

School of Mathematics

IPMs for Convex Optimization: QP, NLP, SOCP and SDP

Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

Outline

• IPM for Quadratic and Nonlinear Programming

- quadratic forms, NLP notation
- duality, Lagrangian, first order optimality conditions
- primal-dual framework
- Self-concordant barrier
- Second-Order Cone Programming
 - example cones
 - example SOCP problems
 - logarithmic barrier function
- Semidefinite Programming
 - background (linear matrix inequalities)
 - example SDP problems
 - logarithmic barrier function
- Final Comments

L3&4: IPMs for QP, NLP, SOCP, SDP

IPM for Convex QP

Convex Quadratic Programs

Def. A matrix $Q \in \mathcal{R}^{n \times n}$ is positive semidefinite if $x^T Q x \ge 0$ for any $x \ne 0$. We write $Q \succeq 0$.

The quadratic function

$$f(x) = x^T Q x$$

is convex if and only if the matrix Q is positive definite. In such case the quadratic programming problem

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A x = b, \\ & x \ge 0, \end{array}$$

is well defined.

If there exists a *feasible* solution to it, then there exists an *optimal* solution.

QP with IPMs

Apply the *usual* procedure:

- replace inequalities with log barriers;
- form the Lagrangian;
- write the first order optimality conditions;
- apply Newton method to them.

Replace the **primal** QP

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & Ax \ = \ b, \\ & x \ge 0, \end{array}$$

with the primal barrier \mathbf{QP}

min
$$c^T x + \frac{1}{2} x^T Q x - \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b.$

First Order Optimality Conditions

Consider the **primal barrier quadratic program**

min
$$c^T x + \frac{1}{2} x^T Q x - \mu \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b,$

where $\mu \geq 0$ is a barrier parameter.

Write out the **Lagrangian**

$$L(x, y, \mu) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j,$$

First Order Optimality Conditions (cont'd)

The conditions for a stationary point of the Lagrangian:

$$L(x, y, \mu) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j,$$

are

$$\nabla_x L(x, y, \mu) = c - A^T y - \mu X^{-1} e + Qx = 0$$

$$\nabla_y L(x, y, \mu) = Ax - b = 0,$$

where $X^{-1} = diag\{x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}\}$. Let us denote

$$s = \mu X^{-1}e$$
, i.e. $XSe = \mu e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^Ty + s - Qx = c,$$

$$XSe = \mu e.$$

Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$F(x, y, s) = 0,$$

where $F : \mathcal{R}^{2n+m} \mapsto \mathcal{R}^{2n+m}$ is an application defined as follows:

$$F(x, y, s) = \begin{bmatrix} Ax & -b \\ A^T y + s - Qx - c \\ XSe & -\mu e \end{bmatrix}$$

Actually, the first two terms of it are *linear*; only the last one, corresponding to the complementarity condition, is *nonlinear*. Note that

$$\nabla F(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix}$$

Newton Method for the FOC (cont'd)

Thus, for a given point (x, y, s)we find the Newton direction $(\Delta x, \Delta y, \Delta s)$ by solving the system of linear equations:

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^Ty - s + Qx \\ \mu e - XSe \end{bmatrix}$$

Interior-Point QP Algorithm

Initialize

 $k = 0, \quad (x^0, y^0, s^0) \in \mathcal{F}^0, \quad \mu_0 = \frac{1}{n} \cdot (x^0)^T s^0, \quad \alpha_0 = 0.9995$

Repeat until optimality

$$\begin{array}{l} k=k+1\\ \mu_k=\sigma\mu_{k-1}, \mbox{ where } \sigma\in(0,1)\\ \Delta=\mbox{ Newton direction towards } \mu\mbox{-center} \end{array}$$

Ratio test:

$$\alpha_P := \max \{ \alpha > 0 : x + \alpha \Delta x \ge 0 \},\ \alpha_D := \max \{ \alpha > 0 : s + \alpha \Delta s \ge 0 \}.$$

Make step:

$$x^{k+1} = x^{k} + \alpha_0 \alpha_P \Delta x,$$

$$y^{k+1} = y^{k} + \alpha_0 \alpha_D \Delta y,$$

$$s^{k+1} = s^{k} + \alpha_0 \alpha_D \Delta s.$$

From LP to QP

QP problem

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A x = b, \\ & x \ge 0. \end{array}$$

First order conditions (for barrier problem)

$$Ax = b,$$

$$A^Ty + s - Qx = c,$$

$$XSe = \mu e.$$

L3&4: IPMs for QP, NLP, SOCP, SDP

IPMs for Convex NLP

Convex Nonlinear Optimization

Consider the nonlinear optimization problem

 $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0, \end{array}$

where $x \in \mathcal{R}^n$, and $f : \mathcal{R}^n \mapsto \mathcal{R}$ and $g : \mathcal{R}^n \mapsto \mathcal{R}^m$ are convex, twice differentiable.

