## School of Mathematics



## IPMs for Convex Optimization: QP, NLP, SOCP and SDP

Jacek Gondzio<br>Email: J.Gondzio@ed.ac.uk<br>URL: http://www.maths.ed.ac.uk/~gondzio

## Outline

- IPM for Quadratic and Nonlinear Programming
- quadratic forms, NLP notation
- duality, Lagrangian, first order optimality conditions
- primal-dual framework
- Self-concordant barrier
- Second-Order Cone Programming
- example cones
- example SOCP problems
- logarithmic barrier function
- Semidefinite Programming
- background (linear matrix inequalities)
- example SDP problems
- logarithmic barrier function
- Final Comments


## J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## IPM for Convex QP

## Convex Quadratic Programs

Def. A matrix $Q \in \mathcal{R}^{n \times n}$ is positive semidefinite if $x^{T} Q x \geq 0$ for any $x \neq 0$. We write $Q \succeq 0$.
The quadratic function

$$
f(x)=x^{T} Q x
$$

is convex if and only if the matrix $Q$ is positive definite. In such case the quadratic programming problem

$$
\begin{array}{cc}
\min & c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & A x=b, \\
& x \geq 0,
\end{array}
$$

is well defined.
If there exists a feasible solution to it, then there exists an optimal solution.

Bologna, January 2023

## QP with IPMs

Apply the usual procedure:

- replace inequalities with log barriers;
- form the Lagrangian;
- write the first order optimality conditions;
- apply Newton method to them.

Replace the primal QP

$$
\begin{array}{cc}
\min & c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & A x=b, \\
& x \geq 0,
\end{array}
$$

with the primal barrier QP

$$
\begin{array}{lc}
\min & c^{T} x+\frac{1}{2} x^{T} Q x-\sum_{j=1}^{n} \ln x_{j} \\
\text { s.t. } & A x=b .
\end{array}
$$

Bologna, January 2023

## First Order Optimality Conditions

Consider the primal barrier quadratic program

$$
\begin{array}{lc}
\min & c^{T} x+\frac{1}{2} x^{T} Q x-\mu \sum_{j=1}^{n} \ln x_{j} \\
\text { s.t. } & A x=b,
\end{array}
$$

where $\mu \geq 0$ is a barrier parameter.
Write out the Lagrangian

$$
L(x, y, \mu)=c^{T} x+\frac{1}{2} x^{T} Q x-y^{T}(A x-b)-\mu \sum_{j=1}^{n} \ln x_{j}
$$

## First Order Optimality Conditions (cont'd)

The conditions for a stationary point of the Lagrangian:

$$
L(x, y, \mu)=c^{T} x+\frac{1}{2} x^{T} Q x-y^{T}(A x-b)-\mu \sum_{j=1}^{n} \ln x_{j}
$$

are

$$
\begin{aligned}
& \nabla_{x} L(x, y, \mu)=c-A^{T} y-\mu X^{-1} e+Q x=0 \\
& \nabla_{y} L(x, y, \mu)=\quad A x-b=0,
\end{aligned}
$$

where $X^{-1}=\operatorname{diag}\left\{x_{1}^{-1}, x_{2}^{-1}, \cdots, x_{n}^{-1}\right\}$.
Let us denote

$$
s=\mu X^{-1} e, \quad \text { i.e. } \quad X S e=\mu e
$$

The First Order Optimality Conditions are:

$$
\begin{aligned}
A x & =b, \\
A^{T} y+s-Q x & =c, \\
X S e & =\mu e .
\end{aligned}
$$

Bologna, January 2023

## Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$
F(x, y, s)=0
$$

where $F: \mathcal{R}^{2 n+m} \mapsto \mathcal{R}^{2 n+m}$ is an application defined as follows:

$$
F(x, y, s)=\left[\begin{array}{cc}
A x & -b \\
A^{T} y+s & -Q x-c \\
X S e & -\mu e
\end{array}\right]
$$

Actually, the first two terms of it are linear; only the last one, corresponding to the complementarity condition, is nonlinear.
Note that

$$
\nabla F(x, y, s)=\left[\begin{array}{rcc}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right]
$$

Bologna, January 2023

## Newton Method for the FOC (cont'd)

Thus, for a given point $(x, y, s)$
we find the Newton direction $(\Delta x, \Delta y, \Delta s)$
by solving the system of linear equations:

$$
\left[\begin{array}{rcc}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
b-A x \\
c-A^{T} y-s+Q x \\
\mu e-X S e
\end{array}\right]
$$

J. Gondzio

## Interior-Point QP Algorithm

Initialize

$$
k=0, \quad\left(x^{0}, y^{0}, s^{0}\right) \in \mathcal{F}^{0}, \quad \mu_{0}=\frac{1}{n} \cdot\left(x^{0}\right)^{T} s^{0}, \quad \alpha_{0}=0.9995
$$

Repeat until optimality
$k=k+1$
$\mu_{k}=\sigma \mu_{k-1}$, where $\sigma \in(0,1)$
$\Delta=$ Newton direction towards $\mu$-center
Ratio test:

$$
\begin{aligned}
\alpha_{P} & :=\max \{\alpha>0: x+\alpha \Delta x \geq 0\} \\
\alpha_{D} & :=\max \{\alpha>0: s+\alpha \Delta s \geq 0\}
\end{aligned}
$$

Make step:
$x^{k+1}=x^{k}+\alpha_{0} \alpha_{P} \Delta x$,
$y^{k+1}=y^{k}+\alpha_{0} \alpha_{D} \Delta y$,
$s^{k+1}=s^{k}+\alpha_{0} \alpha_{D} \Delta s$.
Bologna, January 2023
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## From LP to QP

QP problem

$$
\begin{array}{cc}
\min & c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & A x=b, \\
& x \geq 0 .
\end{array}
$$

First order conditions (for barrier problem)

$$
\begin{aligned}
A x & =b \\
A^{T} y+s-Q x & =c \\
X S e & =\mu e
\end{aligned}
$$

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## IPMs for Convex NLP

## Convex Nonlinear Optimization

Consider the nonlinear optimization problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0,
\end{array}
$$

where $x \in \mathcal{R}^{n}$, and $f: \mathcal{R}^{n} \mapsto \mathcal{R}$ and $g: \mathcal{R}^{n} \mapsto \mathcal{R}^{m}$ are convex, twice differentiable.

