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Abstract

Embedding randomization procedures in the Alternating Direction
Method of Multipliers (ADMM) has recently attracted an increasing
amount of interest as a remedy to the fact that the direct n-block gen-
eralization of ADMM is not necessarily convergent (n ≥ 3). Even if, in
practice, the introduction of such techniques could mitigate the diverg-
ing behaviour of the n-block extension of ADMM, from the theoretical
point of view, it can ensure just the convergence in expectation, which
may not be a good indicator of its robustness and efficiency. In this
work, analysing the strongly convex quadratic programming case, we
interpret the n-block Gauss-Seidel sweep performed by ADMM in the
context of the inexact Augmented Lagrangian Method. Using the pro-
posed analysis, we are able to outline an alternative technique to those
present in literature which, supported from stronger theoretical guar-
antees, is able to ensure the convergence of the n-block generalization
of the ADMM method.
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Method, Randomly Shuffled Gauss-Seidel
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1 Introduction

In this work we consider the solution of the problem:

min
x∈Rd

f(x) :=
1

2
xTHx + gTx

s.t. Ax = b,

(1)
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where H ∈ Rd×d is Symmetric Positive Definite (SPD in short) and A ∈
Rm×d (d ≥ m) has full rank.

Recently, problem (1) has been widely used as a sample problem for
the convergence analysis of the n-block generalization of the Alternating
Direction Method of Multipliers (ADMM) [6, 12, 21, 47, 58]. In particular, in
[12], a counterexample in the form of problem (1) has been given to show that
the direct n-block extension of ADMM is not necessarily convergent when
solving non-separable convex minimization problems. This counterexample
has motivated a series of very recent works, including [8, 10, 11, 17, 27, 30–
33, 39, 40, 42, 56, 57], where the authors analyse modifications of ADMM
which ensure its convergence when n ≥ 3. In particular, in [11, 42, 56]
a series of randomization procedures has been introduced which is able to
guarantee the convergence in expectation of the n-block generalization of
ADMM. Since then such techniques have been proposed as a possible remedy
to the fact that the deterministic direct n-block extension of ADMM is not
necessarily convergent.

The ADMM [6, 21] was originally proposed in [26] and, in its n-block
version, it embeds a n-block Gauss-Seidel (GS) decomposition [5, 25] into
each iteration of the Augmented Lagrangian Method (ALM) [34, 48]: the
primal variables, partitioned into n blocks, are cyclically updated and then
a dual-ascent-type step for the dual variables is performed.

Adopting a purely linear-algebraic approach, in the particular case of
problem (1), ALM and ADMM can be simply interpreted in terms of matrix
splitting techniques (see [29, 59]) for the solution of its KKT linear system
(see Section 3 and Section 6).

Indeed, even if in the numerical linear algebra community the study of
matrix splitting techniques for the solution of linear systems arising from
saddle point problems is a well established line of research (see [2, Sec. 8]
for an overview), this connection seems to be only partially exploited in
the works [11, 42, 56] and, despite the fact that analogies between ADMM
and GS+ALM are apparent, to the best of our knowledge, the literature is
lacking of a precise investigation in this direction (even in the simple case
when the problem is given by equation (1)). Broadly speaking, this work
aims to depict a precise picture of the synergies occurring between GS and
ALM in order to give rise to ADMM and, in turn, to shed new light on the
hidden machinery which controls its convergence.

Our starting point is an analysis of the ALM from an inexact point of
view and specifically tailored for problem (1). Indeed, inexact ALMs (iALM)
have attracted the attention of many researchers in the last years and we
refer to [60, Sec. 1.4] for a very recent literature review. We mention explic-
itly the works [36, 37, 41, 43], where iALM is analysed for solving linearly
constrained convex programming problems, a very similar framework to the
one analysed here. To the best of our knowledge, our approach does not
have any evident analogy to the previously mentioned papers.
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On the other hand, the connections of the ALM with monotone op-
erators/splitting methods are well understood [19, 50] and, our analysis,
resembles this line of research more closely: we use, in essence, a matrix
splitting of the augmented KKT matrix of (1) to represent the ALM/iALM
iterations. It is not surprising that, as a result of this line of reasoning, we
are able to relate the convergence of ALM/iALM (and their rate of conver-
gence to an ε - accurate primal-dual solution) to the spectral radius ρ of the
iteration map of a fixed point problem (see equation (8)).

It is important to highlight, at this stage, that encompassing inexactness
in the recursion generated by a monotone operator has been extensively
studied, see [20, 49, 52–54].

A careful checking of the literature revealed some analogies of our ap-
proach with the inexact Uzawa’s method [1]. Indeed the ALM method can
be interpreted as the Uzawa’s method applied to the augmented KKT sys-
tem of problem (1) and in the context of the inexact Uzawa’s method, it
is empirically well documented [23] and theoretically well understood [7,
14–16, 22], that a fixed number of Successive Over-Relaxation (SOR) [24,
61] steps per inner solve (typically 10) is needed in order to reproduce the
convergence rate of the exact algorithm.

All the inexactness criteria developed in the previously mentioned works
are characterized by a summability condition or a relative error condition
based on the residual previously computed.

A first important by-product of our analysis, is that we are able to prove
the convergence of the iALM without imposing any summability condition
on the sequence {ηk}k which controls the amount of inexactness of the
iALM at k-th iteration (see Theorem 4) also in the case when the source of
inexactness is modelled using a random variable (see Lemma 2). A second
important advantage of our approach, is that we are able to give explicit
bounds for the rate of convergence of the iALM in relation to the speed
characterizing the convergence to zero of the sequence {ηk}k.

Beyond the previously mentioned advantages of our analysis, we trace the
main contribution of this work in the production of an explicit link between
the accuracy required to ensure the convergence and the specific solver used
to address the minimization step in the ALM, which, in the case of problem
(1), is equivalent to the solution of a SPD linear system. Using explicit error-
reduction bounds for the Conjugate Gradient (CG) method [35, 51], for the
SOR method [45] and its Randomly Shuffled version [46], we are able to prove
that the inexactness criterion ηk = Rk+1 (R < 1 suitably user-defined), can
be satisfied performing a constant number of iterations (see Theorem 6 and
Theorem 9). Moreover, observing that the GS decomposition is a particular
case of the SOR decomposition, we are able to connect the very well known
convergence issues [47, 58] of the direct n-block extension of ADMM (and its
randomized versions [11, 42, 56]) to the fact that one GS sweep for iALM-
step may not be sufficient to ensure enough of the accuracy in the algorithm
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to deliver convergence. Finally, as an interesting result of our analysis, we
are able to propose a simple numerical strategy aiming to mitigate, if not
to eliminate entirely, the convergence issues of ADMM (see Section 6): this
proposal, due to its solid theoretical guarantees of convergence, could be
considered as a competitive alternative to the techniques introduced to date
[11, 42, 56]. We provide also computational evidence of this fact.

