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Convex Quadratic Programs

Def. A matrix Q € R™*" is positive semidefinite if 21 Qz > 0 for
any x # 0. We write ) > 0.

The quadratic function

flz) =2l Qu

is convex if and only if the matrix () is positive definite.
In such case the quadratic programming problem

min !z + %ZCTQ x
s.t. Az = b,
x > 0,
is well defined.

If there exists a feasible solution to it,
then there exists an optimal solution.
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QP with TPMs

Apply the usual procedure:

e replace inequalities with log barriers;

e form the Lagrangian:

e write the first order optimality conditions;
e apply Newton method to them.

Replace the primal QP
min !z + %xTQ x
s.t. Ax = b,
x > 0,

with the primal barrier QP
n
min ¢!z + %azTQ r— ), Inz,
7=1

S.t. Ax =b.
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First Order Optimality Conditions

Consider the primal barrier quadratic program

n
min ¢!z + %CETQCE —p ), Inx;
7=1
s.t. Ax = b,
where p > 0 is a barrier parameter.
Write out the Lagrangian
n
B A & T .
L(x,y,pu) =c x+§x Qx—vy (Ar —0b) — ,uz:llnx],
]:
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First Order Optimality Conditions (cont’d)

The conditions for a stationary point of the Lagrangian'

L(x,y,u)—cTat+ xTQx— (Ax — b) — Zlnx],

are

VoL(z,y,p) = c— Aly — pX"le+ Qv = 0
VyL(z,y, 1) = Ax —b = 0,
where X ! dmg{:cl , T Loty

Let us denote
S = ,uX_ e, 1ie XSe=pue.

The First Order Optimality Conditions are:

Ax = D,
Aly+s — Qr = ¢,
XSe = Le.
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Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

F(z,y,s) =0,
where F : RNy R2MHTM i an application defined as follows:
I Ax — b
F(I,y,S): AT:‘/—'_S_Q:C_C
X Se — le

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.
Note that

_ 0 _
AT
0

VF(z,y,s) =

Oz@b
<~ =
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Newton Method for the FOC (cont’d)

Thus, for a given point (z,y, )
we find the Newton direction (Ax, Ay, As)
by solving the system of linear equations:

A0 0 Azl [b— Ax
—Q Al T Ay | =|ec—Aly—s+Qu
S 0 X| L[As] | pe—XSe |
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Interior-Point QP Algorithm

Initialize

k=0, (xo,yo, SO) c FU = %-(xO)TsO, ap = 0.9995
Repeat until optimality

k=k—+1

pp = op._1, where o € (0, 1)
A = Newton direction towards p-center

Ratio test:

ap = max {a>0: x+ oAz > 0},
ap = max {a>0: s+ als > 0}.
Make step:

okl = ok 4 apapAr,
Yt = ¥+ agapAy,

skl = b 4 apapAs.
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From LP to QP

QP problem
min ¢!z + %xTQ x
s.t. Ax = b,
x > 0.

First order conditions (for barrier problem)
Ax = D,
ATy + s—Qz = c,

XSe = €.

Bologna, January 2023
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IPMs for Convex NLP
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Convex Nonlinear Optimization

Consider the nonlinear optimization problem

min f(x)
st g(x) <0,

where v € R", and f: R" — R and ¢g : R" — R"" are convex,
twice differentiable.

Assumptions:

f and g are convex

— If there exists a local minimum then it is a global one.

f and g are twice differentiable

= We can use the second order Taylor approximations.

Some additional (technical) conditions

—  We need them to prove that the point which satisfies the first
order optimality conditions is the optimum. We won’t use them n
this course.

Bologna, January 2023 13



J. Gondzio L3&4: TPMs for QP, NLP, SOCP, SDP

Nonlinear Optimization with IPMs

Nonlinear Optimization via QPs:
Sequential Quadratic Programming (SQP).
Repeat until optimality:

e approximate NLP (locally) with a QP:;
e solve (approximately) the QP.

Nonlinear Optimization with IPMs:
works similarly to SQP scheme.

However, the (local) QP approximations are not solved to optimal-
ity. Instead, only one step in the Newton direction corresponding to
a given QP approximation is made and the new QP approximation
is computed.
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NLP Notation

Consider the nonlinear optimization problem
min f(z) st g(z) <0,

where v € R", and f: R" — R and ¢g : R" — R"" are convex,
twice differentiable.