## Assumptions:

$f$ and $g$ are convex
$\Rightarrow$ If there exists a local minimum then it is a global one.
$f$ and $g$ are twice differentiable
$\Rightarrow$ We can use the second order Taylor approximations.
Some additional (technical) conditions
$\Rightarrow$ We need them to prove that the point which satisfies the first order optimality conditions is the optimum. We won't use them in this course.

Bologna, January 2023

## Nonlinear Optimization with IPMs

Nonlinear Optimization via QPs:
Sequential Quadratic Programming (SQP).
Repeat until optimality:

- approximate NLP (locally) with a QP;
- solve (approximately) the QP.

Nonlinear Optimization with IPMs: works similarly to SQP scheme.
However, the (local) QP approximations are not solved to optimality. Instead, only one step in the Newton direction corresponding to a given QP approximation is made and the new QP approximation is computed.

## NLP Notation

Consider the nonlinear optimization problem

$$
\min f(x) \quad \text { s.t. } \quad g(x) \leq 0,
$$

where $x \in \mathcal{R}^{n}$, and $f: \mathcal{R}^{n} \mapsto \mathcal{R}$ and $g: \mathcal{R}^{n} \mapsto \mathcal{R}^{m}$ are convex, twice differentiable.

The vector-valued function $g: \mathcal{R}^{n} \mapsto \mathcal{R}^{m}$ has a derivative

$$
A(x)=\nabla g(x)=\left[\frac{\partial g_{i}}{\partial x_{j}}\right]_{i=1 . . m, j=1 . . n} \in \mathcal{R}^{m \times n}
$$

which is called the Jacobian of $g$.

## NLP Notation (cont'd)

The Lagrangian associated with the NLP is:

$$
\mathcal{L}(x, y)=f(x)+y^{T} g(x)
$$

where $y \in \mathcal{R}^{m}, y \geq 0$ are Lagrange multipliers (dual variables).
The first derivatives of the Lagrangian:

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}(x, y)=\nabla f(x)+\nabla g(x)^{T} y \\
& \nabla_{y} \mathcal{L}(x, y)=g(x)
\end{aligned}
$$

The Hessian of the Lagrangian, $Q(x, y) \in \mathcal{R}^{n \times n}$ :

$$
Q(x, y)=\nabla_{x x}^{2} \mathcal{L}(x, y)=\nabla^{2} f(x)+\sum_{i=1}^{m} y_{i} \nabla^{2} g_{i}(x)
$$

## Convexity in NLP

Lemma 2: If $f: \mathcal{R}^{n} \mapsto \mathcal{R}$ and $g: \mathcal{R}^{n} \mapsto \mathcal{R}^{m}$ are convex, twice differentiable, then the Hessian of the Lagrangian

$$
Q(x, y)=\nabla^{2} f(x)+\sum_{i=1}^{m} y_{i} \nabla^{2} g_{i}(x)
$$

is positive semidefinite for any $x$ and any $y \geq 0$. If $f$ is strictly convex, then $Q(x, y)$ is positive definite for any $x$ and any $y \geq 0$.
Proof: The convexity of $f$ implies that $\nabla^{2} f(x)$ is positive semidefinite for any $x$. Similarly, the convexity of $g$ implies that for all $i=1,2, \ldots, m, \nabla^{2} g_{i}(x)$ is positive semidefinite for any $x$. Since $y_{i} \geq 0$ for all $i=1,2, \ldots, m$ and $Q(x, y)$ is the sum of positive semidefinite matrices, we have that $Q(x, y)$ is positive semidefinite. If $f$ is strictly convex, then $\nabla^{2} f(x)$ is positive definite and so is $Q(x, y)$.
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## IPM for NLP

Add slack variables to nonlinear inequalities:

$$
\begin{array}{cc}
\min & f(x) \\
\text { s.t. } & g(x)+z=0 \\
z & \geq 0
\end{array}
$$

where $z \in \mathcal{R}^{m}$. Replace inequality $z \geq 0$ with the logarithmic barrier:

$$
\begin{array}{lc}
\min & f(x)-\mu \sum_{i=1}^{m} \ln z_{i} \\
\text { s.t. } & g(x)+z=0 .
\end{array}
$$

Write out the Lagrangian

$$
L(x, y, z, \mu)=f(x)+y^{T}(g(x)+z)-\mu \sum_{i=1}^{m} \ln z_{i}
$$

## IPM for NLP

For the Lagrangian

$$
L(x, y, z, \mu)=f(x)+y^{T}(g(x)+z)-\mu \sum_{i=1}^{m} \ln z_{i}
$$

write the conditions for a stationary point

$$
\begin{array}{rlrl}
\nabla_{x} L(x, y, z, \mu) & =\nabla f(x)+\nabla g(x)^{T} y & =0 \\
\nabla_{y} L(x, y, z, \mu) & =r(x)+z & =0 \\
\nabla_{z} L(x, y, z, \mu) & = & y-\mu Z^{-1} e & =0
\end{array}
$$

where $Z^{-1}=\operatorname{diag}\left\{z_{1}^{-1}, z_{2}^{-1}, \cdots, z_{m}^{-1}\right\}$.
The First Order Optimality Conditions are:

$$
\begin{aligned}
\nabla f(x)+\nabla g(x)^{T} y & =0 \\
g(x)+z & =0 \\
Y Z e & =\mu e
\end{aligned}
$$

## Newton Method for the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$
F(x, y, z)=0
$$

where $F: \mathcal{R}^{n+2 m} \mapsto \mathcal{R}^{n+2 m}$ is an application defined as follows:

$$
F(x, y, z)=\left[\begin{array}{c}
\nabla f(x)+\nabla g(x)^{T} y \\
g(x)+z \\
Y Z e-\mu e
\end{array}\right]
$$

Note that all three terms of it are nonlinear. (In LP and QP the first two terms were linear.)