1.0.1 Test Problems

In order to showcase the developed theory, in the remainder of this work, we
will consider the following test problems (all the numerical results presented
are obtained using Matlab® R2020b):

Problem 1 H is the Kernel Matrix associated with the radial basis
function for the data-set heart scale from [9] (270 instances, 13 features).

In particular, we consider (H)ij = e−
‖xi−xj‖

h2 with h = 0.5 and g a random
vector. For the constraints, we choose A = eT where e is the vector of all
ones and b = 1.

Problem 2 [12] we consider H = hI3×3 with h = 0.05 and g a random
vector. For the constraints we consider the matrix

A =

1 1 1
1 1 2
1 2 2


and b a random vector (rank(A) = 3).

2 Augmented Lagrangian and KKT

If we consider the Augmented Lagrangian

Lβ(x,µ) =
1

2
xTHx + gTx− µT (Ax− b) +

β

2
‖Ax− b‖2,

the corresponding KKT conditions are

∇xLβ(x,µ) = Hx + g −ATµ + βATAx− βATb = 0

Ax− b = 0
.

Multiplying by β the second KKT condition, we obtain the system[
Hβ −AT
βA 0

]
︸ ︷︷ ︸

=:A

[
x
µ

]
=

[
βATb− g

βb

]
︸ ︷︷ ︸

=:q

(2)

where Hβ := H+βATA. Theorem 1 states the existence of a unique solution
of problem (2):
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Theorem 1. The matrix A is invertible for all β > 0.

Proof. Observe that

A =

[
Hβ 0

βA βAH−1β AT

] [
I −H−1β AT

0 I

]
.

The non-singularity follows using the fact that A is of full rank. See also [2,
Sec. 3] for different factorizations of saddle point matrices.

Let us define:

Definition 1 (ε - accurate primal-dual solution). We say that [x,µ]T is an
ε - accurate primal-dual solution for problem (1) if

‖Hx + g −ATµ‖ ≤ ε and ‖Ax− b‖ ≤ ε.

Moreover, if [x,µ]T is a random variable, we say that it is an expected
ε - accurate primal-dual solution for problem (1) if

E(‖Hx + g −ATµ)‖ ≤ ε and E(‖Ax− b‖) ≤ ε.

3 The Augmented Lagrangian Method of Multi-
pliers (ALM)

The general form of ALM is given by{
xk+1 = minx∈Rd Lβ(x,µk)
µk+1 = µk − β(Axk+1 − b)

which, for problem (1), reads as{
xk+1 = H−1β (ATµk + βATb− g)

µk+1 = µk − β(Axk+1 − b)
(3)

It is important to observe that the iterates [xk+1,µk+1]T produced by
(3) are dual feasible, i.e.,

0 = ∇xLβ(xk+1,µk) = ∇xf(xk+1)−ATµk+1 = Hxk+1 + g −ATµk+1.

It is well known that ALM can be derived applying the Proximal Point
Method to the dual of problem (1), see [50, Sec. 6.1], but in this particular
case can be also recast in an operator splitting framework (see [50, Sec. 7],
[19]): indeed, the ALM scheme can be interpreted as a fixed point iteration
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obtained from a splitting decomposition for the KKT linear algebraic system
(2) (see [28, 59] and [2, Sec. 8]). Writing

A =

[
Hβ 0
βA I

]
−
[
0 AT

0 I

]
,

we can write equation (3) as[
xk+1

µk+1

]
=

[
H−1β 0

−βAH−1β I

] [
0 AT

0 I

]
︸ ︷︷ ︸

=:Gβ

[
xk

µk

]
+

[
H−1β 0

−βAH−1β I

]
︸ ︷︷ ︸

=:Fβ

[
βATb− g

βb

]
︸ ︷︷ ︸

q

,

i.e., as a fixed point iteration of the form[
xk+1

µk+1

]
= Gβ

[
xk

µk

]
+ Fβq.

The following Theorem 2 (see [13, Sec. 2] for a similar result) is the
cornerstone to prove the convergence of the ALM (see equation (3)) and its
inexact version (see equation (7)).

Theorem 2. The eigenvalues of Gβ are s.t. λ ∈ [0, 1) for all β > 0 and,
moreover, ρ(Gβ)→ 0 for β →∞.

Proof. Let us observe that (λ, [u,v]T ) is an eigenpair of Gβ if and only if

ATv = λHβu

(1− λ)v = λβAu
. (4)

The proof is structured into three parts.

Part 1: If λ is an eigenvalue of Gβ, then λ 6= 1.
By contradiction suppose that λ = 1, then from (4) we have the condition[

Hβ −AT
βA 0

] [
u
v

]
= 0,

which leads to an absurd since A is invertible for β > 0 (see Theorem 1).
Part 2: If (λ, [u,v]T ) is an eigenpair of Gβ, then u 6= 0.

By contradiction, if u = 0, then from the second equation in (4), we obtain
(1− λ)v = 0 and hence an absurd using Part 1.

Part 3.
If v = 0, multiplying by uT the first equation in (4), we obtain λuTHβu = 0,
which leads to λ = 0 since Hβ is SPD.
If v 6= 0, from (4), we obtain
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λ(1− λ)
uTHβu

uTu
= λβ

uTATAu

uTu
. (5)

If in equation (5) uTATAu
uTu

= 0, reasoning as before and using Part 1, we

obtain λ = 0. Instead, if in equation (5) we have uTATAu
uTu

6= 0, we obtain

λ = 0 or λ = uTHu
uTHβu

< 1, which completes the proof observing that, in this

case, λ = uTHu
uTHβu

→ 0 if β →∞ since uTATAu 6= 0.

Definition 2. In the following, [x,µ]T denotes the unique solution of linear
system (2) (see Theorem 1 for existence and uniqueness). Moreover, we

define, ρβ := ρ(Gβ) := maxλ{|λ(Gβ)|}, ek :=

[
xk − x
µk − µ

]
, dk := A

[
xk

µk

]
− q.

Theorem 3. The ALM in (3) converges for all β > 0. Moreover, we have
for all k ∈ N,

‖ek‖ ≤ ‖e0‖ρkβ
and

‖dk‖ ≤ ‖A‖‖A−1‖‖d0‖ρkβ.

