

School of Mathematics

Interior Point Methods for Linear Programming: Motivation \& Theory

Jacek Gondzio
Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/ ${ }^{\text {g gondzio }}$

Outline

- IPM for LP: Motivation
- complementarity conditions
- first order optimality conditions
- central trajectory
- primal-dual framework
- Polynomial Complexity of IPM
- Newton method
- short step path-following method
- polynomial complexity proof

Building Blocks of the IPM

What do we need to derive the Interior Point Method?

- duality theory:

Lagrangian function; first order optimality conditions.

- logarithmic barriers.
- Newton method.

Primal-Dual Pair of Linear Programs

Primal

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x=b, \\
& x \geq 0
\end{array}
$$

Dual

$$
\begin{array}{cc}
\max & b^{T} y \\
\text { s.t. } & A^{T} y+s=c, \\
& s \geq 0
\end{array}
$$

Lagrangian

$$
L(x, y)=c^{T} x-y^{T}(A x-b)-s^{T} x
$$

Optimality Conditions

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =0, \quad\left(\text { i.e., } x_{j} \cdot s_{j}=0 \quad \forall j\right), \\
(x, s) & \geq 0
\end{aligned}
$$

$X=\operatorname{diag}\left\{x_{1}, \cdots, x_{n}\right\}, S=\operatorname{diag}\left\{s_{1}, \cdots, s_{n}\right\}, e=(1, \cdots, 1) \in \mathcal{R}^{n}$.
Bologna, January 2023

Logarithmic barrier

$-\ln x_{j}$
"replaces" the inequality

$$
x_{j} \geq 0
$$

Observe that

$$
\min \mathrm{e}^{-\sum_{j=1}^{n} \ln x_{j}} \Longleftrightarrow \max \prod_{j=1}^{n} x_{j}
$$

The minimization of $-\sum_{j=1}^{n} \ln x_{j}$ is equivalent to the maximization of the product of distances from all hyperplanes defining the positive orthant: it prevents all x_{j} from approaching zero.

Bologna, January 2023

Logarithmic barrier

Replace the primal LP

$$
\begin{gathered}
\min \\
\text { s.t. } \\
\\
\quad x \geq 0,
\end{gathered}
$$

with the primal barrier program

$$
\begin{array}{cc}
\min & c^{T} x-\mu \sum_{j=1}^{n} \ln x_{j} \\
\text { s.t. } & A x=b
\end{array}
$$

Lagrangian: $\quad L(x, y, \mu)=c^{T} x-y^{T}(A x-b)-\mu \sum_{j=1}^{n} \ln x_{j}$.
Bologna, January 2023

Conditions for a stationary point of the Lagrangian

$$
\begin{array}{lr}
\nabla_{x} L(x, y, \mu)=c-A^{T} y-\mu X^{-1} e=0 \\
\nabla_{y} L(x, y, \mu)= & A x-b=0
\end{array}
$$

where $X^{-1}=\operatorname{diag}\left\{x_{1}^{-1}, x_{2}^{-1}, \cdots, x_{n}^{-1}\right\}$.
Let us denote

$$
s=\mu X^{-1} e, \quad \text { i.e. } \quad X S e=\mu e
$$

The First Order Optimality Conditions are:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e \\
(x, s) & >0
\end{aligned}
$$

Central Trajectory

The first order optimality conditions for the barrier problem

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e \\
(x, s) & \geq 0
\end{aligned}
$$

approximate the first order optimality conditions for the LP

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =0 \\
(x, s) & \geq 0
\end{aligned}
$$

more and more closely as μ goes to zero.

Central Trajectory

Parameter μ controls the distance to optimality.

$$
c^{T} x-b^{T} y=c^{T} x-x^{T} A^{T} y=x^{T}\left(c-A^{T} y\right)=x^{T} s=n \mu
$$

Analytic centre (μ-centre): a (unique) point

$$
(x(\mu), y(\mu), s(\mu)), \quad x(\mu)>0, s(\mu)>0
$$

that satisfies FOC.
The path

$$
\{(x(\mu), y(\mu), s(\mu)): \mu>0\}
$$

is called the primal-dual central trajectory.

Newton Method

is used to find a stationary point of the barrier problem.