## Newton Method for the FOC

Observe that

$$
\nabla F(x, y, z)=\left[\begin{array}{ccc}
Q(x, y) & A(x)^{T} & 0 \\
A(x) & 0 & I \\
0 & Z & Y
\end{array}\right],
$$

where $A(x)$ is the Jacobian of $g$
and $Q(x, y)$ is the Hessian of $\mathcal{L}$.
They are defined as follows:

$$
\begin{aligned}
A(x) & =\nabla g(x) & \in \mathcal{R}^{m \times n} \\
Q(x, y) & =\nabla^{2} f(x)+\sum_{i=1}^{m} y_{i} \nabla^{2} g_{i}(x) & \in \mathcal{R}^{n \times n}
\end{aligned}
$$

## Newton Method (cont'd)

For a given point $(x, y, z)$ we find the Newton direction $(\Delta x, \Delta y, \Delta z)$ by solving the system of linear equations:

$$
\left[\begin{array}{ccc}
Q(x, y) & A(x)^{T} & 0 \\
A(x) & 0 & I \\
0 & Z & Y
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x)-A(x)^{T} y \\
-g(x)-z \\
\mu e-Y Z e
\end{array}\right] .
$$

Using the third equation we eliminate

$$
\Delta z=\mu Y^{-1} e-Z e-Z Y^{-1} \Delta y
$$

from the second equation and get

$$
\left[\begin{array}{cc}
Q(x, y) & A(x)^{T} \\
A(x) & -Z Y^{-1}
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x)-A(x)^{T} y \\
-g(x)-\mu Y^{-1} e
\end{array}\right] .
$$

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Interior-Point NLP Algorithm

Initialize

$$
k=0
$$

$\left(x^{0}, y^{0}, z^{0}\right)$ such that $y^{0}>0$ and $z^{0}>0, \quad \mu_{0}=\frac{1}{m} \cdot\left(y^{0}\right)^{T} z^{0}$
Repeat until optimality
$k=k+1$
$\mu_{k}=\sigma \mu_{k-1}$, where $\sigma \in(0,1)$
Compute $A(x)$ and $Q(x, y)$
$\Delta=$ Newton direction towards $\mu$-center
Ratio test:

$$
\begin{aligned}
& \alpha_{1}:=\max \{\alpha>0: y+\alpha \Delta y \geq 0\}, \\
& \alpha_{2}:=\max \{\alpha>0: z+\alpha \Delta z \geq 0\} .
\end{aligned}
$$

Choose the step: (use trust region or line search) $\alpha \leq \min \left\{\alpha_{1}, \alpha_{2}\right\}$. Make step:

$$
\begin{gathered}
x^{k+1}=x^{k}+\alpha \Delta x, \\
y^{k+1}=y^{k}+\alpha \Delta y, \\
z^{k+1}=z^{k}+\alpha \Delta z
\end{gathered}
$$

Bologna, January 2023

## From QP to NLP

Newton direction for QP

$$
\left[\begin{array}{rcc}
-Q & A^{T} & I \\
A & 0 & 0 \\
S & 0 & X
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
\xi_{d} \\
\xi_{p} \\
\xi_{\mu}
\end{array}\right] .
$$

Augmented system for QP

$$
\left[\begin{array}{cc}
-Q-S X^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
\xi_{d}-X^{-1} \xi_{\mu} \\
\xi_{p}
\end{array}\right]
$$

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## From QP to NLP

Newton direction for NLP

$$
\left[\begin{array}{ccc}
Q(x, y) & A(x)^{T} & 0 \\
A(x) & 0 & I \\
0 & Z & Y
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x)-A(x)^{T} y \\
-g(x)-z \\
\mu e-Y Z e
\end{array}\right] .
$$

Augmented system for NLP

$$
\left[\begin{array}{cc}
Q(x, y) & A(x)^{T} \\
A(x) & -Z Y^{-1}
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x)-A(x)^{T} y \\
-g(x)-\mu Y^{-1} e
\end{array}\right]
$$

## Conclusion:

NLP is a natural extension of QP.

## Newton Method and Self-concordant Barriers

## Another View of Newton M. for Optimization

## Newton Method for Optimization

Let $f: \mathcal{R}^{n} \mapsto \mathcal{R}$ be a twice continuously differentiable function. Suppose we build a quadratic model $\tilde{f}$ of $f$ around a given point $x^{k}$, i.e., we define $\Delta x=x-x^{k}$ and write:

$$
\tilde{f}(x)=f\left(x^{k}\right)+\nabla f\left(x^{k}\right)^{T} \Delta x+\frac{1}{2} \Delta x^{T} \nabla^{2} f\left(x^{k}\right) \Delta x
$$

Now we optimize the model $\tilde{f}$ instead of optimizing $f$.
A minimum (or, more generally, a stationary point) of the quadratic model satisfies:

$$
\nabla \tilde{f}(x)=\nabla f\left(x^{k}\right)+\nabla^{2} f\left(x^{k}\right) \Delta x=0
$$

i.e.

$$
\Delta x=x-x^{k}=-\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)
$$

which reduces to the usual equation:

$$
x^{k+1}=x^{k}-\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right) .
$$