Assumptions:

f and g are convex

 \Rightarrow If there exists a **local** minimum then it is a **global** one.

f and g are twice differentiable

 \Rightarrow We can use the second order Taylor approximations.

Some additional (technical) conditions

 \Rightarrow We need them to prove that the point which satisfies the first order optimality conditions is the optimum. We won't use them in this course.

Nonlinear Optimization with IPMs

Nonlinear Optimization via QPs: Sequential Quadratic Programming (SQP). Repeat until optimality:

- approximate NLP (locally) with a QP;
- solve (approximately) the QP.

Nonlinear Optimization with IPMs:

works similarly to SQP scheme.

However, the (local) QP approximations are not solved to optimality. Instead, only one step in the Newton direction corresponding to a given QP approximation is made and the new QP approximation is computed.

NLP Notation

Consider the nonlinear optimization problem

$$\min f(x) \quad \text{s.t.} \quad g(x) \le 0,$$

where $x \in \mathcal{R}^n$, and $f : \mathcal{R}^n \mapsto \mathcal{R}$ and $g : \mathcal{R}^n \mapsto \mathcal{R}^m$ are convex, twice differentiable.

The vector-valued function $g: \mathcal{R}^n \mapsto \mathcal{R}^m$ has a derivative

$$A(x) = \nabla g(x) = \left[\frac{\partial g_i}{\partial x_j}\right]_{i=1..m, j=1..n} \in \mathcal{R}^{m \times n}$$

which is called the **Jacobian** of g.

NLP Notation (cont'd)

The Lagrangian associated with the NLP is:

$$\mathcal{L}(x,y) = f(x) + y^T g(x),$$

where $y \in \mathcal{R}^m, y \ge 0$ are Lagrange multipliers (dual variables).

The first derivatives of the Lagrangian:

$$\nabla_x \mathcal{L}(x, y) = \nabla f(x) + \nabla g(x)^T y$$

$$\nabla_y \mathcal{L}(x, y) = g(x).$$

The **Hessian** of the Lagrangian, $Q(x, y) \in \mathcal{R}^{n \times n}$:

$$Q(x,y) = \nabla_{xx}^2 \mathcal{L}(x,y) = \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x).$$

Convexity in NLP

Lemma 2: If $f : \mathcal{R}^n \mapsto \mathcal{R}$ and $g : \mathcal{R}^n \mapsto \mathcal{R}^m$ are convex, twice differentiable, then the **Hessian** of the Lagrangian

$$Q(x,y) = \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x)$$

is positive semidefinite for any x and any $y \ge 0$. If f is strictly convex, then Q(x, y) is positive definite for any x and any $y \ge 0$. **Proof**: The convexity of f implies that $\nabla^2 f(x)$ is positive semidefinite for any x. Similarly, the convexity of g implies that for all $i = 1, 2, ..., m, \nabla^2 g_i(x)$ is positive semidefinite for any x. Since $y_i \ge 0$ for all i = 1, 2, ..., m and Q(x, y) is the sum of positive semidefinite matrices, we have that Q(x, y) is positive semidefinite. If f is strictly convex, then $\nabla^2 f(x)$ is positive definite and so is Q(x, y).

 \sim

IPM for NLP

Add slack variables to nonlinear inequalities:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) + z = 0 \\ & z & \geq 0, \end{array}$$

where $z \in \mathcal{R}^m$. Replace inequality $z \ge 0$ with the logarithmic barrier:

min
$$f(x) - \mu \sum_{i=1}^{m} \ln z_i$$

s.t. $g(x) + z = 0.$

Write out the **Lagrangian**

$$L(x, y, z, \mu) = f(x) + y^T(g(x) + z) - \mu \sum_{i=1}^m \ln z_i,$$

where

 \sim

IPM for NLP

For the **Lagrangian**

$$L(x, y, z, \mu) = f(x) + y^T(g(x) + z) - \mu \sum_{i=1}^m \ln z_i,$$

write the conditions for a stationary point

$$\begin{aligned} \nabla_x L(x,y,z,\mu) &= \nabla f(x) + \nabla g(x)^T y = 0 \\ \nabla_y L(x,y,z,\mu) &= g(x) + z = 0 \\ \nabla_z L(x,y,z,\mu) &= y - \mu Z^{-1} e = 0, \end{aligned} \\ Z^{-1} &= diag\{z_1^{-1}, z_2^{-1}, \cdots, z_m^{-1}\}. \end{aligned}$$

The First Order Optimality Conditions are:

$$\nabla f(x) + \nabla g(x)^T y = 0,$$

$$g(x) + z = 0,$$

$$YZe = \mu e.$$

Newton Method for the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$F(x, y, z) = 0,$$

where $F : \mathcal{R}^{n+2m} \mapsto \mathcal{R}^{n+2m}$ is an application defined as follows:

$$F(x, y, z) = \begin{bmatrix} \nabla f(x) + \nabla g(x)^T y \\ g(x) + z \\ YZe - \mu e \end{bmatrix}$$

Note that all three terms of it are *nonlinear*. (In LP and QP the first two terms were *linear*.)