The vector-valued function g : R"™ — R has a derivative

a )
Alw) = Vgla) = | 3]
Jdi=1..m,j=1..n

which is called the Jacobian of g.

c Ran
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NLP Notation (cont’d)

The Lagrangian associated with the NLP is:

Lixz,y) = flx)+y' glx),
where y € R, y > 0 are Lagrange multipliers (dual variables).

The first derivatives of the Lagrangian:

ViL(z,y) = Vf(x)+ Vg(a)ly
VyL(z,y) = g(x).

The Hessian of the Lagrangian, Q(x,y) € Rnxn

Q(,y) = Vi L(z,y) =V f(x)+ ZWQQZ

Bologna, January 2023 16
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Convexity in NLP

Lemma 2: If f:R"+— R and g : R" — R" are convex, twice
differentiable, then the Hessian of the Lagrangian

Qlr,y) = V> f(z)+ Y vy Vgi(x)
1=1

is positive semidefinite for any x and any y > 0. If f is strictly
convex, then Q(x,y) is positive definite for any x and any y > 0.

Proof. The convexity of f implies that V2 f(z) is positive semidef-
inite for any x. Similarly, the convexity of g implies that for all
i = 1,2,...,m, V?g¢;(x) is positive semidefinite for any z. Since
y;, > 0 forall i = 1,2,...,m and Q(x,y) is the sum of positive
semidefinite matrices, we have that Q(x, y) is positive semidefinite.

If f is strictly convex, then V2f(z) is positive definite and so is

Q(z,y).
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IPM for NLP
Add slack variables to nonlinear inequalities:
min  f (:1:)
st. glx)+2z =0
Z Z 0,

where z € R"™. Replace inequality z > 0 with the logarithmic
barrier:

m
min  f(z) —p Y Inz;
1=1
s.t. g(x)+ 2 = 0.

Write out the Lagrangian
Lz, y,z,p) = f(z) +y" (g(x) +2) = p Y _Inz,
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IPM for NLP
For the Lagrangian .
_ T ,
L(z,y,z,p) = f(z) +y" (9(z) +2) —p > Inz,
1=1
write the conditions for a stationary point
ViLl(w,y,2,p) = Vf(z)+ Vg(x)'y = 0
VZL(ZC,y,Z,/L) — y_:uZ_ 6207
where 771 = diag{zl_l, z2_1, SR e g
The First Order Optimality Conditions are:
Vf(z)+ Vglx)ly = 0,
glx)+ 2z = 0,
Y Ze = pe.

Bologna, January 2023
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Newton Method for the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

F(x,y,z) =0,
where F: RM2M y RA2M 49 an application defined as follows:

Vi(z) + V) Ty
F(z,y,z) = }g(g) + 2
e — e

Note that all three terms of it are nonlinear.
(In LP and QP the first two terms were linear.)

Bologna, January 2023 20



J. Gondzio L3&4: TPMs for QP, NLP, SOCP, SDP

Newton Method for the FOC

Observe that

Q(z,y) AT 0
VF(z,y,2)= | A(z) 0
0 /

<~

where A(az) is the Jacobian of g
and Q(l’, y) is the Hessian of L.

They are defined as follows:
A(x) = Vg(x) e RMmxn

Q(z,y) = V*f(x) + gflyiv%i(ﬂi) c RIXN

Bologna, January 2023
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Newton Method (cont’d)

For a given point (x, y, z) we find the Newton direction (Az, Ay, Az)
by solving the system of linear equations:

Q(r,y) A)T 0 [[Az] [ =Vf(x)— A@) Ty
Alz) 0 I ||Ay | = —g(x) — 2
I 0 A Y_ Az | ] pe —Y Ze ]

Using the third equation we eliminate
Az = ,uY_le — Ze— ZY 1Ay,

from the second equation and get

[Q(x,y) A(z)! Aﬂ?] _ [—Vf(fv) — A(z)ly
Alz) —=zZy—1] | Ay —g(z) — py e
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Interior-Point NLP Algorithm

Initialize
k=0
(2, 3V, 2V) such that ¥ > 0 and 2¥ >0, pp = % Ay LY
Repeat until optimality
k=Fk+1
pp. = op._1, where o € (0, 1)
Compute A(x) and Q(x,y)
A = Newton direction towards p-center
Ratio test:
ap = max {a>0: y+alAy > 0},
ay = max{a >0: z+alAz >0}
Choose the step: (use trust region or line search) o< min {aq, as}.
Make step:
phtl = gk 4 aAx.
=y +ady,
Al = 2k oAz,
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From QP to NLP