Bologna, January 2023

## Self-concordant Functions

There is a nice property of the function that is responsible for a good behaviour of the Newton method.
Def Let $C \in \mathcal{R}^{n}$ be an open nonempty convex set.
Let $f: C \mapsto \mathcal{R}$ be a three times continuously differentiable convex function.
A function $f$ is called self-concordant if there exists a constant $p>0$ such that

$$
\left|\nabla^{3} f(x)[h, h, h]\right| \leq 2 p^{-1 / 2}\left(\nabla^{2} f(x)[h, h]\right)^{3 / 2}
$$

$\forall x \in C, \forall h: x+h \in C$.
(We then say that $f$ is $p$-self-concordant).
Note that a self-concordant function is always well approximated by the quadratic model because the error of such an approximation can be bounded by the $3 / 2$ power of $\nabla^{2} f(x)[h, h]$.

## Self-concordant Barriers

## Lemma

The barrier function $-\log x$ is self-concordant on $\mathcal{R}_{+}$.
Proof Consider $f(x)=-\log x$.
Compute
$f^{\prime}(x)=-x^{-1}, f^{\prime \prime}(x)=x^{-2}$ and $f^{\prime \prime \prime}(x)=-2 x^{-3}$
and check that the self-concordance condition is satisfied for $p=1$.

## Lemma

The barrier function $1 / x^{\alpha}$, with $\alpha \in(0, \infty)$ is not self-concordant on $\mathcal{R}_{+}$.

## Lemma

The barrier function $e^{1 / x}$ is not self-concordant on $\mathcal{R}_{+}$.
Use self-concordant barriers in optimization
Bologna, January 2023

## J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Second-Order Cone Programming (SOCP)

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Cones: Background

Def. A set $K \in \mathcal{R}^{n}$ is called a cone if for any $x \in K$ and for any $\lambda \geq 0, \lambda x \in K$.
Convex Cone:


Example:

$$
K=\left\{x \in \mathcal{R}^{n}: x_{1}^{2} \geq \sum_{j=2}^{n} x_{j}^{2}, x_{1} \geq 0\right\}
$$

Bologna, January 2023

## J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Example: Three Cones

$R_{+}$:

$$
R_{+}=\{x \in \mathcal{R}: x \geq 0\} .
$$

Quadratic Cone:

$$
K_{q}=\left\{x \in \mathcal{R}^{n}: x_{1}^{2} \geq \sum_{j=2}^{n} x_{j}^{2}, x_{1} \geq 0\right\}
$$

Rotated Quadratic Cone:

$$
K_{r}=\left\{x \in \mathcal{R}^{n}: 2 x_{1} x_{2} \geq \sum_{j=3}^{n} x_{j}^{2}, x_{1}, x_{2} \geq 0\right\}
$$

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Matrix Representation of Cones

Each of the three most common cones has a matrix representation using orthogonal matrices $T$ and/or $Q$.
(Orthogonal matrix: $Q^{T} Q=I$ ).
Quadratic Cone $K_{q}$. Define

$$
Q=\left[\begin{array}{lllll}
1 & & & & \\
& -1 & & & \\
& & -1 & & \\
& & & \ddots & \\
& & & & -1
\end{array}\right]
$$

and write:

$$
K_{q}=\left\{x \in \mathcal{R}^{n}: x^{T} Q x \geq 0, x_{1} \geq 0\right\}
$$

Example: $\quad x_{1}^{2} \geq x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}$.
Bologna, January 2023
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Matrix Representation of Cones (cont'd)

Rotated Quadratic Cone $K_{r}$. Define

$$
Q=\left[\begin{array}{ccccc}
0 & 1 & & & \\
1 & 0 & & & \\
& & -1 & & \\
& & & \ddots & \\
& & & & -1
\end{array}\right]
$$

and write:

$$
K_{r}=\left\{x \in \mathcal{R}^{n}: x^{T} Q x \geq 0, x_{1}, x_{2} \geq 0\right\}
$$

Example: $\quad 2 x_{1} x_{2} \geq x_{3}^{2}+x_{4}^{2}+\cdots+x_{n}^{2}$.
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Matrix Representation of Cones (cont'd)

Consider a linear transformation $T: \mathcal{R}^{2} \mapsto \mathcal{R}^{2}$ :

$$
T_{2}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

It corresponds to a rotation by $\pi / 4$. Indeed, write:

$$
\left[\begin{array}{l}
z \\
y
\end{array}\right]=T_{2}\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

that is

$$
z=\frac{u+v}{\sqrt{2}}, \quad y=\frac{u-v}{\sqrt{2}}
$$

to get

$$
2 y z=u^{2}-v^{2}
$$

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Matrix Representation of Cones (cont'd)

Now, define

$$
T=\left[\begin{array}{ccccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & & & \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & & \\
& & 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

and observe that the rotated quadratic cone satisfies

$$
T x \in K_{r} \quad \text { iff } \quad x \in K_{q} .
$$

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Example: Conic constraint

Consider a constraint:

$$
\frac{1}{2}\|x\|^{2}+a^{T} x \leq b
$$

Observe that $g(x)=\frac{1}{2} x^{T} x+a^{T} x-b$ is convex hence the constraint defines a convex set.
The constraint may be reformulated as an intersection of an affine (linear) constraint and a quadratic one:

$$
\begin{aligned}
a^{T} x+z & =b \\
y & =1 \\
\|x\|^{2} & \leq 2 y z, y, z \geq 0 .
\end{aligned}
$$

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Example: Conic constraint (cont'd)

Now, substitute:

$$
z=\frac{u+v}{\sqrt{2}}, \quad y=\frac{u-v}{\sqrt{2}}
$$

to get

$$
\begin{aligned}
a^{T} x+\frac{u+v}{\sqrt{2}} & =b \\
u-v & =\sqrt{2} \\
\|x\|^{2}+v^{2} & \leq u^{2}
\end{aligned}
$$

## Dual Cone

Let $K \in \mathcal{R}^{n}$ be a cone.
Def. The set: $\quad K_{*}:=\left\{s \in \mathcal{R}^{n}: s^{T} x \geq 0, \forall x \in K\right\}$
is called the dual cone.
Def. The set: $\quad K_{P}:=\left\{s \in \mathcal{R}^{n}: s^{T} x \leq 0, \forall x \in K\right\}$ is called the polar cone (Fig below).