Proof. See [59, Th. 1.10] and [29, Th. 2.14].
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Figure 1: Behaviour of k2(A), k2(Hβ), ρ(Gβ) for different values of β (log-
arithmic scale on both axes).

In Figure 1 we report the behaviour of the condition number in 2-norm
of the matrices A, Hβ (respectively k2(A), k2(Hβ)) and the spectral radius

7



ρβ for different values of β. The results obtained in Figure 1 confirm the
statement regarding ρβ in Theorem 2: the convergence of ALM can be
consistently sped-up by increasing the value of β, see Theorem 3, but this
speed-up could come at the cost of solving an increasingly ill-conditioned
linear system involving Hβ (see the first equation in (3)). Indeed, when β is
large, the matrix Hβ is dominated by the term βATA (see [2, Sec. 8.1] and
references therein for more details) and, if ATA is singular, the condition
number of the matrix Hβ progressively degrades when β increases (see the
behaviour of k2(Hβ) for Problem 1 in the upper panel of Figure 1).

The following Lemma 1 states the worst case complexity of ALM.

Lemma 1. The ALM in (3) requires O(logρβ ε) iterations to produce an
ε - accurate primal-dual solution.

Proof. Observe that we have

‖Axk − b‖ ≤ 1

β
‖dk‖ ≤ 1

β
‖A‖‖A−1‖‖d0‖ρkβ,

where in the last inequality we used Theorem 3. Since, as observed at
the beginning of this section, the iterates [xk,µk]T produced by the ALM
are dual feasible, we have ‖Hxk + g − ATµk‖ ≡ 0. Hence, defining C :=
1
β‖A‖‖A

−1‖‖d0‖, we obtain that k ≥ logρβ (ε/C) iterations of the ALM are
sufficient to deliver an ε - accurate primal-dual solution.

In Figure 2, we show the behaviour of the quantities involved in the proof
of Lemma 1 (the legend is consistent with the notation used in Lemma 1).
As Lemma 1 states and Figure 1 shows, the function Cρkβ is an upper bound

for the quantity ‖Axk − b‖. In this example, in order to further highlight
the dependence of ρβ on β, we choose different values of β (β = 0.1 and
β = 5 ) such that, for Problem 1 and Problem 2, we obtain ρβ ≈ 0.05. Let
us point out that the results reported in Figure 2 are obtained solving the
linear system in (3) using a high accuracy (a direct method using Matlab’s
“backslash” operator) and, since the iterates must be dual feasible, the
residuals ‖Hxk + g −ATµk‖ are close to the machine precision.

4 Inexact ALM (iALM)

In this section we study in detail the iALM for problem (1). The reader
may see [60, Sec. 1.4] for a recent survey on this subject. In particular, we
assume that the first equation in (3) is not solved exactly, i.e., xk+1 is such
that

Hβx
k+1 − (ATµk + βATb− g) = rk. (6)

In our framework, the iALM read as
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Figure 2: Behaviour of the quantities analysed in Lemma 1 (logarithmic
scale on y-axis).

{
xk+1 = H−1β (ATµk + βATb− g + rk)

µk+1 = µk − β(Axk+1 − b)
, (7)

and (7) can be alternatively written as the following inexact fixed point
iteration (see [4] and [44, Sec 12.2] for more details on this topic):

[
xk+1

µk+1

]
=

[
H−1
β 0

−βAH−1
β I

] [
0 AT

0 I

]
︸ ︷︷ ︸

=Gβ

[
xk

µk

]
+

[
H−1
β 0

−βAH−1
β I

]
︸ ︷︷ ︸

=Fβ

[
βATb − g + rk

βb

]
︸ ︷︷ ︸

=:qk

. (8)

On the contrary of what was observed for the exact ALM (see the beginning
of Section 3), the iterates produced by (7) are not dual feasible since

0 6= rk = ∇xLβ(xk+1,µk) = Hxk+1 + g −ATµk+1,

i.e., the error rk introduced in the solution of the first equation in (7) can
be interpreted as a measure of the violation of the dual feasibility condition.

In Section 5.2.3 we will consider the point xk+1 in (6) as a result of
a randomized procedure and, for this reason, we are going to present this
section assuming that {rk}k in (8) is a sequence of random variables (and
hence all the generated {[xk,µk]T }k are random variables). Moreover, all
the results presented here can be easily restated in a deterministic framework
substituting the “almost sure (a.s.) convergence” with “convergence” and
not considering the “expectation operator”. For a review of the probabilistic
concepts we use in the following see [55, Ch. 2].

The following Theorem 4 addresses the convergence of the iALM using
the inexact fixed point formulation in (8).
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Theorem 4. Let β > 0. If limj→∞ ‖rj‖ = 0 a.s., then the iALM in (7)
converges a.s. to the solution of the linear system (2) and the following
inequalities hold a.s. for every k ∈ N:

‖ek‖ ≤ ρkβ‖e0‖+ ‖Fβ‖
k−1∑
j=0

ρk−1−jβ ‖rj‖,

‖dk‖ ≤ ‖A‖‖A‖−1‖d0‖ρkβ + ‖A‖‖Fβ‖
k−1∑
j=0

ρk−1−jβ ‖rj‖. (9)

Proof. If [x,µ]T is a solution of (2), then it satisfies the fixed point equation

[
x
µ

]
=

[
H−1β 0

−βAH−1β I

][
0 AT

0 I

] [
x
µ

]
+

[
H−1β 0

−βAH−1β I

][
βATb− g

βb

]
. (10)

Subtracting (10) from (8) we obtain

ek = Gβe
k−1 + Fβ

[
rk−1

0

]
a.s.

and hence
‖ek‖ ≤ ρβ‖ek−1‖+ ‖Fβ‖‖rk−1‖ a.s..

By unrolling the above inequality, we have

‖ek‖ ≤ ρkβ‖e0‖+ ‖Fβ‖
k−1∑
j=0

ρk−1−jβ ‖rj‖ a.s.. (11)

The a.s. convergence to zero of {‖ek‖}k follows from (11) observing that,
if limk→∞ ‖rk‖ = 0 a.s., then

lim
k→∞

k−1∑
j=0

ρk−1−jβ ‖rj‖ = 0 a.s.

(this is a particular case of the Toeplitz Lemma, see [44, Exercise 12.2-3] for
the deterministic case, [38] and references therein for the probabilistic case).
The second part of the statement follows observing that

‖dk‖ = ‖Aek‖ ≤ ‖A‖‖ek‖ a.s.

and that ‖e0‖ ≤ ‖A‖−1‖d0‖.