Newton direction for QP

QAT
A0 0

Augmented system for QP

S 0 X |

- A 175
Ay | = fp
_AS_

Ax

&)

-

Bologna, January 2023
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From QP to NLP

Newton direction for NLP

Q(x,y) A(x)T 0 | [AxT i —Vf(x)— A(x)Ty ]
A(z) 0 I ||Ay|= —g(x) — 2
] 0 / Y_ Az ] pe —Y Ze ]

Augmented system for NLP

[Q(fby y) Alx)!
Alz) =2y ~1

Aw] _ [—Vf(:v)—A(:v)Ty |
Ay —g(x)—pY e

Conclusion:
NLP is a natural extension of QP.
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Newton Method

and Self-concordant Barriers
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Another View of Newton M. for Optimization

Newton Method for Optimization
Let f: R" — R be a twice continuously differentiable function.

Suppose we build a quadratic model f of f around a given point

xk, i.e., we define Ax =z — 2 and write:

flz) = fa") + V(") Az + %A:cTVQ fla¥)Ax

Now we optimize the model f instead of optimizing f.
A minimum (or, more generally, a stationary point) of the quadratic
model satisfies:

Vi(x) = V") + V(") Ar =0,
Av =z —af = —(V2f(2") IV f ("),

which reduces to the usual equation:
= o — (VP (h) IV f ()
Bologna, January 2023 27
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Self-concordant Functions

There is a nice property of the function that is responsible for a
cood behaviour of the Newton method.

Def Let C' € R™ be an open nonempty convex set.

Let f: C + R be a three times continuously differentiable convex
function.

A function f is called self-concordant if there exists a constant
p > 0 such that

V3 f (@), by )| < 2p7 (VP F ()[R, B),

Vee C,Vh: x4+ h e’
(We then say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by
the quadratic model because the error of such an approximation can

be bounded by the 3/2 power of V2f(z)[h, h].
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Self-concordant Barriers

Lemma
The barrier function — log x is self-concordant on R

Proof Consider f(x) = —log .
Compute

/

fla)=—27), f(@)=2"2and " (z) = —207

and check that the self-concordance condition is satisfied for p = 1.

Lemma
The barrier function 1/x%, with o € (0, 00) is not self-concordant
on R_|_.

Lemma
The barrier function eX/? is not self-concordant on Ry

Use self-concordant barriers in optimization

Bologna, January 2023 29
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Second-Order Cone Programming (SOCP)
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Cones: Background

Def. A set K € R" is called a cone if for any x € K and for any
A>0 \r e K.

Convex Cone:

Example:

n
K:{xERn:x%ZZx?,mZO}.
J=2

Bologna, January 2023 31
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Example: Three Cones
R_|_:

R_|_:{ZCERICI?ZO}.

Quadratic Cone:

Rotated Quadratic Cone:

n
Ky={x e R": 2xyx9 > Zx?, r1, 19 > 0}

Bologna, January 2023
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Matrix Representation of Cones

Each of the three most common cones has a matrix representation
using orthogonal matrices T and/or Q).

(Orthogonal matrix: Q1 Q = I).
Quadratic Cone K. Define

and write:

Kq:{xERn:xTQxZO, x> 0}.
Fxample: CE% > x% —HE% o2

Bologna, January 2023 33
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Matrix Representation of Cones (cont’d)

Rotated Quadratic Cone K,. Define

01
10
Q= ~1

—1

and write:

Ky={xeR": a:TQ:U >0, x1,x9 > 0}.

Example: 2z119 > x% + xi + -+ x%

Bologna, January 2023 34
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Matrix Representation of Cones (cont’d)

Consider a linear transformation T : R? — R?:

Ty =

[t corresponds to a rotation by 7 /4. Indeed, write:

1

ey

1

vy

V2

V2

i)=nl)

that is w1
= Y
V2
to get
202 = U

— ?]2.

Bologna, January 2023
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Matrix Representation of Cones (cont’d)

Now, define

S-Sl
S-Sl

|

and observe that the rotated quadratic cone satisfies

Tre Ky iff xzekK,.

Bologna, January 2023 36
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Example: Conic constraint

Consider a constraint:

1
inHQ +alz <.