Newton Method for the FOC

Observe that

$$\nabla F(x,y,z) = \begin{bmatrix} Q(x,y) & A(x)^T & 0\\ A(x) & 0 & I\\ 0 & Z & Y \end{bmatrix},$$

where A(x) is the **Jacobian** of gand Q(x, y) is the **Hessian** of \mathcal{L} .

They are defined as follows:

$$\begin{aligned} A(x) &= \nabla g(x) &\in \mathcal{R}^{m \times n} \\ Q(x,y) &= \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x) \in \mathcal{R}^{n \times n} \end{aligned}$$

Newton Method (cont'd)

For a given point (x, y, z) we find the Newton direction $(\Delta x, \Delta y, \Delta z)$ by solving the system of linear equations:

$$\begin{bmatrix} Q(x,y) & A(x)^T & 0 \\ A(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Using the third equation we eliminate

$$\Delta z = \mu Y^{-1}e - Ze - ZY^{-1}\Delta y,$$

from the second equation and get

$$\begin{bmatrix} Q(x,y) & A(x)^T \\ A(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

Interior-Point NLP Algorithm

Initialize

k = 0 (x^0, y^0, z^0) such that $y^0 > 0$ and $z^0 > 0$, $\mu_0 = \frac{1}{m} \cdot (y^0)^T z^0$ Repeat until optimality k = k + 1 $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0, 1)$ Compute A(x) and Q(x, y) $\Delta =$ Newton direction towards μ -center Ratio test: $\alpha_1 := \max \{ \alpha > 0 : y + \alpha \Delta y \ge 0 \},$ $\alpha_2 := \max \{ \alpha > 0 : z + \alpha \Delta z \ge 0 \}.$ Choose the step: (use trust region or line search) $\alpha \leq \min \{\alpha_1, \alpha_2\}$. Make step: $x^{k+1} = x^k + \alpha \Delta x,$ $y^{k+1} = y^k + \alpha \Delta y,$ $z^{k+1} = z^k + \alpha \Delta z.$

From QP to NLP

Newton direction for $\mathbf{Q}\mathbf{P}$

$$\begin{bmatrix} -Q & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_d \\ \xi_p \\ \xi_\mu \end{bmatrix}.$$

Augmented system for QP

$$\begin{bmatrix} -Q - SX^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1}\xi_\mu \\ \xi_p \end{bmatrix}$$

From QP to NLP

Newton direction for \mathbf{NLP}

$$\begin{bmatrix} Q(x,y) & A(x)^T & 0 \\ A(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - z \\ \mu e - Y Z e \end{bmatrix}$$

Augmented system for NLP

$$\begin{bmatrix} Q(x,y) & A(x)^T \\ A(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

Conclusion:

NLP is a natural extension of QP.

•

L3&4: IPMs for QP, NLP, SOCP, SDP

Newton Method and Self-concordant Barriers

Another View of Newton M. for Optimization

Newton Method for Optimization

Let $f : \mathcal{R}^n \mapsto \mathcal{R}$ be a twice continuously differentiable function. Suppose we build a quadratic model \tilde{f} of f around a given point x^k , i.e., we define $\Delta x = x - x^k$ and write:

$$\tilde{f}(x) = f(x^k) + \nabla f(x^k)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x^k) \Delta x$$

Now we **optimize the model** \tilde{f} instead of **optimizing** f. A minimum (or, more generally, a stationary point) of the quadratic model satisfies:

$$\nabla \tilde{f}(x) = \nabla f(x^k) + \nabla^2 f(x^k) \Delta x = 0,$$

i.e.

$$\Delta x = x - x^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k),$$

which reduces to the usual equation:

$$x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k).$$

Self-concordant Functions

There is a nice property of the function that is responsible for a good behaviour of the Newton method.

Def Let $C \in \mathbb{R}^n$ be an open nonempty convex set.

Let $f: C \mapsto \mathcal{R}$ be a three times continuously differentiable convex function.

