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IPM for Convex QP
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Convex Quadratic Programs

Def. A matrix Q ∈ Rn×n is positive semidefinite if xTQx ≥ 0 for
any x 6= 0. We write Q � 0.

The quadratic function

f (x) = xTQx

is convex if and only if the matrix Q is positive definite.
In such case the quadratic programming problem

min cTx + 1
2x

TQx
s.t. Ax = b,

x ≥ 0,

is well defined.

If there exists a feasible solution to it,
then there exists an optimal solution.
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QP with IPMs
Apply the usual procedure:

• replace inequalities with log barriers;
• form the Lagrangian;
• write the first order optimality conditions;
• apply Newton method to them.

Replace the primal QP

min cTx + 1
2x

TQx
s.t. Ax = b,

x ≥ 0,

with the primal barrier QP

min cTx + 1
2x

TQx−
n∑

j=1
ln xj

s.t. Ax = b.
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First Order Optimality Conditions

Consider the primal barrier quadratic program

min cTx + 1
2x

TQx− µ
n∑

j=1
ln xj

s.t. Ax = b,

where µ ≥ 0 is a barrier parameter.

Write out the Lagrangian

L(x, y, µ) = cTx +
1

2
xTQx− yT (Ax− b)− µ

n∑

j=1

ln xj,
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First Order Optimality Conditions (cont’d)

The conditions for a stationary point of the Lagrangian:

L(x, y, µ) = cTx +
1

2
xTQx− yT (Ax− b)− µ

n∑

j=1

ln xj,

are
∇xL(x, y, µ) = c− ATy − µX−1e +Qx = 0
∇yL(x, y, µ) = Ax− b = 0,

where X−1 = diag{x−1
1 , x−1

2 , · · · , x−1
n }.

Let us denote
s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s − Qx = c,

XSe = µe.
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Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application defined as follows:

F (x, y, s) =





Ax − b
ATy + s − Qx − c

XSe − µe



 .

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.
Note that

∇F (x, y, s) =





A 0 0
−Q AT I
S 0 X



 .
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Newton Method for the FOC (cont’d)

Thus, for a given point (x, y, s)
we find the Newton direction (∆x,∆y,∆s)
by solving the system of linear equations:





A 0 0
−Q AT I
S 0 X



 ·
[
∆x
∆y
∆s

]

=





b− Ax
c− ATy − s +Qx
µe−XSe



 .

Bologna, January 2023 9



J. Gondzio L3&4: IPMs for QP, NLP, SOCP, SDP

Interior-Point QP Algorithm
Initialize

k = 0, (x0, y0, s0) ∈ F0, µ0 =
1
n · (x0)Ts0, α0 = 0.9995

Repeat until optimality

k = k + 1
µk = σµk−1, where σ ∈ (0, 1)
∆ = Newton direction towards µ-center

Ratio test:
αP := max {α > 0 : x + α∆x ≥ 0},
αD := max {α > 0 : s + α∆s ≥ 0}.

Make step:

xk+1 = xk + α0αP∆x,
yk+1 = yk + α0αD∆y,
sk+1 = sk + α0αD∆s.
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From LP to QP

QP problem

min cTx + 1
2x

TQx
s.t. Ax = b,

x ≥ 0.

First order conditions (for barrier problem)

Ax = b,

ATy + s−Qx = c,
XSe = µe.
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IPMs for Convex NLP
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Convex Nonlinear Optimization
Consider the nonlinear optimization problem

min f (x)
s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm are convex,
twice differentiable.

Assumptions:
f and g are convex
⇒ If there exists a local minimum then it is a global one.
f and g are twice differentiable
⇒ We can use the second order Taylor approximations.

Some additional (technical) conditions
⇒ We need them to prove that the point which satisfies the first
order optimality conditions is the optimum. We won’t use them in
this course.
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Nonlinear Optimization with IPMs

Nonlinear Optimization via QPs:
Sequential Quadratic Programming (SQP).
Repeat until optimality:

• approximate NLP (locally) with a QP;

• solve (approximately) the QP.

Nonlinear Optimization with IPMs:
works similarly to SQP scheme.