Observe that g(z) = %CETZE +a’ z—bis convex hence the constraint

defines a convex set.

The constraint may be reformulated as an intersection of an afline
(linear) constraint and a quadratic one:

T

a T+ z

g
<]

<

b
1

29z, y,z > 0.

Bologna, January 2023
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Example: Conic constraint (cont’d)

Now, substitute:

U+ v U — v
Z: , o
NG
to get
aT:z:+u+v = b
V2
Uu—v = \/5
|lz|* +v* < u”

Bologna, January 2023 38



J. Gondzio L3&4: TPMs for QP, NLP, SOCP, SDP

Dual Cone
Let K € R™ be a cone.

Det. The set: Ky ={seR": sty >0, Ve € K}
is called the dual cone.

Det. The set: Kp = {SER”:ST:CSO, Ve € K}
is called the polar cone (Fig below).

A

Y

Bologna, January 2023 39



J. Gondzio L3&4: TPMs for QP, NLP, SOCP, SDP

Conic Optimization

Consider an optimization problem:
T

min c"x
st. Ax =0,
xr e K,

where K is a convex closed cone.

We assume that
K=K'xK?x ... x KF.

that is, cone K is a product of several individual cones each of which
is one of the three cones defined earlier.

Bologna, January 2023 40
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Primal and Dual SOCPs
Consider a primal SOCP

min L
st. Ax =0,
x e K,

where K 1s a convex closed cone.

The associated dual SOCP

max bly
st. Aly+s=e,
s € K.

Weak Duality:

If (z,y,s) is a primal-dual feasible solution, then

'y — bTy = 2ls > 0.

Bologna, January 2023 41
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IPM for Conic Optimization

Conic Optimization problems can be solved in polynomial time with

[PMs.

Consider a quadratic cone
Ko={(z,t):z e R" 1t e R, *>|z||?, t >0},

and define the (convex) logarithmic barrier function for this

cone f: R"— R
2 YN
flat) = { —n(t? — z]?) if ||z]| <t

+00 otherwise.
Theorem:
f(x,t) is a self-concordant barrier on K.

Exercise: Prove it in case n = 2.
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Semidefinite Programming (SDP)
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SDP: Background

Def. A matrix H € R™™ is positive semidefinite if 2 Hx > 0
for any x # 0. We write H > 0.

Def. A matrix H € R™ " is positive definite if 2 Hx > 0 for any
x # 0. We write H > 0.

We denote with SR™*™ (SRY™") the set of symmetric and sym-
metric positive semidefinite matrices.

Let U,V € SR™ "™ We define the inner product between U and
Vas UeV =trace(UTV), where trace(H) = S, hy;.

The associated norm is the Frobenius norm,

written |U||p = (U o U)Y/2 (or just ||U]]).

Bologna, January 2023 44
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Linear Matrix Inequalities

Def. Linear Matrix Inequalities
Let U,V € SR™™ ™.

We write U =V it U -V > 0.
Wewrite U =V it U -V = 0.
We write U <V it U -V <0.

We write U <V ifft U -V <0.

Bologna, January 2023
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Properties

1. If PeR™™and Q € R" ™ then trace(PQ) = trace(QP).

2. IfU,V € SR™" and Q € R™ ™ is orthogonal (i.e. Q1'Q = I),
then UeV =(QTUQ) e (QTVQ).
More generally, if P is nonsingular, then

UeV = (PUPLYe (P~ TV P,

3. BEvery U € SR™™ can be written as U= QAQ?, where Q is
orthogonal and A is diagonal. Then UQ = QA.

In other words the columns of () are the eigenvectors, and the diag-
onal entries of A the corresponding eigenvalues of U.

4. 1fU € SR™™ and U = QAQ! . then
trace(U) = trace(A) =) . A;.

Bologna, January 2023 46
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Properties (cont’d)
5. For Ue SR"™*™ the following are equivalent:
(i) U>=0(U = 0)
(i) 21Uz > 0,YzeR" (z1Uzx>0,V0 # zeRM).
(i) If U = QAQ', then A =0 (A = 0).
(iv) U = PTP for some matrix P (U = PLP for some square

nonsingular matrix P).