Lemma 2. Suppose E(‖rj‖) ≤ Rj+1 for all j ∈ N and R < 1. Then the
iterates of the iALM in (7) converge a.s. to the solution of the linear system
(2). Moreover, if R < ρβ, then O(logρβ ε) iterations are sufficient to produce
an expected ε - accurate primal-dual solution; else, if ρβ ≤ R, then O(logR ε)
iterations are sufficient (given that ε is sufficiently small).
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Proof. If E(‖rj‖) ≤ Rj+1 for all j ∈ N, then
∑∞

j=0 E(‖rj‖) <∞ and hence,

using [55, Th. 2.1.3], we have limj→∞ ‖rj‖ = 0 a.s.. Using now Theorem 4,
we have that ‖dk‖ converges a.s. to zero.

Using equation (9) and the hypothesis E(‖rj‖) ≤ Rj+1, we have

E(‖dk‖) ≤ ‖A‖‖A‖−1‖d0‖ρkβ + ‖A‖‖Fβ‖
k−1∑
j=0

ρk−1−jβ Rj+1. (12)

Let us observe, moreover, that

E(|‖Hxk+g−ATµk‖−‖βAT (Axk−b)‖|) ≤ E(‖Hβx
k−ATµk+g−βATb‖) ≤ E(‖dk‖),

and hence

E(‖Hxk + g −ATµk‖) ≤ E(‖dk‖) + ‖AT ‖E(‖dk‖) ≤ C1E(‖dk‖), (13)

where we defined C1 := (1 + ‖AT ‖) and used the fact that ‖β(Axk − b)‖ ≤
‖dk‖ a.s..

Case R < ρβ. Using (12), we have

E(‖dk‖) ≤ ‖A‖‖A‖−1‖d0‖ρkβ + ρkβ‖A‖‖Fβ‖
R

ρβ

k−1∑
j=0

(
R

ρβ
)j ≤ C2ρ

k
β,

where C2 := max{‖A‖‖A‖−1‖d0‖,
R
ρβ
‖A‖‖Fβ‖

1− R
ρβ

}.

Moreover, using the above inequality, we have also

E(‖Axk − b‖) ≤ 1

β
E(‖dk‖) ≤ 1

β
C2ρ

k
β,

and hence, using (13) and defining C := max{C1C2,
1
βC2}, we obtain that

k ≥ logρβ (ε/C) iterations of iALM are sufficient to produce an expected
ε - accurate primal-dual solution.

Case ρβ ≤ R. Using (12), we have

E(‖dk‖) ≤ ‖A‖‖A−1‖‖d0‖Rk +Rkk‖A‖‖Fβ‖ ≤ C2R
kk,

where C2 := max{‖A‖‖A−1‖‖d0‖, ‖A‖‖Fβ‖}. Let us observe that, in this
case, we have

E(‖Axk − b‖) ≤ 1

β
E(‖dk‖) ≤ 1

β
C2R

kk,

and hence, using (13) and defining C := max{C1C2,
1
βC2}, we obtain that to

produce an expected ε - accurate primal-dual solution it suffices to perform
k + logR k ≥ logR(ε/C) iterations of iALM. The last part of the statement

follows observing that limk→∞
k+logR k

k = 1.
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Before concluding this section, let us state the following Corollary 1,
which will be used later:

Corollary 1. Suppose E(‖rj‖) ≤ Rj+1 for all j ∈ N and R < 1. If R > ρβ,
then

‖β(Axk − b)‖
Rk

≤ L <∞ a.s. for every k ∈ N, (14)

and hence, we have

E(
‖β(Axk − b)‖

Rk
) ≤ L for every k ∈ N. (15)

Proof. Using (9) we have

‖β(Axk − b)‖
Rk

≤ ‖d
k‖

Rk
≤

‖A‖‖A−1‖‖d0‖(
ρβ
R

)k + ‖A‖‖Fβ‖
k−1∑
j=0

(
ρβ
R

)k−1−j ,

from which thesis follows observing that
∑k−1

j=0(
ρβ
R )k−1−j ≤ 1

1−
ρβ
R

for all

k.

5 The solution of the linear system

In this section, given [xk,µk], we suppose that the linear system

Hβx = (ATµk + βATb− g), (16)

is solved using an iterative solver; in particular, we will consider two different
methods for the solution of the SPD system in (16), namely the Conjugate
Gradient (CG) method [35] and a Randomly Shuffled version of the Succes-
sive Over-Relaxation (RSSOR) method [46].

Since rk in the first equation of (7) is the (possibly randomized) residual
associated to the linear system (16), i.e.,

Hβx
k+1 − (ATµk + βATb− g) = rk,

one would be tempted to think that the increasing accuracy condition for
the expected residual in Lemma 2, i.e., E(‖rk‖) ≤ Rk+1, requires that the
number of iterations of the chosen iterative solver increases when the iterates
of iALM proceeds. In this section we will show that this is not the case if
R > ρβ.

For the remaining of this work let us define

χk := ATµk + βATb− g,
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and {ηk}k → 0 as the forcing sequence such that E(‖rk‖) ≤ ηk for all k ∈ N.
We use, moreover, the following inequalities: given B ∈ Rd×d SPD, if we

order the eigenvalues of B as λ1(B) ≥ . . . λn(B), it holds

λn(B)‖x‖2B ≤ ‖Bx‖2 ≤ λ1(B)‖x‖2B for all x ∈ Rd (17)

and
λn(B)‖x‖2 ≤ ‖B1/2x‖2 ≤ λ1(B)‖x‖2 for all x ∈ Rd. (18)

5.1 Conjugate Gradient Method

In this subsection we suppose that the linear system (16) is solved using
the Conjugate Gradient (CG) method and hence, all the result presented in
Section 4 will be used in the deterministic case. The following Theorem 5
addresses the rate of convergence of CG:

Theorem 5. ([51, Th. 6.29]) Consider the linear system By = χ where B
is a SPD matrix and y is its solution. Then the iterates {yj}j produced by
the CG method satisfy

‖y − yj‖B ≤ 2
[√k2(B)− 1√

k2(B) + 1

]j‖y − y0‖B.

Applying Theorem 5 to the solution of the linear system (16) and setting
y0 = xk for every k ∈ N, we have,

‖xk+1 − xk+1,j‖Hβ ≤ 2
[√k2(Hβ)− 1√

k2(Hβ) + 1

]j‖xk+1 − xk‖Hβ , (19)

where Hβx
k+1 = χk and {xk+1,j}j is the sequence generated by CG to

approximate xk+1.