Recall how to use Newton Method to find a root of a nonlinear equation

$$
f(x)=0 .
$$

A tangent line

$$
z-f\left(x^{k}\right)=\nabla f\left(x^{k}\right) \cdot\left(x-x^{k}\right)
$$

is a local approximation of the graph of the function $f(x)$.
Substituting $z=0$ defines a new point

$$
x^{k+1}=x^{k}-\left(\nabla f\left(x^{k}\right)\right)^{-1} f\left(x^{k}\right)
$$

Newton Method

Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$
f(x, y, s)=0
$$

where $f: \mathcal{R}^{2 n+m} \mapsto \mathcal{R}^{2 n+m}$ is a mapping defined as follows:

$$
f(x, y, s)=\left[\begin{array}{c}
A x-b \\
A^{T} y+s-c \\
X S e-\mu e
\end{array}\right]
$$

Actually, the first two terms of it are linear; only the last one, corresponding to the complementarity condition, is nonlinear.

Newton Method (cont'd)

Note that

$$
\nabla f(x, y, s)=\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right]
$$

Thus, for a given point (x, y, s) we find the Newton direction ($\Delta x, \Delta y, \Delta s$) by solving the system of linear equations:

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
b-A x \\
c-A^{T} y-s \\
\mu e-X S e
\end{array}\right] .
$$

Interior-Point Framework

The logarithmic barrier

$$
-\ln x_{j}
$$

"replaces" the inequality

$$
x_{j} \geq 0
$$

We derive the first order optimality conditions for the primal barrier problem:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e
\end{aligned}
$$

and apply Newton method to solve this system of (nonlinear) equations.
Actually, we fix the barrier parameter μ and make only one (damped) Newton step towards the solution of FOC. We do not solve the current FOC exactly. Instead, we immediately reduce the barrier parameter μ (to ensure progress towards optimality) and repeat the process.
Bologna, January $2023 \quad 14$

Interior Point Algorithm

Initialize

$$
\begin{array}{ll}
k=0 & \left(x^{0}, y^{0}, s^{0}\right) \in \mathcal{F}^{0} \\
\mu_{0}=\frac{1}{n} \cdot\left(x^{0}\right)^{T} s^{0} & \alpha_{0}=0.9995
\end{array}
$$

Repeat until optimality

$$
\begin{aligned}
& k=k+1 \\
& \mu_{k}=\sigma \mu_{k-1}, \text { where } \sigma \in(0,1)
\end{aligned}
$$

$\Delta=(\Delta x, \Delta y, \Delta s)=$ Newton direction towards μ-centre
Ratio test:

$$
\begin{aligned}
& \alpha_{P}:=\max \{\alpha>0: x+\alpha \Delta x \geq 0\}, \\
& \alpha_{D}:=\max \{\alpha>0: s+\alpha \Delta s \geq 0\} .
\end{aligned}
$$

Make step:

$$
\begin{aligned}
& x^{k+1}=x^{k}+\alpha_{0} \alpha_{P} \Delta x \\
& y^{k+1}=y^{k}+\alpha_{0} \alpha_{D} \Delta y \\
& s^{k+1}=s^{k}+\alpha_{0} \alpha_{D} \Delta s
\end{aligned}
$$

Notations

$$
\begin{gathered}
X=\operatorname{diag}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}=\left[\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right] \\
e=(1,1, \cdots, 1) \in \mathcal{R}^{n}, \quad X^{-1}=\operatorname{diag}\left\{x_{1}^{-1}, x_{2}^{-1}, \cdots, x_{n}^{-1}\right\} .
\end{gathered}
$$

An equation $\quad X S e=\mu e$,
is equivalent to

$$
x_{j} s_{j}=\mu, \quad \forall j=1,2, \cdots, n .
$$

Notations(cont'd)

Primal feasible set $\mathcal{P}=\left\{x \in \mathcal{R}^{n} \mid A x=b, x \geq 0\right\}$.
Primal strictly feasible set $\mathcal{P}^{0}=\left\{x \in \mathcal{R}^{n} \mid A x=b, x>0\right\}$.
Dual feasible set $\mathcal{D}=\left\{y \in \mathcal{R}^{m}, s \in \mathcal{R}^{n} \mid A^{T} y+s=c, s \geq 0\right\}$.
Dual strictly feasible set $\mathcal{D}^{0}=\left\{y \in \mathcal{R}^{m}, s \in \mathcal{R}^{n} \mid A^{T} y+s=\right.$ c, $s>0\}$.

Primal-dual feasible set
$\mathcal{F}=\left\{(x, y, s) \mid A x=b, A^{T} y+s=c,(x, s) \geq 0\right\}$.
Primal-dual strictly feasible set
$\mathcal{F}^{0}=\left\{(x, y, s) \mid A x=b, A^{T} y+s=c,(x, s)>0\right\}$.

