introduction to numerical analysis. Birkhäuser Boston, Inc.
Boston, MA, 1997, pp. xii+202. isbn: 0-8176-3916-0. doi: 10.1007/978-0-8176-8136-4.
url: https://doi.org/10.1007/978-0-8176-8136-4.

[40] R. Wang et al. “Block basis factorization for scalable kernel evaluation”. In: SIAM J. Ma-
trix Anal. Appl. 40.4 (2019), pp. 1497–1526. issn: 0895-4798. doi: 10.1137/18M1212586.
url: https://doi.org/10.1137/18M1212586.

16

[41] C. Williams and M. Seeger. “Using the Nyström method to speed up kernel machines”.
In: Proceedings of the 14th annual conference on neural information processing systems.
CONF. 2001, pp. 682–688.

[42] B. Xiao and G. Biros. “Parallel algorithms for nearest neighbor search problems in high
dimensions”. In: SIAM J. Sci. Comput. 38.5 (2016), S667–S699. issn: 1064-8275. doi:
10.1137/15M1026377. url: https://doi.org/10.1137/15M1026377.

[43] G.-B. Ye, Y. Chen, and X. Xie. “Efficient variable selection in support vector machines
via the alternating direction method of multipliers”. In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics. JMLR Workshop and
Conference Proceedings. 2011, pp. 832–840.

[44] Y. You et al. “Accurate, fast and scalable kernel ridge regression on parallel and distributed
systems”. In: Proceedings of the 2018 International Conference on Supercomputing. 2018,
pp. 307–317.

[45] K. Zhang and J. T. Kwok. “Clustered Nyström method for large scale manifold learn-
ing and dimension reduction”. In: IEEE Transactions on Neural Networks 21.10 (2010),
pp. 1576–1587.

17