6. Every U € SR™ ™ has a square root Ul/2 e SR>
Proof: From Property 5 (i) we get U = QAQ? .

Take UL/2 QAl/ 201, where AY2 is the diagonal matrix whose
diagonal contains the (nonnegative) square roots of the eigenvalues

of U, and verify that Ul/2yl/2 =
Bologna, January 2023 47
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Properties (cont’d)
7. Suppose

)

| A B!
U_[BC

where A and C' are symmetric and A > 0.

Then U =0 (U =0) if C—BA'B>=0(>0).

The matrix C — BA™1 B! is called the Schur complement of A in
U.

Proof: follows easily from the factorization:

A B
B C

I A-lpT
0 I

B I 0]TA 0
1 BAL Il 0 c=-BAIBY

8. IfU € SR™ ™ and 2z € R"™, then 2l Uz = U e zz! .
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Primal-Dual Pair of SDPs

Primal Dual
min C e X max bTy
st. A, e X =b;, i=1.m st Y.ty Ai+S =C,
X = 0; S >0,

where A; € SR™ ™ be R™, C € SR™ ™ are given;
and X, 5 € SR"™" y € R" are the variables.

Simplified notation:

Primal Dual
min C' e X max  bly
st. AX =0, s.t. Afy+5=C,
X =0 S = 0.
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Theorem: Weak Duality in SDP
[f X is feasible in the primal and (y, S) in the dual, then

C'QX—bTy:XoSZO.
m

CeoX —bly = (ZyiAi—kS)oX—bTy
zl

_Z ;e X)y;+SeX —bly

Proof:

—SXXS

Further, since X is positive semidefinite, it has a square root X 1/2
(Property 6), and so

XeS = trace(XS):trace(Xl/QXl/QS):tfra,ce(Xl/QSXl/Q) > 0.

We use Property 1 and the fact that S and X /2 are positive

semidefinite, hence X /29 x1/2 g positive semidefinite and its trace
1S nonnegative.
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SDP Example 1: Minimize the Max. Eigenvalue

We wish to choose 2 € R¥ to minimize the maximum eigenvalue of
Alx)=Ap+x1A1+. . . +xL AL, where A; € R and A; = AiT.
Observe that

)\max(A(fC)) <t

if and only if
Amaz(A(x) —tI) <0 <= A\pin(tl — A(x)) > 0.

This holds iff
tI — A(x) = 0.
So we get the SDP in the dual form:
max —t

s.t. tI — A(x) = 0,

where the variable is y := (¢, x).
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Logarithmic Barrier Function

Define the logarithmic barrier function for the cone SR/
of positive definite matrices.

f:SRﬁanR

(X)) = { ~—Indet X if X =0

+00 otherwise.

Let us evaluate its derivatives.
Let X = 0,H € SR™ ™. Then

FIX+aH) = —Indet[X (I + aX " H)]
= —Indet X —In(1 + cvtfra,ce(X_lﬂ) + 0(042))
— f(X)—ozX_loH+O(()é2)a

so that f/(X) = —X"land Df(X)[H] = -X"1eH.
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Logarithmic Barrier Function (cont’d)

Similarly
(X +aH)

—[X(I+aXx 'H)!
—[[—aXt'H+ 0 X!
F(X)+aXTHX 1+ 0>,

so that f//(X)[H] = X 'HX !

and D?f(X)[H,G]= X" THX 1eG.

Finally,

fMX)H, G =-X"tHXIGXx ! - XTlgXxTHX L
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Logarithmic Barrier Function (cont’d)

Theorem: f(X)= —Indet X is a convex barrier for SR!™".

Proof: Define ¢(a) = f(X+aH). We know that f is convex if,

for every X € SR and every H € SR ", ¢(«) is convex in
Q.
Consider a set of @ such that X +aH = 0. On this set

(o) =D*fX)H, H =X 'HX "o H,
where X = X +aH.
Since X =0, so is V=X "1/2 (Property 6), and
¢ () = VPHV? o H = trace(V?HV?H)
— trace(VHV)(VHV)) = [[VHV|% > 0.
S0 ¢ IS convex.

When X > 0 approaches a singular matrix, its determinant ap-
proaches zero and f(X) — oo.
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Solving SDPs with IPMs
Replace the primal SDP

min C' e X
st.  AX = b,
X =0,

with the primal barrier SDP

min C' e X + puf(X)
s.t. AX =0,

(with a barrier parameter u > 0).
Formulate the Lagrangian

with y € R, and write the first order conditions (FOC) for a
stationary point of L:

C+uf(X)— A*y =0.
Bologna, January 2023 5o




J. Gondzio L3&4: TPMs for QP, NLP, SOCP, SDP
Solving SDPs with IPMs (cont’d)

Use f(X) = —Indet(X) and f/(X)=-X"1
Therefore the FOC become:

C—uX1— A*y=0.
Denote S = uX 1, ie., XS = ul.