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Conic Optimization

Consider an optimization problem:

$$
\begin{array}{cc}
\min & c^{T} x \\
\text { s.t. } & A x=b, \\
& x \in K
\end{array}
$$

where $K$ is a convex closed cone.

We assume that

$$
K=K^{1} \times K^{2} \times \cdots \times K^{k}
$$

that is, cone $K$ is a product of several individual cones each of which is one of the three cones defined earlier.
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Primal and Dual SOCPs

Consider a primal SOCP

$$
\begin{array}{cc}
\min & c^{T} x \\
\text { s.t. } & A x=b, \\
& x \in K
\end{array}
$$

where $K$ is a convex closed cone.
The associated dual SOCP

$$
\begin{array}{cc}
\max & b^{T} y \\
\text { s.t. } & A^{T} y+s=c, \\
& s \in K_{*} .
\end{array}
$$

Weak Duality:
If $(x, y, s)$ is a primal-dual feasible solution, then

$$
c^{T} x-b^{T} y=x^{T} s \geq 0
$$

Bologna, January 2023

## IPM for Conic Optimization

Conic Optimization problems can be solved in polynomial time with IPMs.

Consider a quadratic cone

$$
K_{q}=\left\{(x, t): x \in \mathcal{R}^{n-1}, t \in \mathcal{R}, t^{2} \geq\|x\|^{2}, t \geq 0\right\}
$$

and define the (convex) logarithmic barrier function for this cone $f: \mathcal{R}^{n} \mapsto \mathcal{R}$

$$
f(x, t)= \begin{cases}-\ln \left(t^{2}-\|x\|^{2}\right) & \text { if }\|x\|<t \\ +\infty & \text { otherwise }\end{cases}
$$

## Theorem:

$f(x, t)$ is a self-concordant barrier on $K_{q}$.
Exercise: Prove it in case $n=2$.

## J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Semidefinite Programming (SDP)

J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## SDP: Background

Def. A matrix $H \in \mathcal{R}^{n \times n}$ is positive semidefinite if $x^{T} H x \geq 0$ for any $x \neq 0$. We write $H \succeq 0$.
Def. A matrix $H \in \mathcal{R}^{n \times n}$ is positive definite if $x^{T} H x>0$ for any $x \neq 0$. We write $H \succ 0$.

We denote with $\mathcal{S R}^{n \times n}\left(\mathcal{S R}_{+}^{n \times n}\right)$ the set of symmetric and symmetric positive semidefinite matrices.

Let $U, V \in \mathcal{S R}^{n \times n}$. We define the inner product between $U$ and $V$ as $U \bullet V=\operatorname{trace}\left(U^{T} V\right)$, where $\operatorname{trace}(H)=\sum_{i=1}^{n} h_{i i}$.

The associated norm is the Frobenius norm, written $\|U\|_{F}=(U \bullet U)^{1 / 2}$ (or just $\|U\|$ ).

## Linear Matrix Inequalities

Def. Linear Matrix Inequalities
Let $U, V \in \mathcal{S R}^{n \times n}$.
We write $U \succeq V$ iff $U-V \succeq 0$.
We write $U \succ V$ iff $U-V \succ 0$.
We write $U \preceq V$ iff $U-V \preceq 0$.
We write $U \prec V$ iff $U-V \prec 0$.

## Properties

1. If $P \in \mathcal{R}^{m \times n}$ and $Q \in \mathcal{R}^{n \times m}$, then $\operatorname{trace}(P Q)=\operatorname{trace}(Q P)$.
2. If $U, V \in \mathcal{S} \mathcal{R}^{n \times n}$, and $Q \in \mathcal{R}^{n \times n}$ is orthogonal (i.e. $Q^{T} Q=I$ ), then $U \bullet V=\left(Q^{T} U Q\right) \bullet\left(Q^{T} V Q\right)$.
More generally, if $P$ is nonsingular, then $U \bullet V=\left(P U P^{T}\right) \bullet\left(P^{-T} V P^{-1}\right)$.
3. Every $U \in \mathcal{S} \mathcal{R}^{n \times n}$ can be written as $U=Q \Lambda Q^{T}$, where $Q$ is orthogonal and $\Lambda$ is diagonal. Then $U Q=Q \Lambda$.
In other words the columns of $Q$ are the eigenvectors, and the diagonal entries of $\Lambda$ the corresponding eigenvalues of $U$.
4. If $U \in \mathcal{S} \mathcal{R}^{n \times n}$ and $U=Q \Lambda Q^{T}$, then
$\operatorname{trace}(U)=\operatorname{trace}(\Lambda)=\sum_{i} \lambda_{i}$.

Bologna, January 2023

## Properties (cont'd)

5. For $U \in \mathcal{S} \mathcal{R}^{n \times n}$, the following are equivalent:
(i) $U \succeq 0(U \succ 0)$
(ii) $x^{T} U x \geq 0, \forall x \in \mathcal{R}^{n}\left(x^{T} U x>0, \forall 0 \neq x \in \mathcal{R}^{n}\right)$.
(iii) If $U=Q \Lambda Q^{T}$, then $\Lambda \succeq 0(\Lambda \succ 0)$.
(iv) $U=P^{T} P$ for some matrix $P\left(U=P^{T} P\right.$ for some square nonsingular matrix $P$ ).
6. Every $U \in \mathcal{S} \mathcal{R}^{n \times n}$ has a square root $U^{1 / 2} \in \mathcal{S} \mathcal{R}^{n \times n}$.