However, the (local) QP approximations are not solved to optimal-
ity. Instead, only one step in the Newton direction corresponding to
a given QP approximation is made and the new QP approximation
is computed.
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NLP Notation

Consider the nonlinear optimization problem

min f (x) s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm are convex,
twice differentiable.

The vector-valued function g : Rn 7→ Rm has a derivative

A(x) = ∇g(x) =

[
∂gi
∂xj

]

i=1..m, j=1..n

∈ Rm×n

which is called the Jacobian of g.
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NLP Notation (cont’d)

The Lagrangian associated with the NLP is:

L(x, y) = f (x) + yTg(x),

where y ∈ Rm, y ≥ 0 are Lagrange multipliers (dual variables).

The first derivatives of the Lagrangian:

∇xL(x, y) = ∇f (x) +∇g(x)Ty
∇yL(x, y) = g(x).

The Hessian of the Lagrangian, Q(x, y) ∈ Rn×n:

Q(x, y) = ∇2
xxL(x, y) = ∇2f (x) +

m∑

i=1

yi∇2gi(x).
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Convexity in NLP
Lemma 2: If f : Rn 7→ R and g : Rn 7→ Rm are convex, twice
differentiable, then the Hessian of the Lagrangian

Q(x, y) = ∇2f (x) +
m∑

i=1

yi∇2gi(x)

is positive semidefinite for any x and any y ≥ 0. If f is strictly
convex, then Q(x, y) is positive definite for any x and any y ≥ 0.

Proof: The convexity of f implies that∇2f (x) is positive semidef-
inite for any x. Similarly, the convexity of g implies that for all
i = 1, 2, ...,m, ∇2gi(x) is positive semidefinite for any x. Since
yi ≥ 0 for all i = 1, 2, ...,m and Q(x, y) is the sum of positive
semidefinite matrices, we have that Q(x, y) is positive semidefinite.

If f is strictly convex, then ∇2f (x) is positive definite and so is
Q(x, y).
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IPM for NLP

Add slack variables to nonlinear inequalities:

min f (x)
s.t. g(x) + z = 0

z ≥ 0,

where z ∈ Rm. Replace inequality z ≥ 0 with the logarithmic
barrier:

min f (x)− µ
m∑

i=1
ln zi

s.t. g(x) + z = 0.

Write out the Lagrangian

L(x, y, z, µ) = f (x) + yT (g(x) + z)− µ
m∑

i=1

ln zi,
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IPM for NLP

For the Lagrangian

L(x, y, z, µ) = f (x) + yT (g(x) + z)− µ
m∑

i=1

ln zi,

write the conditions for a stationary point

∇xL(x, y, z, µ) = ∇f (x) +∇g(x)Ty = 0
∇yL(x, y, z, µ) = g(x) + z = 0
∇zL(x, y, z, µ) = y − µZ−1e = 0,

where Z−1 = diag{z−1
1 , z−1

2 , · · · , z−1
m }.

The First Order Optimality Conditions are:

∇f (x) +∇g(x)Ty = 0,
g(x) + z = 0,

Y Ze = µe.
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Newton Method for the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

F (x, y, z) = 0,

where F : Rn+2m 7→ Rn+2m is an application defined as follows:

F (x, y, z) =




∇f (x) + ∇g(x)Ty
g(x) + z
Y Ze − µe



 .

Note that all three terms of it are nonlinear.
(In LP and QP the first two terms were linear.)
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Newton Method for the FOC

Observe that

∇F (x, y, z) =




Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y



 ,

where A(x) is the Jacobian of g
and Q(x, y) is the Hessian of L.

They are defined as follows:

A(x) = ∇g(x) ∈ Rm×n

Q(x, y) = ∇2f (x) +
m∑

i=1
yi∇2gi(x) ∈ Rn×n
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Newton Method (cont’d)

For a given point (x, y, z) we find the Newton direction (∆x,∆y,∆z)
by solving the system of linear equations:




Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y





[
∆x
∆y
∆z

]

=




−∇f (x)− A(x)Ty

−g(x)− z
µe− Y Ze



 .