Theorem 6. Let {ηk}k = Rk+1 with R > ρβ. Define

j
k

:= min{j : ‖rk,j‖ ≤ ηk} (20)

where {rk,j := Hβx
k+1,j − χk}j is the sequence of residuals generated from

CG. Then, there exists j ∈ N such that j ≥ j
k

for all k. Moreover, an ε -
accurate primal-dual solution of problem (1) can be obtained in O(logR ε)
iALM iterations.

Proof. Using (17) in (19) we have

‖Hβx
k+1,j − χk‖ ≤ 2

[√k2(Hβ)− 1√
k2(Hβ) + 1

]j√
k2(Hβ)‖Hβx

k − χk‖

and hence, if
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jk := dlog√
k2(Hβ)−1√
k(Hβ)+1

ηk

2
√
k2(Hβ)‖Hβxk − χk‖

e, (21)

then ‖rk,jk‖ ≤ ηk. Observe, moreover, that using the second equation in (7)
for the expression of χk, we have

‖Hβx
k−χk‖ = ‖rk−1+βAT (Axk−b)‖ ≤ ‖rk−1‖+‖AT ‖‖β(Axk−b)‖. (22)

Using equation (22), we have

ηk

2
√
k2(Hβ)‖Hβxk − χk‖

≥ ηk

2
√
k2(Hβ)(‖rk−1‖+ ‖AT ‖‖β(Axk − b)‖)

≥

Rk+1

2
√
k2(Hβ)Rk(1 + ‖AT ‖‖β(Axk−b)‖

Rk
)

.

(23)

Using now equation (15) (deterministic case) in equation (23) we can
state the existence of a constant C > 0 such that, for all k ∈ N, we have

R

2
√
k2(Hβ)(1 + ‖AT ‖‖β(Axk−b)‖

Rk
)
≥ C,

and hence
j := dlog√

k2(Hβ)−1√
k(Hβ)+1

Ce ≥ jk for all k.

The first part of the statement follows observing that jk ≥ jk for all k. The
last part of the statement follows, instead, observing that the hypothesis of
Lemma 2 are satisfied.

Corollary 2. If problem (1) is solved using the iALM in (7) and each sub-
problem is solved using CG as in Theorem 6, then O(logR ε) matrix-vector
multiplications involving Hβ are sufficient to obtain an ε - accurate primal-
dual solution.

Proof. It follows from Theorem 6 and Lemma 2 observing that each step of
CG requires one matrix-vector product involving Hβ.

In the upper panels of Figure 3 we report the quantities analysed in
the proof of Lemma 2 (the legend is consistent with the notation used in
Lemma 2). As reported in the proof Lemma 2 and confirmed by Figure 3,
when R > ρβ, the function CRkk is an upper bound for the quantities
‖Axk − b‖ and ‖Hxk + g − ATµk‖. In the lower panels of Figure 3 we

14



report the quantity j
k

in equation (20) obtained using CG for iALM step.
In this example, in order to further highlight the fact that the number of
CG iterations does not increase when the iALM iterations proceed (see The-
orem 6), we slowed down the speed of convergence of the iALM increasing
ρβ and then choosing R = ρβ +10−2 (see also the numerical results reported
in Figure 2 to have a term of comparison).

Concerning the results obtained for Problem 2, it is interesting to note
that the very fast decay of the dual residuals ‖Hxk + g − ATµk‖ is due to
the fact that, in this case, CG can be considered as a direct method since Hβ

is reasonably well conditioned (see Figure 1) and of small dimension. This
is, indeed, a very similar behaviour of that observed in Figure 2, where the
linear systems involving Hβ are solved using a direct method.

5.2 SOR and Randomly Shuffled SOR

In this subsection we suppose that the linear system in equation (16) is
solved using the block Successive Over-Relaxation method (SOR) [24, 61]
or its Randomly Shuffled version (RSSOR) [46]. Adapting the existing error-
reduction results for the SOR method to our purposes, requires a slightly
greater effort than in the CG case (see Section 5.1). For this reason and for
the sake of completeness, before presenting our results, we deliver a brief
survey on the block SOR method which is based on [29, 46, 59].

5.2.1 A brief survey on SOR [59]

Let B ∈ Cd×d. Consider the linear system

By = χ. (24)

We can express the matrix B as the sum B = D − L− U where

D :=


B1,1

B2,2

. . .

Bn,n

 , L := −


01,1 0 0 0

B2,1 02,2 0
...

...
. . .

. . . 0
Bn,1 Bn,2 . . . 0n,n

 ,

U := −


01,1 B1,2 B1,n

0 02,2

. . .
...

...
. . . Bn−1,n

0 0 . . . 0n,n

 .
(25)

Let us suppose now that the block-diagonal matrix D is invertible. The
fixed point problem corresponding to equation (24) can be written as

(D − ωL)y = ((1− ω)D + ωU)y + ωχ

15
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Figure 3: Upper panels: behaviour of the quantities analysed in Lemma 2

(logarithmic scale on y-axis). Lower Panels: j
k

in equation (20) when CG is
employed for the solution of (16) using {ηk}k and {xk+1,0}k as in Theorem 6.

and the SOR method is defined as

yj+1 = (D − ωL)−1((1− ω)D + ωU)yj + ω(D − ωL)−1χ. (26)

The Gauss-Seidel (GS) method is recovered for ω = 1. Observe that equa-
tion (26) can be written alternatively as

yj+1 = (I−ωD−1L)−1((1−ω)I+ωD−1U)yj+ω(I−ωD−1L)−1D−1χ, (27)

and for this reason, usually, the point successive over-relaxation matrix is
defined as

16



Lω := (I − ωD−1L)−1((1− ω)I + ωD−1U).

The following Corollary of the Ostrowski-Reich Theorem states the con-
vergence of the block SOR iteration:

Corollary 3. ([59, Cor. 3.14]) Let B ∈ Cn×n and D,L,U be defined as
in (25). If D is positive definite, then the block SOR method in (26) is
convergent for all y0 if and only if 0 < ω < 2 and B is positive definite.