Proof: From Property 5 (ii) we get $U=Q \Lambda Q^{T}$.
Take $U^{1 / 2}=Q \Lambda^{1 / 2} Q^{T}$, where $\Lambda^{1 / 2}$ is the diagonal matrix whose diagonal contains the (nonnegative) square roots of the eigenvalues of $U$, and verify that $U^{1 / 2} U^{1 / 2}=U$.

Bologna, January 2023

## Properties (cont'd)

7. Suppose

$$
U=\left[\begin{array}{ll}
A & B^{T} \\
B & C
\end{array}\right]
$$

where $A$ and $C$ are symmetric and $A \succ 0$.
Then $U \succeq 0(U \succ 0) \quad$ iff $\quad C-B A^{-1} B^{T} \succeq 0(\succ 0)$.
The matrix $C-B A^{-1} B^{T}$ is called the Schur complement of $A$ in $U$.
Proof: follows easily from the factorization:

$$
\left[\begin{array}{ll}
A & B^{T} \\
B & C
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & C-B A^{-1} B^{T}
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B^{T} \\
0 & I
\end{array}\right] .
$$

8. If $U \in \mathcal{S} \mathcal{R}^{n \times n}$ and $x \in \mathcal{R}^{n}$, then $x^{T} U x=U \bullet x x^{T}$.

## Primal-Dual Pair of SDPs

## Primal

$$
\begin{array}{ll}
\min & C \bullet X \\
\text { s.t. } & A_{i} \bullet X=b_{i}, i=1 . . m \\
& X \succeq 0
\end{array}
$$

## Dual

$$
\begin{array}{cc}
\max & b^{T} y \\
\text { s.t. } & \sum_{i=1}^{m} y_{i} A_{i}+S=C, \\
& S \succeq 0
\end{array}
$$ and $X, S \in \mathcal{S R}^{n \times n}, y \in \mathcal{R}^{m}$ are the variables.

Simplified notation:

Primal

$$
\begin{array}{cl}
\min & C \bullet X \\
\text { s.t. } & \mathcal{A} X=b, \\
& X \succeq 0
\end{array}
$$

Dual

$$
\begin{array}{cl}
\max & b^{T} y \\
\text { s.t. } & \mathcal{A}^{*} y+S=C, \\
& S \succeq 0
\end{array}
$$

## Theorem: Weak Duality in SDP

If $X$ is feasible in the primal and $(y, S)$ in the dual, then

$$
\begin{aligned}
& C \bullet X-b^{T} y=X \bullet S \geq 0 \\
& C \bullet X-b^{T} y=\left(\sum_{i=1}^{m} y_{i} A_{i}+S\right) \bullet X-b^{T} y \\
&=\sum_{i=1}^{m}\left(A_{i} \bullet X\right) y_{i}+S \bullet X-b^{T} y \\
&=S \bullet X=X \bullet S
\end{aligned}
$$

Proof:

Further, since $X$ is positive semidefinite, it has a square root $X^{1 / 2}$ (Property 6), and so
$X \bullet S=\operatorname{trace}(X S)=\operatorname{trace}\left(X^{1 / 2} X^{1 / 2} S\right)=\operatorname{trace}\left(X^{1 / 2} S X^{1 / 2}\right) \geq 0$.
We use Property 1 and the fact that $S$ and $X^{1 / 2}$ are positive semidefinite, hence $X^{1 / 2} S X^{1 / 2}$ is positive semidefinite and its trace is nonnegative.
Bologna, January 2023

## SDP Example 1: Minimize the Max. Eigenvalue

We wish to choose $x \in \mathcal{R}^{k}$ to minimize the maximum eigenvalue of $A(x)=A_{0}+x_{1} A_{1}+\ldots+x_{k} A_{k}$, where $A_{i} \in \mathcal{R}^{n \times n}$ and $A_{i}=A_{i}^{T}$. Observe that

$$
\lambda_{\max }(A(x)) \leq t
$$

if and only if

$$
\lambda_{\max }(A(x)-t I) \leq 0 \quad \Longleftrightarrow \quad \lambda_{\min }(t I-A(x)) \geq 0 .
$$

This holds iff

$$
t I-A(x) \succeq 0 .
$$

So we get the SDP in the dual form:

$$
\begin{array}{cl}
\max & -t \\
\text { s.t. } & t I-A(x) \succeq 0,
\end{array}
$$

where the variable is $y:=(t, x)$.

## Logarithmic Barrier Function

Define the logarithmic barrier function for the cone $\mathcal{S} \mathcal{R}_{+}^{n \times n}$ of positive definite matrices.
$f: \mathcal{S R}_{+}^{n \times n} \mapsto \mathcal{R}$

$$
f(X)= \begin{cases}-\ln \operatorname{det} X & \text { if } X \succ 0 \\ +\infty & \text { otherwise }\end{cases}
$$

Let us evaluate its derivatives.
Let $X \succ 0, H \in \mathcal{S} \mathcal{R}^{n \times n}$. Then

$$
\begin{aligned}
f(X+\alpha H) & =-\ln \operatorname{det}\left[X\left(I+\alpha X^{-1} H\right)\right] \\
= & -\ln \operatorname{det} X-\ln \left(1+\operatorname{atrace}\left(X^{-1} H\right)+\mathcal{O}\left(\alpha^{2}\right)\right) \\
= & f(X)-\alpha X^{-1} \bullet H+\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

so that $f^{\prime}(X)=-X^{-1}$ and $D f(X)[H]=-X^{-1} \bullet H$.
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Logarithmic Barrier Function (cont'd)