Using the third equation we eliminate

∆z = µY −1e− Ze− ZY −1∆y,

from the second equation and get
[

Q(x, y) A(x)T

A(x) −ZY −1

] [

∆x
∆y

]

=

[

−∇f (x)− A(x)Ty
−g(x)− µY −1e

]

.
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Interior-Point NLP Algorithm
Initialize

k = 0
(x0, y0, z0) such that y0 > 0 and z0 > 0, µ0 =

1
m · (y0)Tz0

Repeat until optimality
k = k + 1
µk = σµk−1, where σ ∈ (0, 1)
Compute A(x) and Q(x, y)
∆ = Newton direction towards µ-center
Ratio test:
α1 := max {α > 0 : y + α∆y ≥ 0},
α2 := max {α > 0 : z + α∆z ≥ 0}.

Choose the step: (use trust region or line search) α≤ min{α1, α2}.
Make step:

xk+1 = xk + α∆x,
yk+1 = yk + α∆y,
zk+1 = zk + α∆z.
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From QP to NLP

Newton direction for QP



−Q AT I
A 0 0
S 0 X





[
∆x
∆y
∆s

]

=

[
ξd
ξp
ξµ

]

.

Augmented system for QP
[

−Q− SX−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

.
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From QP to NLP

Newton direction for NLP



Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y





[
∆x
∆y
∆z

]

=




−∇f (x)− A(x)Ty

−g(x)− z
µe− Y Ze



 .

Augmented system for NLP
[

Q(x, y) A(x)T

A(x) −ZY −1

] [

∆x
∆y

]

=

[

−∇f (x)−A(x)Ty
−g(x)−µY −1e

]

.

Conclusion:
NLP is a natural extension of QP.
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Newton Method

and Self-concordant Barriers
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Another View of Newton M. for Optimization

Newton Method for Optimization
Let f : Rn 7→ R be a twice continuously differentiable function.
Suppose we build a quadratic model f̃ of f around a given point
xk, i.e., we define ∆x = x− xk and write:

f̃ (x) = f (xk) +∇f (xk)T∆x +
1

2
∆xT∇2f (xk)∆x

Now we optimize the model f̃ instead of optimizing f .
A minimum (or, more generally, a stationary point) of the quadratic
model satisfies:

∇f̃ (x) = ∇f (xk) +∇2f (xk)∆x = 0,

i.e.
∆x = x− xk = −(∇2f (xk))−1∇f (xk),

which reduces to the usual equation:

xk+1 = xk − (∇2f (xk))−1∇f (xk).
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Self-concordant Functions

There is a nice property of the function that is responsible for a
good behaviour of the Newton method.

Def Let C ∈ Rn be an open nonempty convex set.
Let f : C 7→ R be a three times continuously differentiable convex
function.
A function f is called self-concordant if there exists a constant
p > 0 such that

|∇3f (x)[h, h, h]| ≤ 2p−1/2(∇2f (x)[h, h])3/2,

∀x ∈ C, ∀h : x + h ∈ C.
(We then say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by
the quadratic model because the error of such an approximation can
be bounded by the 3/2 power of ∇2f (x)[h, h].
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Self-concordant Barriers

Lemma
The barrier function − log x is self-concordant on R+.

Proof Consider f (x) = − log x.
Compute

f
′
(x) = −x−1, f

′′
(x) = x−2 and f

′′′
(x) = −2x−3

and check that the self-concordance condition is satisfied for p = 1.

Lemma
The barrier function 1/xα, with α ∈ (0,∞) is not self-concordant
on R+.

Lemma
The barrier function e1/x is not self-concordant on R+.

Use self-concordant barriers in optimization

Bologna, January 2023 29



J. Gondzio L3&4: IPMs for QP, NLP, SOCP, SDP

Second-Order Cone Programming (SOCP)
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Cones: Background
Def. A set K ∈ Rn is called a cone if for any x ∈ K and for any
λ ≥ 0, λx ∈ K.

Convex Cone: x

x

1

2

x3

Example:

K = {x ∈ Rn : x21 ≥
n∑

j=2

x2j, x1 ≥ 0}.
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Example: Three Cones

R+:

R+ = {x ∈ R : x ≥ 0}.