For a positive definite matrix X its inverse is also positive definite.

The FOC now become:

AX = b,
A*y+ S = C,
XS = ul,

with X > 0 and S > 0.
Then apply Newton method to the FOC.
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The Rank Minimization Problem

min rank(X)

st. AX)=0b
X € R™ "™ is the unknown and the linear map A : R"*" — R™
and the vector b € R"" are given.

e NP-hard problem

e Applications: matrix completion
(Netflix problem, triangulation from incomplete data),
nonnegative factorization, control and system theory,
1mage Compression.
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A Rank Minimization Heuristic

min rank(X) min || X ||«

—
— N~ —
st. AX) =0 >~ st AX) =10
where || - ||« denotes the nuclear norm (the sum of singular values).

e Convex optimization problem

e Special case:
if X=diag(x), the problem reduces to ¢1-norm minimization:

min card(x) min ||z||;

st. Ax =50 \:2-’ st. Ax =0
heuristic
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SDP formulation

Primal-dual convex formulation (heuristic)

min || X ||« max by
st. A(X)=b st || A (y)]] <1

Primal-dual SDP formulation

min %(TT(Wl) + T'r(Wo)) max bly

W X Im  A%(y)
s.t. xT w, =~ 0 s.t. .A*(y)T I ] =~ 0
A(X) =b

where y € R™, Wy, Wy € R"*™,
A*R™ — R s the adjoint of A,

| - || denotes the operator norm (the maximum singular value).
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Netflix Problem (Matrix Completlon)

Recommender sysftems

amazoncom

The Netflix Prize ($1M): In 2006, Netflix held the first Netflix

Prize competition to find a better program to predict user prefer-

ences and beat its existing Netflix movie recommendation system
by at least 10%.

e Given 100 million ratings on a scale of 1 to 5,
predict 3 million ratings to highest accuracy

e 17770 total movies x 480189 total users
= over § billion total ratings

B;; known for black cells, unknown for white
B — | . .
N Row index: mowvie, Column index: user
Find low-rank W such that W ~ B.
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The Matrix Completion Problem
A small number of entries of a matrix B € R™*™ is known:
all entries B; ;, with (7, j) € €, where Q] =m < mn.
Find an approximation W € R™*" of B such that:

e W has small rank, and

e W and B agree on ).
Matrix Completion Problem

min rank(W)
S.t. Wij = B’éj7 V(z,7) € €.
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SDP Relaxation of Matrix Completion
SDP Relaxation

min &(Tr(Wy) +Tr(Ws)) + Ce X
W, W
W ws,
WZ]:BZ] (Z,j) c()l < Al.X:bl

W e R Wy e RMXM Wy € R™ ™ unknowns, B;;, (i,5) € €
given

S.t. = 0 —~ X =0

Wy W
wt w,

1 0 O
4= gy

U g RM*N. (04) g = { L if (s,8) = (4, ) (A; of rank 2).

e =1, X = € R" " with n = (m +n).

, L =1,...,m, where for each (i, j) €

0 else
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Logarithmic Barrier Function

for the cone SR"™" of positive definite matrices, f : SR — R

—Indet X it X >0
F(X) = { +00 otherwise.
LP: Replace x >0 with —u) 7 Inz;.

SDP: Replace X = 0 with —p 7 1 InA; = —phn([]7_; A)).

Nesterov and Nemirovskii,

Interior Point Polynomial Algorithms in Convexr Programming:
Theory and Applications, STAM, Philadelphia, 1994.

Lemma  The barrier function f(X) is self-concordant on SR ™",
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Interior Point Methods:

e Logarithmic barrier functions for LP, QP, SOCP and SDP

Self-concordant barriers
— polynomial complexity (predictable behaviour)

e Unified view of optimization

— from LP via QP to NLP, SOCP, SDP
e Efficiency
— good for SOCP

— problematic for SDP because solving the problem of size
n involves linear algebra operations in dimension n?

6

— and this requires n"- flops!

Use IPMs in your research!
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