Similarly

$$
\begin{aligned}
f^{\prime}(X+\alpha H) & =-\left[X\left(I+\alpha X^{-1} H\right)\right]^{-1} \\
& =-\left[I-\alpha X^{-1} H+\mathcal{O}\left(\alpha^{2}\right)\right] X^{-1} \\
& =f^{\prime}(X)+\alpha X^{-1} H X^{-1}+\mathcal{O}\left(\alpha^{2}\right),
\end{aligned}
$$

so that $f^{\prime \prime}(X)[H]=X^{-1} H X^{-1}$
and $D^{2} f(X)[H, G]=X^{-1} H X^{-1} \bullet G$.
Finally,
$f^{\prime \prime \prime}(X)[H, G]=-X^{-1} H X^{-1} G X^{-1}-X^{-1} G X^{-1} H X^{-1}$.

## Logarithmic Barrier Function (cont'd)

Theorem: $f(X)=-\ln \operatorname{det} X$ is a convex barrier for $\mathcal{S} \mathcal{R}_{+}^{n \times n}$.
Proof: Define $\phi(\alpha)=f(X+\alpha H)$. We know that $f$ is convex if, for every $X \in \mathcal{S} \mathcal{R}_{+}^{n \times n}$ and every $H \in \mathcal{S R}^{n \times n}, \phi(\alpha)$ is convex in $\alpha$.
Consider a set of $\alpha$ such that $X+\alpha H \succ 0$. On this set

$$
\phi^{\prime \prime}(\alpha)=D^{2} f(\bar{X})[H, H]=\bar{X}^{-1} H \bar{X}^{-1} \bullet H,
$$

where $\bar{X}=X+\alpha H$.
Since $\bar{X} \succ 0$, so is $V=\bar{X}^{-1 / 2}$ (Property 6), and

$$
\begin{aligned}
\phi^{\prime \prime}(\alpha) & =V^{2} H V^{2} \bullet H=\operatorname{trace}\left(V^{2} H V^{2} H\right) \\
& =\operatorname{trace}((V H V)(V H V))=\|V H V\|_{F}^{2} \geq 0
\end{aligned}
$$

So $\phi$ is convex.
When $X \succ 0$ approaches a singular matrix, its determinant approaches zero and $f(X) \rightarrow \infty$.
Bologna, January 2023
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP

## Solving SDPs with IPMs

Replace the primal SDP

$$
\begin{array}{rlrl}
\min & C \bullet X \\
\text { s.t. } & \mathcal{A} X & =b, \\
& X & \succeq 0,
\end{array}
$$

with the primal barrier SDP

$$
\begin{array}{cl}
\min & C \bullet X+\mu f(X) \\
\text { s.t. } & \mathcal{A} X=b,
\end{array}
$$

(with a barrier parameter $\mu \geq 0$ ).
Formulate the Lagrangian

$$
L(X, y, S)=C \bullet X+\mu f(X)-y^{T}(\mathcal{A} X-b)
$$

with $y \in \mathcal{R}^{m}$, and write the first order conditions (FOC) for a stationary point of $L$ :

$$
C+\mu f^{\prime}(X)-\mathcal{A}^{*} y=0
$$

Bologna, January 2023

## Solving SDPs with IPMs (cont'd)

Use $f(X)=-\ln \operatorname{det}(X)$ and $f^{\prime}(X)=-X^{-1}$.
Therefore the FOC become:

$$
C-\mu X^{-1}-\mathcal{A}^{*} y=0
$$

Denote $S=\mu X^{-1}$, i.e., $X S=\mu I$.
For a positive definite matrix $X$ its inverse is also positive definite.
The FOC now become:

$$
\begin{aligned}
\mathcal{A} X & =b \\
\mathcal{A}^{*} y+S & =C \\
X S & =\mu I
\end{aligned}
$$

with $X \succ 0$ and $S \succ 0$.
Then apply Newton method to the FOC.

## The Rank Minimization Problem

$$
\begin{array}{ll}
\min & \operatorname{rank}(X) \\
\text { s.t. } & \mathcal{A}(X)=b
\end{array}
$$

$X \in \mathcal{R}^{n \times n}$ is the unknown and the linear map $\mathcal{A}: \mathcal{R}^{n \times n} \rightarrow \mathcal{R}^{m}$ and the vector $b \in \mathcal{R}^{m}$ are given.

- NP-hard problem
- Applications: matrix completion (Netflix problem, triangulation from incomplete data), nonnegative factorization, control and system theory, image compression.
J. Gondzio L3\&4: IPMs for QP, NLP, SOCP, SDP


## A Rank Minimization Heuristic

| min | $\operatorname{rank}(X)$ |
| :--- | :--- |
| s.t. | $\mathcal{A}(X)=b \underset{\text { heuristic }}{\Rightarrow}$ |$\quad$| $\min \\|X\\|_{*}$ |
| :--- |
| s.t. $\mathcal{A}(X)=b$ |

where $\|\cdot\|_{*}$ denotes the nuclear norm (the sum of singular values).