Quadratic Cone:

Kq = {x ∈ Rn : x21 ≥
n∑

j=2

x2j, x1 ≥ 0}.

Rotated Quadratic Cone:

Kr = {x ∈ Rn : 2x1x2 ≥
n∑

j=3

x2j, x1, x2 ≥ 0}.

Bologna, January 2023 32



J. Gondzio L3&4: IPMs for QP, NLP, SOCP, SDP

Matrix Representation of Cones

Each of the three most common cones has a matrix representation
using orthogonal matrices T and/or Q.
(Orthogonal matrix: QTQ = I).

Quadratic Cone Kq. Define

Q =








1
−1

−1
. . .

−1








and write:

Kq = {x ∈ Rn : xTQx ≥ 0, x1 ≥ 0}.

Example: x21 ≥ x22 + x23 + · · · + x2n.
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Matrix Representation of Cones (cont’d)

Rotated Quadratic Cone Kr. Define

Q =








0 1
1 0

−1
. . .

−1








and write:

Kr = {x ∈ Rn : xTQx ≥ 0, x1, x2 ≥ 0}.

Example: 2x1x2 ≥ x23 + x24 + · · · + x2n.
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Matrix Representation of Cones (cont’d)

Consider a linear transformation T : R2 7→ R2:

T2 =





1√
2

1√
2

1√
2
− 1√

2



 .

It corresponds to a rotation by π/4. Indeed, write:
[

z
y

]

= T2

[

u
v

]

that is
z =

u + v√
2
, y =

u− v√
2

to get
2yz = u2 − v2.
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Matrix Representation of Cones (cont’d)

Now, define

T =










1√
2

1√
2

1√
2
− 1√

2
1
. . .

1










and observe that the rotated quadratic cone satisfies

Tx ∈ Kr iff x ∈ Kq.
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Example: Conic constraint

Consider a constraint:

1

2
‖x‖2 + aTx ≤ b.

Observe that g(x) = 1
2x

Tx+aTx− b is convex hence the constraint
defines a convex set.
The constraint may be reformulated as an intersection of an affine
(linear) constraint and a quadratic one:

aTx + z = b
y = 1

‖x‖2 ≤ 2yz, y, z ≥ 0.
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Example: Conic constraint (cont’d)

Now, substitute:

z =
u + v√

2
, y =

u− v√
2

to get

aTx +
u + v√

2
= b

u− v =
√
2

‖x‖2 + v2 ≤ u2.
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Dual Cone
Let K ∈ Rn be a cone.
Def. The set: K∗ := {s ∈ Rn : sTx ≥ 0, ∀x ∈ K}
is called the dual cone.
Def. The set: KP := {s ∈ Rn : sTx ≤ 0, ∀x ∈ K}
is called the polar cone (Fig below).

K

K P
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Conic Optimization

Consider an optimization problem:

min cTx
s.t. Ax = b,

x ∈ K,

where K is a convex closed cone.

We assume that

K = K1 ×K2 × · · · ×Kk,

that is, coneK is a product of several individual cones each of which
is one of the three cones defined earlier.
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Primal and Dual SOCPs
Consider a primal SOCP

min cTx
s.t. Ax = b,

x ∈ K,

where K is a convex closed cone.

The associated dual SOCP

max bTy

s.t. ATy + s = c,
s ∈ K∗.

Weak Duality:
If (x, y, s) is a primal-dual feasible solution, then

cTx− bTy = xTs ≥ 0.
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IPM for Conic Optimization

Conic Optimization problems can be solved in polynomial time with
IPMs.

Consider a quadratic cone

Kq = {(x, t) : x ∈ Rn−1, t ∈ R, t2 ≥ ‖x‖2, t ≥ 0},
and define the (convex) logarithmic barrier function for this
cone f : Rn 7→ R

f (x, t) =

{

− ln(t2 − ‖x‖2) if ‖x‖ < t
+∞ otherwise.

Theorem:
f (x, t) is a self-concordant barrier on Kq.