Path-Following Algorithm

The analysis given in this lecture comes from the book of Steve Wright: Primal-Dual Interior-Point Methods, SIAM Philadelphia, 1997.

We analyze a feasible interior-point algorithm with the following properties:

- all its iterates are feasible and stay in a close neighbourhood of the central path;
- the iterates follow the central path towards optimality;
- systematic (though slow) reduction of duality gap is ensured.

This algorithm is called the short-step path-following method. Indeed, it makes very slow progress (short-steps) to optimality.

Central Path Neighbourhood

Assume a primal-dual strictly feasible solution $(x, y, s) \in \mathcal{F}^{0}$ lying in a neighbourhood of the central path is given; namely (x, y, s) satisfies:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & \approx \mu e .
\end{aligned}
$$

We define a θ-neighbourhood of the central path $N_{2}(\theta)$, a set of primal-dual strictly feasible solutions $(x, y, s) \in \mathcal{F}^{0}$ that satisfy:

$$
\|X S e-\mu e\| \leq \theta \mu
$$

where $\theta \in(0,1)$ and the barrier μ satisfies:

$$
x^{T} s=n \mu
$$

Hence $N_{2}(\theta)=\left\{(x, y, s) \in \mathcal{F}^{0} \mid\|X S e-\mu e\| \leq \theta \mu\right\}$.

Central Path Neighbourhood

$\mathrm{N}_{2}(\theta)$ neighbourhood of the central path

Progress towards optimality

Assume a primal-dual strictly feasible solution $(x, y, s) \in N_{2}(\theta)$ for some $\theta \in(0,1)$ is given.

Interior point algorithm tries to move from this point to another one that also belongs to a θ-neighbourhood of the central path but corresponds to a smaller μ. The required reduction of μ is small:

$$
\mu^{k+1}=\sigma \mu^{k}, \quad \text { where } \quad \sigma=1-\beta / \sqrt{n}
$$

for some $\beta \in(0,1)$.
This is a short-step method:
It makes short steps to optimality.

Progress towards optimality

Given a new μ-centre, interior point algorithm computes Newton direction:

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\sigma \mu e-X S e
\end{array}\right],
$$

and makes step in this direction.

Magic numbers (will be explained later):

$$
\theta=0.1 \quad \text { and } \quad \beta=0.1
$$

θ controls the proximity to the central path;
β controls the progress to optimality.

How to prove the $\mathcal{O}(\sqrt{n})$ complexity result

We will prove the following:

- full step in Newton direction is feasible;
- the new iterate
$\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)$
belongs to the θ-neighbourhood of the new μ-centre (with $\mu^{k+1}=\sigma \mu^{k}$);
- duality gap is reduced $1-\beta / \sqrt{n}$ times.

$\mathcal{O}(\sqrt{n})$ complexity result

Note that since at one iteration duality gap is reduced $1-\beta / \sqrt{n}$ times, after \sqrt{n} iterations the reduction achieves:

$$
(1-\beta / \sqrt{n})^{\sqrt{n}} \approx e^{-\beta}
$$

After $C \cdot \sqrt{n}$ iterations, the reduction is $e^{-C \beta}$. For sufficiently large constant C the reduction can thus be arbitrarily large (i.e. the duality gap can become arbitrarily small).

Hence this algorithm has complexity $\mathcal{O}(\sqrt{n})$.
This should be understood as follows:
> "after the number of iterations proportional to \sqrt{n} the algorithm solves the problem".

Bologna, January 2023

Worst-Case Complexity Result

Technical Results

Lemma 1

Newton direction ($\Delta x, \Delta y, \Delta s$) defined by the equation system

$$
\left[\begin{array}{ccc}
A & 0 & 0 \tag{1}\\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\sigma \mu e-X S e
\end{array}\right],
$$

satisfies:

$$
\Delta x^{T} \Delta s=0
$$

Proof:

From the first two equations in (1) we get

$$
A \Delta x=0 \quad \text { and } \quad \Delta s=-A^{T} \Delta y
$$

Hence

$$
\Delta x^{T} \Delta s=\Delta x^{T} \cdot\left(-A^{T} \Delta y\right)=-\Delta y^{T} \cdot(A \Delta x)=0
$$

Bologna, January 2023

Technical Results (cont'd)