In this work we are going to deal just with symmetric matrices and, for
this reason, we denote the factor U in (25) with LT . It is worth noting,
moreover, that using the equality (1 − ω)D + ωLT = (D − ωL) − ωB, we
can further rewrite the SOR iteration in (26) as

yj+1 = (I − ω(D − ωL)−1B)yj + ω(D − ωL)−1χ. (28)

In [46], a Randomly Shuffled version of SOR (RSSOR) has been intro-
duced and studied: it is obtained considering P j as a random permutation
matrix (with uniform distribution and independent from the current guess

yj) and applying the SOR splitting to the linear system P jBP j
T
P jx = P jχ,

i.e., considering

P jBP j
T

= DP j − LP j − LTP j .

The RSSOR is defined as

yj+1 = (I−ωP jT (DP j−ωLP j )−1P jB)yj+ωP j
T

(DP j−ωLP j )−1P jχ. (29)

Moreover, let us observe that after defining QP j := ωP j
T

(DP j−ωLP j )−1P j ,
(29) can be written as a function of the random variables P 1, . . . , P j , i.e.,

yj+1 =

j∏
`=0

(I −QP `B)y0 +

j∑
i=0

(

j∏
`=i+1

(I −QP `))QP iχ, (30)

where we set (
∏j
`=i+1(I −QP `)) := I if `+ 1 > j.

Before concluding this section, let us point out that the main idea
connected with RSSOR is related to the fact that, although the spectral
distribution of the matrix PBP T does not depend on any particular per-
mutation matrix P , the spectrum of the lower triangular part DP − LP
does depend on it. As a result, also the spectral radius of the matrix
LPω := (I − ωP T (DP − ωLP )−1PB) is affected by the particular choice of
P . To further highlight the aforementioned dependence and to strengthen
the intuition of the reader in this regard, in Figure 4 we report ρ(LP1 ) for
all the permutation matrices P and for 100 randomly generated matrices of
the form B = RTR+ I ∈ R7×7 (R is generated using the Matlab’s function
“rand”).
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Figure 4: ρ(LP1 ) for 100 random matrices of the form B = RTR+ I ∈ R7×7.

5.2.2 Rate of Convergence of SOR

This section is based on [46]. If B is SPD and is partitioned as in (25), the
linear system in (24) can be transformed as

D−1/2BD−1/2D1/2y = D−1/2χ (31)

(D is SPD since B is SPD) and hence the coefficient matrix can be decom-
posed as

D−1/2BD−1/2 = I −D−1/2LD−1/2 − (D−1/2LD−1/2)T , (32)

where D−1/2LD−1/2 and (D−1/2LD−1/2)T are, respectively, strictly lower
triangular and strictly upper triangular. For the above explained reasons,
in this section we will suppose that B = I − L− LT .

Observe, moreover, that the SOR method applied to the system in (31)
with the splitting (32) coincides exactly with (27) and hence, the fact that
in this section we suppose that the diagonal of B is the identity, is expected
to simplify the presentation.

The following Theorem 7 gives a precise bound for the rate of convergence
of the SOR method:

Theorem 7. ([46, Th. 1]) Let B a SPD matrix, then the SOR method (28)
converges for 0 < ω < 2 in the energy norm associated with B according to

‖y − yj‖2B ≤ (1− (2− ω)ωλ1(B)

(1 + 1
2blog2(2d)cωλ1(B))2k2(B)

)j‖y − y0‖2B. (33)

The rate of convergence stated in (33) depends on the dimension of the
problem d and this feature is not desirable for large scale problems.

One of the main advantages of the RSSOR consists in the fact that the
expected error reduction factor is independent from the dimension of the
problem, as stated in the following:
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Theorem 8. ([46, Th. 4]) The expected squared energy norm error of the
RSSOR iteration converges exponentially with the bound

E(‖y − yj‖2B) ≤ (1− (2− ω)ωλ1(B)

(1 + ωλ1(B))2k2(B)
)j‖y − y0‖2B. (34)

for any ω ∈ (0, 2).

As already pointed out, equation (34) does not exhibit any dependence
on the dimension of the problem and, for this reason, the Randomly Shuffled
versions of SOR should be considered for large scale problems. Moreover, the
following corollary addresses the convergence of the iterates to the solution
of the linear system:

Corollary 4. limj→∞ ‖y − yj‖2B = 0 a.s..

Proof. Using (34), we have that
∑∞

j=0 E(‖y − yj‖2B) < ∞. Thesis follows
applying [55, Th. 2.1.3].

5.2.3 Using SOR in iALM

We are ready to analyse the behaviour of SOR method in the framework
of the iALM (7). In particular, we are going to present our results for the
RSSOR method (see equation (29)), but analogous techniques/results ap-
ply/hold for the non-randomized version (28). This choice is mainly driven
by the reasons of timeliness: in the next Section 6 we are able to inter-
pret the recently introduced Randomized ADMM (RADMM) as a partic-
ular case of iALM where the linear system (16) is solved (inexactly) using
RSSOR with ω = 1 (which will be denoted, in the following, as Randomly
Shuffled Gauss-Seidel (RSGS)). For this reason, in this section, we apply
the results presented in Section 4 in the probabilistic form considering {rk}k
and {[xk,µk]T }k as a sequence of random variables.

Of course, the same results as presented here hold, with simple modifi-
cations, for the deterministic ADMM and the classical GS method.

In order to use the rate of convergence stated in (34), we write Hβ =
D − L− LT and transform the linear system in (16) as follows:

D−1/2HβD
−1/2D1/2x = D−1/2χk. (35)

Let us define H̃β = D−1/2HβD
−1/2, χ̃k := D−1/2χk, x̃ := D1/2x.

Consider, moreover, the random variable

E(‖x̃k+1 − x̃k+1,j‖2
H̃β
|
[
xk

µk

]
),
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where H̃βx̃
k+1

= χ̃k and {x̃k+1,j}j is the random sequence generated by

RSSOR method in (29) to approximate x̃
k+1

, i.e., the solution of problem
(35).

The following Lemma 3 will be useful to state the main result of this
section:

Lemma 3. Let us suppose that the RSSOR in equation (29) is used for
the solution of the linear system (35) with y0 = D1/2xk =: x̃k+1,0. If the
random variable (P k+1,0, . . . , P k+1,j) is independent from {[xk,µk]T }k for
every j, k ∈ N (beyond the standard assumptions required on the P k+1,j by
RSSOR), then

E(‖x̃k+1−x̃k+1,j‖
H̃β

) ≤ (1−
(2− ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)
)j/2E(‖x̃k+1−x̃k+1,0‖

H̃β
).