Exercise: Prove it in case n = 2.
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Semidefinite Programming (SDP)
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SDP: Background

Def. A matrix H ∈ Rn×n is positive semidefinite if xTHx ≥ 0
for any x 6= 0. We write H � 0.

Def. A matrix H ∈ Rn×n is positive definite if xTHx > 0 for any
x 6= 0. We write H ≻ 0.

We denote with SRn×n (SRn×n
+ ) the set of symmetric and sym-

metric positive semidefinite matrices.

Let U, V ∈ SRn×n. We define the inner product between U and
V as U • V = trace(UTV ), where trace(H) =

∑n
i=1 hii.

The associated norm is the Frobenius norm,
written ‖U‖F = (U • U)1/2 (or just ‖U‖).
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Linear Matrix Inequalities

Def. Linear Matrix Inequalities

Let U, V ∈ SRn×n.

We write U � V iff U − V � 0.

We write U ≻ V iff U − V ≻ 0.

We write U � V iff U − V � 0.

We write U ≺ V iff U − V ≺ 0.
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Properties

1. If P ∈ Rm×n and Q ∈ Rn×m, then trace(PQ) = trace(QP ).

2. If U, V ∈ SRn×n, andQ ∈ Rn×n is orthogonal (i.e. QTQ = I),
then U • V = (QTUQ) • (QTV Q).
More generally, if P is nonsingular, then
U • V = (PUPT ) • (P−TV P−1).

3. Every U ∈ SRn×n can be written as U= QΛQT, where Q is
orthogonal and Λ is diagonal. Then UQ = QΛ.
In other words the columns of Q are the eigenvectors, and the diag-
onal entries of Λ the corresponding eigenvalues of U .

4. If U ∈ SRn×n and U = QΛQT , then
trace(U) = trace(Λ) =

∑

i λi.
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Properties (cont’d)

5. For U∈SRn×n, the following are equivalent:

(i) U � 0 (U ≻ 0)

(ii) xTUx ≥ 0,∀x∈Rn (xTUx>0,∀ 0 6= x∈Rn).

(iii) If U = QΛQT , then Λ � 0 (Λ ≻ 0).

(iv) U = PTP for some matrix P (U = PTP for some square
nonsingular matrix P ).

6. Every U ∈ SRn×n has a square root U1/2 ∈ SRn×n.
Proof: From Property 5 (ii) we get U = QΛQT .

Take U1/2 = QΛ1/2QT , where Λ1/2 is the diagonal matrix whose
diagonal contains the (nonnegative) square roots of the eigenvalues

of U , and verify that U1/2U1/2 = U .
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Properties (cont’d)

7. Suppose

U =

[

A BT

B C

]

,

where A and C are symmetric and A ≻ 0.
Then U � 0 (U ≻ 0) iff C − BA−1BT � 0 (≻ 0).
The matrix C −BA−1BT is called the Schur complement of A in
U .

Proof: follows easily from the factorization:
[

A BT

B C

]

=

[
I 0

BA−1 I

] [
A 0
0 C − BA−1BT

] [

I A−1BT

0 I

]

.

8. If U ∈ SRn×n and x ∈ Rn, then xTUx = U • xxT .
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Primal-Dual Pair of SDPs

Primal Dual

min C •X max bTy

s.t. Ai •X = bi, i = 1..m s.t.
∑m

i=1 yiAi+S = C,

X � 0; S � 0,

where Ai ∈ SRn×n, b ∈ Rm, C ∈ SRn×n are given;
and X,S ∈ SRn×n, y ∈ Rm are the variables.

Simplified notation:

Primal Dual

min C •X max bTy

s.t. AX = b, s.t. A∗y+S = C,

X � 0; S � 0.
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Theorem: Weak Duality in SDP
If X is feasible in the primal and (y, S) in the dual, then

C •X − bTy = X • S ≥ 0.

Proof:
C •X − bTy = (

m∑

i=1

yiAi + S) •X − bTy

=

m∑

i=1

(Ai •X) yi + S •X − bTy

= S •X = X • S.
Further, since X is positive semidefinite, it has a square root X1/2

(Property 6), and so

X • S = trace(XS)= trace(X1/2X1/2S)= trace(X1/2SX1/2) ≥ 0.