A function f is called **self-concordant** if there exists a constant p > 0 such that

$$|\nabla^3 f(x)[h,h,h]| \le 2p^{-1/2} (\nabla^2 f(x)[h,h])^{3/2},$$

 $\forall x \in C, \forall h : x + h \in C.$ (We then say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by the quadratic model because the error of such an approximation can be bounded by the 3/2 power of $\nabla^2 f(x)[h,h]$.

Self-concordant Barriers

Lemma

The barrier function $-\log x$ is self-concordant on \mathcal{R}_+ .

Proof Consider $f(x) = -\log x$. Compute $f'(x) = -x^{-1}$, $f''(x) = x^{-2}$ and $f'''(x) = -2x^{-3}$ and check that the self-concordance condition is satisfied for p = 1.

Lemma

The barrier function $1/x^{\alpha}$, with $\alpha \in (0, \infty)$ is not self-concordant on \mathcal{R}_+ .

Lemma

The barrier function $e^{1/x}$ is not self-concordant on \mathcal{R}_+ .

Use self-concordant barriers in optimization

L3&4: IPMs for QP, NLP, SOCP, SDP

Second-Order Cone Programming (SOCP)

Cones: Background

Def. A set $K \in \mathbb{R}^n$ is called a cone if for any $x \in K$ and for any $\lambda \ge 0, \lambda x \in K$.

Convex Cone:

Example:

$$K = \{ x \in \mathcal{R}^n : x_1^2 \ge \sum_{j=2}^n x_j^2, \, x_1 \ge 0 \}.$$

Example: Three Cones R_+ :

$$R_+ = \{ x \in \mathcal{R} : x \ge 0 \}.$$

Quadratic Cone:

$$K_q = \{x \in \mathcal{R}^n : x_1^2 \ge \sum_{j=2}^n x_j^2, x_1 \ge 0\}.$$

Rotated Quadratic Cone:

$$K_r = \{x \in \mathcal{R}^n : 2x_1x_2 \ge \sum_{j=3}^n x_j^2, x_1, x_2 \ge 0\}.$$

Matrix Representation of Cones

Each of the three most common cones has a matrix representation using orthogonal matrices T and/or Q. (Orthogonal matrix: $Q^TQ = I$).

Quadratic Cone K_q . Define

and write:

$$K_q = \{ x \in \mathcal{R}^n : x^T Q x \ge 0, \ x_1 \ge 0 \}.$$

Example: $x_1^2 \ge x_2^2 + x_3^2 + \dots + x_n^2$. Bologna, January 2023

Matrix Representation of Cones (cont'd)

Rotated Quadratic Cone K_r . Define

$$Q = \begin{bmatrix} 0 & 1 & & & \\ 1 & 0 & & & \\ & -1 & & \\ & & \ddots & \\ & & & -1 \end{bmatrix}$$

and write:

$$K_r = \{ x \in \mathcal{R}^n : x^T Q x \ge 0, \ x_1, x_2 \ge 0 \}.$$

Example: $2x_1x_2 \ge x_3^2 + x_4^2 + \dots + x_n^2$.

Matrix Representation of Cones (cont'd)

Consider a linear transformation $T : \mathcal{R}^2 \mapsto \mathcal{R}^2$:

$$T_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

It corresponds to a rotation by $\pi/4$. Indeed, write:

$$\begin{bmatrix} z \\ y \end{bmatrix} = T_2 \begin{bmatrix} u \\ v \end{bmatrix}$$

that is

$$z = \frac{u+v}{\sqrt{2}}, \quad y = \frac{u-v}{\sqrt{2}}$$

to get

$$2yz = u^2 - v^2$$

Matrix Representation of Cones (cont'd)

Now, define

$$T = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \\ & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

and observe that the rotated quadratic cone satisfies

$$Tx \in K_r$$
 iff $x \in K_q$.

Example: Conic constraint

Consider a constraint:

$$\frac{1}{2}\|x\|^2 + a^T x \le b.$$

Observe that $g(x) = \frac{1}{2}x^Tx + a^Tx - b$ is convex hence the constraint defines a convex set.

The constraint may be reformulated as an intersection of an affine (linear) constraint and a quadratic one:

$$a^{T}x + z = b$$

$$y = 1$$

$$\|x\|^{2} \le 2yz, \ y, z \ge 0.$$

Example: Conic constraint (cont'd)

Now, substitute:

$$z = \frac{u+v}{\sqrt{2}}, \quad y = \frac{u-v}{\sqrt{2}}$$

to get

$$a^{T}x + \frac{u+v}{\sqrt{2}} = b$$
$$u-v = \sqrt{2}$$
$$\|x\|^{2} + v^{2} \le u^{2}.$$

Dual Cone

Let $K \in \mathbb{R}^n$ be a cone. **Def.** The set: $K_* := \{s \in \mathbb{R}^n : s^T x \ge 0, \forall x \in K\}$ is called the **dual** cone. **Def.** The set: $K_P := \{s \in \mathbb{R}^n : s^T x \le 0, \forall x \in K\}$

is called the **polar** cone (Fig below).