(36)

Proof. Let us observe that, using (30), we can write

‖x̃k+1 − x̃k+1,j‖2
H̃β

= g((P k+1,0, . . . , P k+1,j−1),

[
xk

µk

]
),

where g is a deterministic function.
Using the fact that, if the random variable Y is independent from X (see

Freezing Lemma, [18, Example 5.1.5]), it holds

E(g(Y,X)|X) = E(g(Y, x))|x=X ,

and using (34), we have

E(‖x̃k+1−x̃k+1,j‖2
H̃β
|
[
xk

µk

]
) ≤ (1−

(2− ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)
)j‖x̃k+1−x̃k+1,0‖2

H̃β
a.s..

Moreover, using the conditional Jensen’s Inequality in the left hand-side of
the previous equation (see [3, Th. 34.4]) and then passing the square root,
we have

E(‖x̃k+1−x̃k+1,j‖
H̃β
|
[
xk

µk

]
) ≤ (1−

(2− ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)
)j/2‖x̃k+1−x̃k+1,0‖

H̃β
a.s..

Thesis follows considering the expectation on both sides of the above inequal-
ity and using the properties of the conditional expectation [3, Th. 34.4].

We are now ready to state the following Theorem 9 which summarizes
the properties of the iALM in (7) when each sub-problem is solved using
RSSOR:
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Theorem 9. Let {ηk}k = Rk+1 with R > ρβ. Define

j
k

:= min{j : E(‖rk,j‖) ≤ ηk}, (37)

where {rk,j := Hβx
k+1,j−χk}j is the sequence of random residuals generated

by RSSOR. Then, there exists j ∈ N such that j ≥ j
k

for all k. Moreover,
an expected ε - accurate primal-dual solution of problem (1) can be obtained
in O(logR ε) iALM iterations.

Proof. Using (17) in (36) and since the expectation is a linear function, we
have

E(‖H̃βx̃
k+1,j−χ̃k‖) ≤ (1−

(2− ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)
)j/2
√
k2(H̃β)E(‖H̃βx̃

k+1,0−χ̃k‖)

and hence, using (18),

E(‖Hβx
k+1,j−χk‖) ≤ (1−

(2− ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)
)j
√
k2(H̃β)k2(D−1)E(‖Hβx

k−χk‖),

where we defined xk+1,j := D−1/2x̃k+1,j for j ≥ 1. If in the above equation
we use the definition of rk+1,j , we have

E(‖rk+1,j‖) ≤ (1−
(2− ω)ωλ1(H̃β)

(1 + ωλ1(H̃β))2k2(H̃β)
)j/2
√
k2(H̃β)k2(D−1)E(‖Hβx

k−χk‖2),

and hence, defining

jk := dlog
(1−

(2−ω)ωλ1(H̃β)

(1+ωλ1(H̃β))2k2(H̃β)
)

2ηk√
k2(H̃β)k2(D−1)E(‖Hβxk − χk‖)

e,

it holds E(‖rk,jk‖) ≤ ηk. Reasoning now as in Theorem 6, we have

E(‖Hβx
k−χk‖) = E(‖rk−1+βAT (Axk−b))‖ ≤ E(‖rk−1‖)+‖AT ‖E(‖β(Axk−b)‖),

and hence using the hypothesis ηk = Rk+1 and equation (15), we are able
to state the existence of a constant C > 0 such that

2Rk+1√
k2(H̃β)k2(D−1)E(‖Hβxk − χk‖)

≥ C for all k.

We obtain

j := dlog
(1−

(2−ω)ωλ1(H̃β)

(1+ωλ1(H̃β))2k2(H̃β)
)
Ce ≥ jk for all k. (38)

From (38), we obtain the first part of the statement observing that jk ≥ jk

for all k. The last part of the statement follows observing that with this
choice of ηk the hypothesis of Lemma 2 are satisfied.
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In the upper panels of Figure 5 we report the quantities analysed in
the proof of Lemma 2 (the legend is consistent with the notation used in
Lemma 2). The expectations E(‖Axk − b‖), E(‖Hxk + g − ATµk‖) and
E(‖dk‖) are approximated using the empirical mean over 15 iALM simula-
tions, whereas, for each fixed k and j, E(‖rk,j‖) is approximated using the

empirical mean of E(E(‖rk,j‖|
[
xk

µk

]
)) over 15 trajectories for [xk,µk]T and

15 simulations of the RSGS step. In the lower panels, we report, for each

iALM step and for each simulation, the box-plots of the obtained j
k

(see

equation (37)). As Theorem 9 states and Figure 5 confirms, j
k

shows a
bounded-from-above behaviour for all the iALM iterations (the choice of the
parameters β and R is the same as that in Figure 3).

6 Interpreting (Random)ADMM as an iALM

Given a block partition of x, i.e., x = [xd1 , . . . ,xdn ]T with d1 + · · ·+ dn = d,
the n-block ADMM (see [12] and references therein) is defined as



xk+1
d1

:= arg minxd1∈R
d1 Lβ([xd1 ,x

k
d2
, . . . ,xkdn ]T ,µk),

...

xk+1
dn

:= arg minxdn∈Rdn Lβ([xk+1
d1

,xk+1
d2

, . . . ,xdn ]T ,µk),

µk+1 := µk − β(Axk+1 − b).

(39)

If we apply the iterative method in (39) to solve problem (1), splitting
Hβ as Hβ = D−L−LT , it is possible to re-write (39) in compact form (see
[11, 56]):[

xk+1

µk+1

]
=

[
D − L 0
βA I

]−1 [
LT AT

0 I

]
︸ ︷︷ ︸

=:GADMM

[
xk

µk

]
+

[
D − L 0
βA I

]−1 [
βATb − g

βb

]
(40)

Since equation (40) can be written alternatively as

{
xk+1 = (D − L)−1LTxk + (D − L)−1(ATµk + βATb− g)

µk+1 := µk − β(Axk+1 − b),
(41)

we can observe that the first equation in (41) is precisely one step of the SOR
method with ω = 1 (see equation (26)), i.e., ADMM performs exactly one
GS iteration for the solution of the linear system Hβx = ATµk +βATb−g.
Let us point out that in [12] it has been proved that the n-block extension of
ADMM is not always convergent since there exist examples where the spec-
tral radius of GADMM in equation (40) satisfies ρ(GADMM ) > 1. The anal-
ysis performed in Sections 4 and 5 reveals a simple strategy to remedy this:
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Figure 5: Upper panels: behaviour of the quantities analysed in Lemma 2
(logarithmic scale on y-axis) approximated using the empirical mean over 15

simulations of iALM. Lower panels: box-plots of the j
k
’s (see equation (37))

obtained in each simulation of iALM when RSSOR is used for the solution
of (16) using {ηk}k and {xk+1,0}k as in Theorem 9.