We use Property 1 and the fact that S and X1/2 are positive
semidefinite, henceX1/2SX1/2 is positive semidefinite and its trace
is nonnegative.
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SDP Example 1: Minimize the Max. Eigenvalue

We wish to choose x ∈ Rk to minimize the maximum eigenvalue of
A(x)=A0+x1A1+. . .+xkAk, where Ai ∈ Rn×n and Ai = AT

i .
Observe that

λmax(A(x)) ≤ t

if and only if

λmax(A(x)− tI) ≤ 0 ⇐⇒ λmin(tI − A(x)) ≥ 0.

This holds iff
tI − A(x) � 0.

So we get the SDP in the dual form:

max −t

s.t. tI − A(x) � 0,

where the variable is y := (t, x).
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Logarithmic Barrier Function

Define the logarithmic barrier function for the cone SRn×n
+

of positive definite matrices.
f : SRn×n

+ 7→ R

f (X) =

{

− ln detX if X ≻ 0
+∞ otherwise.

Let us evaluate its derivatives.
Let X ≻ 0, H ∈ SRn×n. Then

f (X + αH) = − ln det[X(I + αX−1H)]

= − ln detX − ln(1 + αtrace(X−1H) +O(α2))

= f (X)− αX−1 •H +O(α2),

so that f ′(X) = −X−1 and Df (X)[H ] = −X−1 •H .
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Logarithmic Barrier Function (cont’d)

Similarly

f ′(X + αH) = −[X(I + αX−1H)]−1

= −[I−αX−1H +O(α2)]X−1

= f ′(X) + αX−1HX−1 +O(α2),

so that f ′′(X)[H ] = X−1HX−1

and D2f (X)[H,G] = X−1HX−1 •G.

Finally,
f ′′′(X)[H,G] = −X−1HX−1GX−1 −X−1GX−1HX−1.
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Logarithmic Barrier Function (cont’d)

Theorem: f (X) = − ln detX is a convex barrier for SRn×n
+ .

Proof: Define φ(α) = f (X+αH). We know that f is convex if,
for every X ∈ SRn×n

+ and every H ∈ SRn×n, φ(α) is convex in
α.
Consider a set of α such that X+αH ≻ 0. On this set

φ′′(α) = D2f (X̄)[H,H ] = X̄−1HX̄−1 •H,

where X̄ = X+αH .
Since X̄≻0, so is V =X̄−1/2 (Property 6), and

φ′′(α) = V 2HV 2 •H = trace(V 2HV 2H)

= trace((V HV )(V HV )) = ‖V HV ‖2F ≥ 0.

So φ is convex.
When X ≻ 0 approaches a singular matrix, its determinant ap-
proaches zero and f (X) → ∞.
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Solving SDPs with IPMs

Replace the primal SDP

min C •X
s.t. AX = b,

X � 0,

with the primal barrier SDP

min C •X + µf (X)
s.t. AX = b,

(with a barrier parameter µ ≥ 0).
Formulate the Lagrangian

L(X, y, S) = C •X + µf (X)− yT (AX − b),

with y ∈ Rm, and write the first order conditions (FOC) for a
stationary point of L:

C + µf ′(X)−A∗y = 0.

Bologna, January 2023 55



J. Gondzio L3&4: IPMs for QP, NLP, SOCP, SDP

Solving SDPs with IPMs (cont’d)

Use f (X) = − ln det(X) and f ′(X) = −X−1.
Therefore the FOC become:

C − µX−1 −A∗y = 0.

Denote S = µX−1, i.e., XS = µI .
For a positive definite matrix X its inverse is also positive definite.

The FOC now become:

AX = b,
A∗y + S = C,

XS = µI,

with X ≻ 0 and S ≻ 0.

Then apply Newton method to the FOC.
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The Rank Minimization Problem

min rank(X)
s.t. A(X) = b

X ∈ Rn×n is the unknown and the linear map A : Rn×n → Rm

and the vector b ∈ Rm are given.