Conic Optimization

Consider an optimization problem:

 $\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax = b,\\ & x \in K, \end{array}$

where K is a convex closed cone.

We assume that

$$K = K^1 \times K^2 \times \dots \times K^k,$$

that is, cone K is a product of several individual cones each of which is one of the three cones defined earlier.

Primal and Dual SOCPs

Consider a **primal** SOCP

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax = b,\\ & x \in K, \end{array}$$

where K is a convex closed cone.

The associated **dual** SOCP

$$\begin{array}{ll} \max & b^T y \\ \text{s.t.} & A^T y + s = c, \\ & s \in K_*. \end{array}$$

Weak Duality:

If (x, y, s) is a primal-dual feasible solution, then

$$c^T x - b^T y = x^T s \ge 0.$$

IPM for Conic Optimization

Conic Optimization problems can be solved in polynomial time with IPMs.

Consider a quadratic cone

$$K_q = \{(x,t) : x \in \mathcal{R}^{n-1}, t \in \mathcal{R}, t^2 \ge ||x||^2, t \ge 0\},\$$

and define the (convex) **logarithmic barrier function** for this cone $f: \mathcal{R}^n \mapsto \mathcal{R}$

$$f(x,t) = \begin{cases} -\ln(t^2 - \|x\|^2) & \text{if } \|x\| < t \\ +\infty & \text{otherwise.} \end{cases}$$

Theorem:

f(x,t) is a self-concordant barrier on K_q .

Exercise: Prove it in case n = 2.

L3&4: IPMs for QP, NLP, SOCP, SDP

Semidefinite Programming (SDP)

SDP: Background

Def. A matrix $H \in \mathbb{R}^{n \times n}$ is positive semidefinite if $x^T H x \ge 0$ for any $x \ne 0$. We write $H \succeq 0$.

Def. A matrix $H \in \mathbb{R}^{n \times n}$ is positive definite if $x^T H x > 0$ for any $x \neq 0$. We write $H \succ 0$.

We denote with $SR^{n \times n}$ ($SR^{n \times n}_+$) the set of symmetric and symmetric positive semidefinite matrices.

Let $U, V \in \mathcal{SR}^{n \times n}$. We define the inner product between U and V as $U \bullet V = trace(U^T V)$, where $trace(H) = \sum_{i=1}^n h_{ii}$.

The associated norm is the Frobenius norm, written $||U||_F = (U \bullet U)^{1/2}$ (or just ||U||).

Linear Matrix Inequalities

Def. Linear Matrix Inequalities Let $U, V \in \mathcal{SR}^{n \times n}$.

We write $U \succeq V$ iff $U - V \succeq 0$.

We write $U \succ V$ iff $U - V \succ 0$.

We write $U \leq V$ iff $U - V \leq 0$.

We write $U \prec V$ iff $U - V \prec 0$.

Properties

1. If $P \in \mathcal{R}^{m \times n}$ and $Q \in \mathcal{R}^{n \times m}$, then trace(PQ) = trace(QP).

2. If $U, V \in S\mathcal{R}^{n \times n}$, and $Q \in \mathcal{R}^{n \times n}$ is orthogonal (i.e. $Q^T Q = I$), then $U \bullet V = (Q^T U Q) \bullet (Q^T V Q)$. More generally, if P is nonsingular, then $U \bullet V = (P U P^T) \bullet (P^{-T} V P^{-1})$.

3. Every $U \in S\mathcal{R}^{n \times n}$ can be written as $U = Q\Lambda Q^T$, where Q is orthogonal and Λ is diagonal. Then $UQ = Q\Lambda$. In other words the columns of Q are the eigenvectors, and the diagonal entries of Λ the corresponding eigenvalues of U.

4. If $U \in \mathcal{SR}^{n \times n}$ and $U = Q\Lambda Q^T$, then $trace(U) = trace(\Lambda) = \sum_i \lambda_i$.

Properties (cont'd)

5. For $U \in SR^{n \times n}$, the following are equivalent:

(i) U ≥ 0 (U ≻ 0)
(ii) x^TUx ≥ 0, ∀x ∈ Rⁿ (x^TUx > 0, ∀0 ≠ x ∈ Rⁿ).
(iii) If U = QΛQ^T, then Λ ≥ 0 (Λ ≻ 0).
(iv) U = P^TP for some matrix P (U = P^TP for some square nonsingular matrix P).