performing more steps of the GS iteration to fulfil the requirements needed
on the residuals will ensure convergence. Indeed, as proved in Section 5
(deterministic case), a constant number of iterations of SOR per iALM-step
is sufficient to guarantee that the produced residuals satisfy the sufficient
conditions for convergence. To further underpin the previous claim, in Fig-
ure 6, we report the behaviour of ‖dk‖, ‖Axk − b‖ and ‖Hxk + g−ATµk‖
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for ADMM and for iALM&GS where, at each inner iteration, 10 GS sweeps
are performed. For the particular case of Problem 2 when β = 1 and all the
blocks have size one, we have ρ(GADMM ) = 1.0148 > 1 and the ADMM is
not convergent (see the upper panel in Figure 6). On the contrary, perform-
ing more than one GS sweep (lower panel of Figure 6) is enough to observe
a convergent behaviour of all residuals.

1 10 20 30 40

10
0

1 10 20 30 40

10
-5

10
0

Figure 6: ADMM vs iALM&GS for Problem 2 (logarithmic scale on y-axis).

Exactly the same observation can be made for the RADMM [11, 56]:
this method is obtained considering a block permutation matrix P k which
selects the order for solving the block-equations and then splitting the matrix

P kHβP
kT as

P kHβP
kT = DPk − LPk − LTPk (42)

(the random permutation matrix is selected independently from the iterate
xk and uniformly at random among all possible block-permutation matri-
ces). In more details, if we consider the iterative method



select a permutation σ of {1, . . . , n} uniformly at random independently from xk,

xk+1
dσ(1)

:= arg min
xdσ(1)∈R

dσ(1) Lβ([xdσ(1) ,x
k
dσ(2)

, . . . ,xkdσ(n) ]
T ,µk),

...

xk+1
dσ(n)

:= arg min
xdσ(n)∈R

dσ(n) Lβ([xk+1
dσ(1)

,xk+1
dσ(2)

, . . . ,xdσ(n) ]
T ,µk),

µk+1 := µk − β(Axk+1 − b)

(43)
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to solve problem (1), using the splitting (42), we can write (43) in the fixed
point form

[
xk+1

µk+1

]
=

[
PTk 0
0 I

][
DPk−LPk 0
βAPTk I

]−1[
LTPkPk PkA

T

0 I

]
︸ ︷︷ ︸

=:G
Pk
β

[
xk

µk

]
+

[
PTk 0
0 I

][
DPk−LPk 0
βAPTk I

]−1[
Pk(βATb − g)

βb

]
,

(44)

and hence{
xk+1=P k

T
[(DPk−LPk)−1LT

Pk
]P kxk+P k

T
(DPk−LPk)−1P k(ATµk+βATb−g)

µk+1 := µk − β(Axk+1 − b).

(45)
The first equation in (45) coincides exactly with one iteration of the RSSOR
with ω = 1 (see equation (29)) for the solution of the linear system Hβx =
ATµk+βATb−g. On the other hand, as proved in Theorem 9, the number
of RSSOR sweeps per iALM-step sufficient to obtain an expected residual
which ensures the a.s. convergence, is uniformly bounded above by a con-
stant. We find that this is a noteworthy improvement of the results obtained
in [11, 42, 56]. Indeed, in these works, only the the convergence in expecta-
tion of the iterates produced by (45) has been proved, i.e., the convergence

to zero of ‖E(

[
xk

µk

]
) −

[
x
µ

]
‖. To be precise, using the notation introduced

in (44), the authors prove that ρβ := ρ(Gβ) < 1 where

Gβ := E(GPβ ) =
1

|P|
∑
P∈P

GPβ

and P is a specific subset of all permutation matrices (P is the subset of
block permutation matrices with blocks of order n in [11, 56] and, in [42], P
is the subset of the permutation matrices obtained as P = P1P2, where P1 is
a block permutation matrix with blocks of order n and P2 is a permutation
corresponding to a partition of d elements into n groups).

Overall, as already pointed out in [42, Sec. 2.2.4], the convergence in
expectation may not be a good indicator of the robustness and the effec-
tiveness of RADMM as there may exist problems characterized by a high
‖V(GPβ )‖: we find that switching from a convergence in expectation to an
a.s. convergence with provable expected worst case complexity as stated in
Theorem 9, could be beneficial for the solution of such problems.

Even in this case, to further underpin the previous claim, we report in
Figure 7 the behaviour of ‖dk‖, ‖Axk − b‖ and ‖Hxk + g − ATµk‖ for
RADMM and for iALM&RSGS where, at each inner iteration, 10 RSGS
sweeps are performed. As it is clear from the comparison between the upper
panels of Figures 6 and 7 (and expected from the results obtained in [11,
56]), the introduction of a randomization procedure in the ADMM scheme
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is able to mitigate the divergence in the case of Problem 2. At the same
time, analogously of what was observed in Figure 6 for the deterministic
case, the benefits of performing more than one RSGS sweep per iALM-step
are evident (lower panel of Figure 7).
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-1

10
0

1 10 20 30 40

10
-5

10
0

Figure 7: Random ADMM vs iALM&RSGS for Problem 2 (logarithmic scale
on y-axis).

7 Conclusions

In this work we studied the inexact Augmented Lagrangian Method (iALM)
for the solution of problem (1). Using a splitting operator perspective, we
proved that if the amount of introduced inexactness (which could be mod-
elled also with a random variable) decreases (in expectation) accordingly to
suitably chosen Rk where R < 1, then we are able to give explicit asymptotic
rate of convergence of the iALM (see Lemma 2). Moreover, even if the above
mentioned condition requires an increasing accuracy in the linear systems
to be solved at each iteration, we proved that when these linear systems are
solved using the Conjugate Gradient (CG) method or the Successive-Over-
Relaxation method (SOR) and its Randomly Shuffled version (RSSOR), the
number of iterations sufficient to satisfy the convergence requirements can
be uniformly bounded from above (see Section 5). Finally, using the devel-
oped theory and interpreting the n-block (Random)Alternating Direction
Method of Multipliers ((R)ADMM) as an iALM which performs exactly one
(RS)SOR sweep to obtain the approximate solutions of the inner linear sys-
tems, we provided computational evidence which demonstrates that the very
well known convergence issues of the n-block (R)ADMM could be remedied
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if more than one (RS)SOR sweep for every iALM iteration were permitted.
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