• NP-hard problem

• Applications: matrix completion
(Netflix problem, triangulation from incomplete data),
nonnegative factorization, control and system theory,
image compression.
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A Rank Minimization Heuristic

min rank(X)
s.t. A(X) = b ⇒︸︷︷︸

heuristic

min ‖X‖∗
s.t. A(X) = b

where ‖ · ‖∗ denotes the nuclear norm (the sum of singular values).

• Convex optimization problem

• Special case:

ifX=diag(x), the problem reduces to ℓ1-norm minimization:

min card(x)
s.t. Ax = b ⇒︸︷︷︸

heuristic

min ‖x‖1
s.t. Ax = b
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SDP formulation
Primal-dual convex formulation (heuristic)

min ‖X‖∗
s.t. A(X) = b

max bTy
s.t. ‖A∗(y)‖ ≤ 1

Primal-dual SDP formulation

min 1
2(Tr(W1) + Tr(W2))

s.t.

[
W1 X
XT W2

]

� 0

A(X) = b

max bTy

s.t.

[
Im A∗(y)

A∗(y)T In

]

� 0

where y ∈ Rm,W1,W2 ∈ Rn×n,
A∗ : Rm → Rn×n is the adjoint of A,
‖ · ‖ denotes the operator norm (the maximum singular value).
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Netflix Problem (Matrix Completion)
Recommender systems

The Netflix Prize ($1M): In 2006, Netflix held the first Netflix
Prize competition to find a better program to predict user prefer-
ences and beat its existing Netflix movie recommendation system
by at least 10%.

• Given 100 million ratings on a scale of 1 to 5,
predict 3 million ratings to highest accuracy

• 17770 total movies x 480189 total users
⇒ over 8 billion total ratings

B =
Bij known for black cells, unknown for white
Row index: movie, Column index: user
Find low-rank W such that W ≈ B.
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The Matrix Completion Problem

A small number of entries of a matrix B ∈ Rm̂×n̂ is known:
all entries Bi,j, with (i, j) ∈ Ω, where |Ω| = m ≪ m̂n̂.

Find an approximation W ∈ Rm̂×n̂ of B such that:
• W has small rank, and
• W and B agree on Ω.

Matrix Completion Problem

min rank(W )
s.t. Wij = Bij, ∀(i, j) ∈ Ω.
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SDP Relaxation of Matrix Completion
SDP Relaxation

min 1
2(Tr(W1) + Tr(W2)) ↔ C •X

s.t.

[
W1 W
WT W2

]

� 0 ↔ X � 0

Wij = Bij (i, j) ∈ Ω ↔ Al •X = bl

W ∈ Rm̂×n̂,W1 ∈ Rm̂×m̂,W2 ∈ Rn̂×n̂ unknowns,Bij, (i, j) ∈ Ω
given

• C = In, X =

[
W1 W
WT W2

]

∈ Rn×n, with n = (m̂ + n̂).

• Al =
1
2

[

0 Θij

(Θij)T 0

]

, l = 1, . . . ,m, where for each (i, j) ∈ Ω

Θij∈Rm̂×n̂: (Θij)st =

{

1 if (s, t) = (i, j)
0 else (Al of rank 2).
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Logarithmic Barrier Function

for the cone SRn×n
+ of positive definite matrices, f : SRn×n

+ 7→ R

f (X) =

{

− ln detX if X ≻ 0
+∞ otherwise.

LP: Replace x ≥ 0 with −µ
∑n

j=1 ln xj.

SDP: Replace X � 0 with −µ
∑n

j=1 lnλj = −µ ln(
∏n

j=1 λj).

Nesterov and Nemirovskii,
Interior Point Polynomial Algorithms in Convex Programming:
Theory and Applications, SIAM, Philadelphia, 1994.

Lemma The barrier function f (X) is self-concordant on SRn×n
+ .
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Interior Point Methods:

• Logarithmic barrier functions for LP, QP, SOCP and SDP
Self-concordant barriers
→ polynomial complexity (predictable behaviour)

• Unified view of optimization
→ from LP via QP to NLP, SOCP, SDP

• Efficiency

– good for SOCP

– problematic for SDP because solving the problem of size
n involves linear algebra operations in dimension n2

→ and this requires n6 flops!

Use IPMs in your research!
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