- Convex optimization problem
- Special case:
if $X=\operatorname{diag}(x)$, the problem reduces to $\ell_{1}$-norm minimization:

$$
\begin{array}{ll}
\min \operatorname{card}(x) \\
\text { s.t. } A x=b
\end{array} \underbrace{\Rightarrow}_{\text {heuristic }} \quad \begin{aligned}
& \min \|x\|_{1} \\
& \text { s.t. } A x=b
\end{aligned}
$$

## SDP formulation

Primal-dual convex formulation (heuristic)

| $\min \\|X\\|_{*}$ | $\max b^{T} y$ |
| :--- | :--- |
| s.t. | $\mathcal{A}(X)=b$ |
| s.t. $\left\\|\mathcal{A}^{*}(y)\right\\| \leq 1$ |  |

Primal-dual SDP formulation
$\min \frac{1}{2}\left(\operatorname{Tr}\left(W_{1}\right)+\operatorname{Tr}\left(W_{2}\right)\right) \quad \max b^{T} y$
s.t. $\quad\left[\begin{array}{cc}W_{1} & X \\ X^{T} & W_{2}\end{array}\right] \succeq 0$
s.t. $\left[\begin{array}{cc}I_{m} & \mathcal{A}^{*}(y) \\ \mathcal{A}^{*}(y)^{T} & I_{n}\end{array}\right] \succeq 0$
where $y \in \mathcal{R}^{m}, W_{1}, W_{2} \in \mathcal{R}^{n \times n}$,
$\mathcal{A}^{*}: \mathcal{R}^{m} \rightarrow \mathcal{R}^{n \times n}$ is the adjoint of $\mathcal{A}$,
$\|\cdot\|$ denotes the operator norm (the maximum singular value).

Bologna, January 2023

## Netflix Problem (Matrix Completion) <br> Recommender syst.ems

## amazon.com




NETFLIX

The Netflix Prize (\$1M): In 2006, Netflix held the first Netflix Prize competition to find a better program to predict user preferences and beat its existing Netflix movie recommendation system by at least $10 \%$.

- Given 100 million ratings on a scale of 1 to 5, predict 3 million ratings to highest accuracy
- 17770 total movies x 480189 total users $\Rightarrow$ over 8 billion total ratings

$\mathrm{B}=\underset{\mathrm{FE}}{\boldsymbol{m}} \boldsymbol{\square}$
$B_{i j}$ known for black cells, unknown for white Row index: movie, Column index: user
Find low-rank $W$ such that $W \approx B$.

## The Matrix Completion Problem

A small number of entries of a matrix $B \in \mathcal{R}^{\hat{m} \times \hat{n}}$ is known: all entries $B_{i, j}$, with $(i, j) \in \Omega$, where $|\Omega|=m \ll \hat{m} \hat{n}$.
Find an approximation $W \in \mathcal{R}^{\hat{m} \times \hat{n}}$ of $B$ such that:

- $W$ has small rank, and
- $W$ and $B$ agree on $\Omega$.


## Matrix Completion Problem

$$
\begin{array}{ll}
\min & \operatorname{rank}(W) \\
\text { s.t. } & W_{i j}=B_{i j}, \quad \forall(i, j) \in \Omega .
\end{array}
$$

## SDP Relaxation of Matrix Completion

SDP Relaxation

$$
\begin{array}{rll}
\min & \frac{1}{2}\left(\operatorname{Tr}\left(W_{1}\right)+\operatorname{Tr}\left(W_{2}\right)\right) & \leftrightarrow C \bullet X \\
\text { s.t. } & {\left[\begin{array}{cc}
W_{1} & W \\
W^{T} & W_{2}
\end{array}\right] \succeq 0} & \leftrightarrow X \succeq 0 \\
& W_{i j}=B_{i j}(i, j) \in \Omega & \leftrightarrow A_{l} \bullet X=b_{l}
\end{array}
$$

$W \in \mathcal{R}^{\hat{m} \times \hat{n}}, W_{1} \in \mathcal{R}^{\hat{m} \times \hat{m}}, W_{2} \in \mathcal{R}^{\hat{n} \times \hat{n}}$ unknowns, $B_{i j},(i, j) \in \Omega$ given

- $C=I_{n}, X=\left[\begin{array}{cc}W_{1} & W \\ W^{T} & W_{2}\end{array}\right] \in \mathcal{R}^{n \times n}$, with $n=(\hat{m}+\hat{n})$.
- $A_{l}=\frac{1}{2}\left[\begin{array}{cc}0 & \Theta^{i j} \\ \left(\Theta^{i j}\right)^{T} & 0\end{array}\right], l=1, \ldots, m$, where for each $(i, j) \in \Omega$
$\Theta^{i j} \in \mathcal{R}^{\hat{m} \times \hat{n}}: \quad\left(\Theta^{i j}\right)_{s t}=\left\{\begin{array}{l}1 \text { if }(s, t)=(i, j) \quad\left(A_{l} \text { of rank } 2\right) . . . . ~ . ~ . ~ \\ 0 \text { else }\end{array}\right.$


## Logarithmic Barrier Function

for the cone $\mathcal{S R}_{+}^{n \times n}$ of positive definite matrices, $f: \mathcal{S R}_{+}^{n \times n} \mapsto \mathcal{R}$

$$
f(X)= \begin{cases}-\ln \operatorname{det} X & \text { if } X \succ 0 \\ +\infty & \text { otherwise }\end{cases}
$$

LP: Replace $x \geq 0$ with $-\mu \sum_{j=1}^{n} \ln x_{j}$.
SDP: Replace $X \succeq 0$ with $-\mu \sum_{j=1}^{n} \ln \lambda_{j}=-\mu \ln \left(\prod_{j=1}^{n} \lambda_{j}\right)$.
Nesterov and Nemirovskii, Interior Point Polynomial Algorithms in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Lemma The barrier function $f(X)$ is self-concordant on $\mathcal{S} \mathcal{R}_{+}^{n \times n}$.

## Interior Point Methods:

- Logarithmic barrier functions for LP, QP, SOCP and SDP Self-concordant barriers
$\rightarrow$ polynomial complexity (predictable behaviour)
- Unified view of optimization
$\rightarrow$ from LP via QP to NLP, SOCP, SDP
- Efficiency
- good for SOCP
- problematic for SDP because solving the problem of size $n$ involves linear algebra operations in dimension $n^{2}$
$\rightarrow$ and this requires $n^{6}$ flops!


## Use IPMs in your research!