6. Every $U \in S\mathcal{R}^{n \times n}$ has a square root $U^{1/2} \in S\mathcal{R}^{n \times n}$. **Proof**: From Property 5 (ii) we get $U = Q\Lambda Q^T$. Take $U^{1/2} = Q\Lambda^{1/2}Q^T$, where $\Lambda^{1/2}$ is the diagonal matrix whose diagonal contains the (nonnegative) square roots of the eigenvalues of U, and verify that $U^{1/2}U^{1/2} = U$.

Properties (cont'd)

7. Suppose

$$U = \begin{bmatrix} A & B^T \\ B & C \end{bmatrix},$$

where A and C are symmetric and $A \succ 0$. Then $U \succeq 0$ $(U \succ 0)$ iff $C - BA^{-1}B^T \succeq 0$ $(\succ 0)$. The matrix $C - BA^{-1}B^T$ is called the *Schur complement* of A in U.

Proof: follows easily from the factorization:

$$\begin{bmatrix} A & B^T \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ BA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & C - BA^{-1}B^T \end{bmatrix} \begin{bmatrix} I & A^{-1}B^T \\ 0 & I \end{bmatrix}.$$

8. If $U \in \mathcal{SR}^{n \times n}$ and $x \in \mathcal{R}^n$, then $x^T U x = U \bullet x x^T$.

Dual

Primal-Dual Pair of SDPs

Primal

 $\begin{array}{lll} \min & C \bullet X & \max & b^T y \\ \text{s.t.} & A_i \bullet X = b_i, \ i = 1..m & \text{s.t.} & \sum_{i=1}^m y_i A_i + S = C, \\ & X \succeq 0; & S \succeq 0, \end{array}$ where $A_i \in \mathcal{SR}^{n \times n}, \ b \in \mathcal{R}^m, \ C \in \mathcal{SR}^{n \times n} \text{ are given;} \\ \text{and } X, S \in \mathcal{SR}^{n \times n}, \ y \in \mathcal{R}^m \text{ are the variables.} \end{array}$

Simplified notation:

PrimalDualmin $C \bullet X$ max $b^T y$ s.t. $\mathcal{A}X = b$,s.t. $\mathcal{A}^*y + S = C$, $X \succeq 0;$ $S \succeq 0.$

Theorem: Weak Duality in SDP If X is feasible in the primal and (y, S) in the dual, then

$$C \bullet X - b_m^T y = X \bullet S \ge 0.$$

Proof: $C \bullet X - b^T y = (\sum_{i=1}^m y_i A_i + S) \bullet X - b^T y$
 $= \sum_{i=1}^m (A_i \bullet X) y_i + S \bullet X - b^T y$
 $= S \bullet X = X \bullet S.$

Further, since X is positive semidefinite, it has a square root $X^{1/2}$ (Property 6), and so

$$X \bullet S = trace(XS) = trace(X^{1/2}X^{1/2}S) = trace(X^{1/2}SX^{1/2}) \ge 0.$$

We use Property 1 and the fact that S and $X^{1/2}$ are positive semidefinite, hence $X^{1/2}SX^{1/2}$ is positive semidefinite and its trace is nonnegative.

SDP Example 1: Minimize the Max. Eigenvalue We wish to choose $x \in \mathcal{R}^k$ to minimize the maximum eigenvalue of $A(x) = A_0 + x_1 A_1 + \ldots + x_k A_k$, where $A_i \in \mathcal{R}^{n \times n}$ and $A_i = A_i^T$. Observe that

$$\lambda_{max}(A(x)) \le t$$

if and only if

$$\lambda_{max}(A(x) - tI) \le 0 \quad \iff \quad \lambda_{min}(tI - A(x)) \ge 0.$$

This holds iff

$$tI - A(x) \succeq 0.$$

So we get the SDP in the dual form:

$$\begin{array}{ll} \max & -t \\ \text{s.t.} & tI - A(x) \succeq 0, \end{array}$$

where the variable is y := (t, x).

Logarithmic Barrier Function

Define the **logarithmic barrier function** for the cone $SR^{n \times n}_+$ of positive definite matrices.

 $f:\mathcal{SR}^{n\times n}_+\mapsto \mathcal{R}$

$$f(X) = \begin{cases} -\ln \det X & \text{if } X \succ 0 \\ +\infty & \text{otherwise.} \end{cases}$$

Let us evaluate its derivatives. Let $X \succ 0, H \in \mathcal{SR}^{n \times n}$. Then

$$f(X + \alpha H) = -\ln \det[X(I + \alpha X^{-1}H)]$$

= $-\ln \det X - \ln(1 + \alpha trace(X^{-1}H) + \mathcal{O}(\alpha^2))$
= $f(X) - \alpha X^{-1} \bullet H + \mathcal{O}(\alpha^2),$

so that $f'(X) = -X^{-1}$ and $Df(X)[H] = -X^{-1} \bullet H$.

Logarithmic Barrier Function (cont'd) Similarly

$$f'(X + \alpha H) = -[X(I + \alpha X^{-1}H)]^{-1}$$

= -[I - \alpha X^{-1}H + \mathcal{O}(\alpha^2)]X^{-1}
= f'(X) + \alpha X^{-1}HX^{-1} + \mathcal{O}(\alpha^2),

so that $f''(X)[H] = X^{-1}HX^{-1}$

and
$$D^2 f(X)[H, G] = X^{-1} H X^{-1} \bullet G.$$

Finally, $f'''(X)[H,G] = -X^{-1}HX^{-1}GX^{-1} - X^{-1}GX^{-1}HX^{-1}.$

Logarithmic Barrier Function (cont'd)

Theorem: $f(X) = -\ln \det X$ is a convex barrier for $S\mathcal{R}^{n \times n}_+$. **Proof:** Define $\phi(\alpha) = f(X + \alpha H)$. We know that f is convex if, for every $X \in S\mathcal{R}^{n \times n}_+$ and every $H \in S\mathcal{R}^{n \times n}$, $\phi(\alpha)$ is convex in α .

Consider a set of α such that $X + \alpha H \succ 0$. On this set

$$\phi''(\alpha) = D^2 f(\bar{X})[H, H] = \bar{X}^{-1} H \bar{X}^{-1} \bullet H,$$

where
$$\overline{X} = X + \alpha H$$
.
Since $\overline{X} \succ 0$, so is $V = \overline{X}^{-1/2}$ (Property 6), and
 $\phi''(\alpha) = V^2 H V^2 \bullet H = trace(V^2 H V^2 H)$
 $= trace((VHV)(VHV)) = ||VHV||_F^2 \ge 0.$

So ϕ is convex.

When $X \succ 0$ approaches a singular matrix, its determinant approaches zero and $f(X) \rightarrow \infty$.

Solving SDPs with IPMs

Replace the **primal SDP**

$$\begin{array}{ll} \min \quad C \bullet X \\ \text{s.t.} \quad \mathcal{A}X \, = \, b, \\ X \, \succeq \, 0, \end{array}$$

with the **primal barrier SDP**

$$\begin{array}{ll} \min & C \bullet X + \mu f(X) \\ \text{s.t.} & \mathcal{A}X = b, \end{array}$$

(with a barrier parameter $\mu \ge 0$). Formulate the Lagrangian

$$L(X, y, S) = C \bullet X + \mu f(X) - y^T (\mathcal{A}X - b),$$

with $y \in \mathcal{R}^m$, and write the first order conditions (FOC) for a stationary point of L:

$$C + \mu f'(X) - \mathcal{A}^* y = 0.$$

Solving SDPs with IPMs (cont'd)

Use $f(X) = -\ln \det(X)$ and $f'(X) = -X^{-1}$. Therefore the FOC become:

$$C - \mu X^{-1} - \mathcal{A}^* y = 0.$$

Denote $S = \mu X^{-1}$, i.e., $XS = \mu I$. For a positive definite matrix X its inverse is also positive definite. The FOC now become:

$$\mathcal{A}X = b,$$

$$\mathcal{A}^*y + S = C,$$

$$XS = \mu I,$$

with $X \succ 0$ and $S \succ 0$.

Then apply Newton method to the FOC.

The Rank Minimization Problem

 $\min \operatorname{rank}(X)$
s.t. $\mathcal{A}(X) = b$

 $X \in \mathcal{R}^{n \times n}$ is the unknown and the linear map $\mathcal{A} : \mathcal{R}^{n \times n} \to \mathcal{R}^m$ and the vector $b \in \mathcal{R}^m$ are given.

- NP-hard problem
- Applications: matrix completion (Netflix problem, triangulation from incomplete data), nonnegative factorization, control and system theory, image compression.

A Rank Minimization Heuristic

where $\|\cdot\|_*$ denotes the *nuclear norm* (the sum of singular values).

- Convex optimization problem
- Special case:

if X=diag(x), the problem reduces to ℓ_1 -norm minimization:

SDP formulation

Primal-dual convex formulation (heuristic)

$$\min_{\substack{\|X\|_*\\ \text{s.t.}}} \max_{\mathcal{A}(X) = b} \max_{\substack{\|X\|_*\\ \text{s.t.}}} \max_{\substack{\|\mathcal{A}^*(y)\| \le 1}}$$

Primal-dual SDP formulation

$$\min \frac{1}{2}(Tr(W_1) + Tr(W_2)) \qquad \max b^T y$$

s.t. $\begin{bmatrix} W_1 & X \\ X^T & W_2 \end{bmatrix} \succeq 0$ s.t. $\begin{bmatrix} I_m & \mathcal{A}^*(y) \\ \mathcal{A}^*(y)^T & I_n \end{bmatrix} \succeq 0$
where $y \in \mathcal{R}^m, W_1, W_2 \in \mathcal{R}^{n \times n},$
 $\mathcal{A}^* : \mathcal{R}^m \to \mathcal{R}^{n \times n}$ is the adjoint of $\mathcal{A},$
 $\|\cdot\|$ denotes the operator norm (the maximum singular value).

The Netflix Prize (\$1M): In 2006, Netflix held the first Netflix Prize competition to find a better program to predict user preferences and beat its existing Netflix movie recommendation system by at least 10%.

- Given 100 million ratings on a scale of 1 to 5, predict 3 million ratings to highest accuracy
- 17770 total movies x 480189 total users
 ⇒ over 8 billion total ratings

 B_{ij} known for black cells, unknown for white Row index: *movie*, Column index: *user* Find low-rank W such that $W \approx B$.

The Matrix Completion Problem

A small number of entries of a matrix $B \in \mathcal{R}^{\hat{m} \times \hat{n}}$ is known: all entries $B_{i,j}$, with $(i,j) \in \Omega$, where $|\Omega| = m \ll \hat{m}\hat{n}$. Find an approximation $W \in \mathcal{R}^{\hat{m} \times \hat{n}}$ of B such that:

- W has small rank, and
- W and B agree on Ω .

Matrix Completion Problem

min rank
$$(W)$$

s.t. $W_{ij} = B_{ij}, \quad \forall (i,j) \in \Omega.$

SDP Relaxation of Matrix Completion SDP Relaxation

$$\min \frac{1}{2}(Tr(W_1) + Tr(W_2)) \leftrightarrow C \bullet X$$

s.t.
$$\begin{bmatrix} W_1 & W \\ W^T & W_2 \end{bmatrix} \succeq 0 \qquad \leftrightarrow X \succeq 0$$
$$W_{ij} = B_{ij} \ (i,j) \in \Omega \quad \leftrightarrow A_l \bullet X = b_l$$

 $W \in \mathcal{R}^{\hat{m} \times \hat{n}}, W_1 \in \mathcal{R}^{\hat{m} \times \hat{m}}, W_2 \in \mathcal{R}^{\hat{n} \times \hat{n}}$ unknowns, $B_{ij}, (i, j) \in \Omega$ given

•
$$C = I_n, X = \begin{bmatrix} W_1 & W \\ W^T & W_2 \end{bmatrix} \in \mathcal{R}^{n \times n}$$
, with $n = (\hat{m} + \hat{n})$.
• $A_l = \frac{1}{2} \begin{bmatrix} 0 & \Theta^{ij} \\ (\Theta^{ij})^T & 0 \end{bmatrix}, \ l = 1, \dots, m$, where for each $(i, j) \in \Omega$
 $\Theta^{ij} \in \mathcal{R}^{\hat{m} \times \hat{n}}$: $(\Theta^{ij})_{st} = \begin{cases} 1 & \text{if } (s, t) = (i, j) \\ 0 & \text{else} \end{cases}$ $(A_l \text{ of rank 2}).$

Logarithmic Barrier Function

for the cone $\mathcal{SR}^{n \times n}_+$ of positive definite matrices, $f : \mathcal{SR}^{n \times n}_+ \mapsto \mathcal{R}$

$f(X) = \left\{ \begin{array}{l} \\ \end{array} \right.$	$\int -\ln \det X$	if $X \succ 0$
	$(+\infty)$	otherwise.

LP: Replace $x \ge 0$ with $-\mu \sum_{j=1}^{n} \ln x_j$. **SDP:** Replace $X \ge 0$ with $-\mu \sum_{j=1}^{n} \ln \lambda_j = -\mu \ln(\prod_{j=1}^{n} \lambda_j)$.

Nesterov and Nemirovskii, Interior Point Polynomial Algorithms in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Lemma The barrier function f(X) is self-concordant on $\mathcal{SR}^{n \times n}_+$.

Interior Point Methods:

- Logarithmic barrier functions for LP, QP, SOCP and SDP Self-concordant barriers
 → polynomial complexity (predictable behaviour)
- Unified view of optimization \rightarrow from LP via QP to NLP, SOCP, SDP
- Efficiency
 - good for SOCP
 - problematic for SDP because solving the problem of size n involves linear algebra operations in dimension n^2 \rightarrow and this requires n^6 flops!

Use IPMs in your research!