Lemma 2

Let $(\Delta x, \Delta y, \Delta s)$ be the Newton direction that solves the system (1). The new iterate

$$
(\bar{x}, \bar{y}, \bar{s})=(x, y, s)+(\Delta x, \Delta y, \Delta s)
$$

satisfies

$$
\bar{x}^{T} \bar{s}=n \bar{\mu}
$$

where

$$
\bar{\mu}=\sigma \mu
$$

Proof: From the third equation in (1) we get

$$
S \Delta x+X \Delta s=-X S e+\sigma \mu e .
$$

By summing the n components of this equation we obtain

$$
\begin{aligned}
e^{T}(S \Delta x+X \Delta s) & =s^{T} \Delta x+x^{T} \Delta s=-e^{T} X S e+\sigma \mu e^{T} e \\
& =-x^{T} s+n \sigma \mu=-x^{T} s \cdot(1-\sigma)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \bar{x}^{T} \bar{s}=(x+\Delta x)^{T}(s+\Delta s) \\
& \quad=x^{T} s+\left(s^{T} \Delta x+x^{T} \Delta s\right)+(\Delta x)^{T} \Delta s \\
& \quad=x^{T} s+(\sigma-1) x^{T} s+0=\sigma x^{T} s
\end{aligned}
$$

which is equivalent to:

$$
n \bar{\mu}=\sigma n \mu .
$$

Reminder: Norms of the vector $x \in \mathcal{R}^{n}$.

$$
\begin{aligned}
\|x\| & =\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2} \\
\|x\|_{\infty} & =\max _{j \in\{1 . . n\}}\left|x_{j}\right| \\
\|x\|_{1} & =\sum_{j=1}^{n}\left|x_{j}\right|
\end{aligned}
$$

For any $x \in \mathcal{R}^{n}$:

$$
\begin{aligned}
\|x\|_{\infty} & \leq \quad\|x\|_{1} \\
\|x\|_{1} & \leq n \cdot\|x\|_{\infty} \\
\|x\|_{\infty} & \leq \quad\|x\|^{n} \\
\|x\| & \leq \sqrt{n} \cdot\|x\|_{\infty} \\
\|x\| & \leq x \|_{1} \\
\|x\|_{1} & \leq \sqrt{n} \cdot\|x\|
\end{aligned}
$$

Reminder: Triangle Inequality

For any vectors p, q and r and for any norm $\|$.

$$
\|p-q\| \leq\|p-r\|+\|r-q\|
$$

The relation between algebraic and geometric means. For any scalars a and b such that $a b \geq 0$:

$$
\sqrt{|a b|} \leq \frac{1}{2} \cdot|a+b|
$$

Technical Result (algebra)

Lemma 3 Let u and v be any two vectors in \mathcal{R}^{n} such that $u^{T} v \geq 0$. Then

$$
\|U V e\| \leq 2^{-3 / 2}\|u+v\|^{2}
$$

where $U=\operatorname{diag}\left\{u_{1}, \cdots, u_{n}\right\}, V=\operatorname{diag}\left\{v_{1}, \cdots, v_{n}\right\}$.
Proof: Let us partition all products $u_{j} v_{j}$ into positive and negative ones:

$$
\begin{gathered}
\mathcal{P}=\left\{j \mid u_{j} v_{j} \geq 0\right\} \quad \text { and } \quad \mathcal{M}=\left\{j \mid u_{j} v_{j}<0\right\}: \\
0 \leq u^{T} v=\sum_{j \in \mathcal{P}} u_{j} v_{j}+\sum_{j \in \mathcal{M}} u_{j} v_{j}=\sum_{j \in \mathcal{P}}\left|u_{j} v_{j}\right|-\sum_{j \in \mathcal{M}}\left|u_{j} v_{j}\right| .
\end{gathered}
$$

Proof (cont'd)

We can now write

$$
\begin{aligned}
\|U V e\| & =\left(\left\|\left[u_{j} v_{j}\right]_{j \in \mathcal{P}}\right\|^{2}+\left\|\left[u_{j} v_{j}\right]_{j \in \mathcal{M}}\right\|^{2}\right)^{1 / 2} \\
& \leq\left(\left\|\left[u_{j} v_{j}\right]_{j \in \mathcal{P}}\right\|_{1}^{2}+\left\|\left[u_{j} v_{j}\right]_{j \in \mathcal{M}}\right\|_{1}^{2}\right)^{1 / 2} \\
& \leq\left(2\left\|\left[u_{j} v_{j}\right]_{j \in \mathcal{P}}\right\|_{1}^{2}\right)^{1 / 2} \\
& \leq \sqrt{2}\left\|\left[\frac{1}{4}\left(u_{j}+v_{j}\right)^{2}\right]_{j \in \mathcal{P}}\right\|_{1} \\
& =2^{-3 / 2} \sum_{j \in \mathcal{P}}\left(u_{j}+v_{j}\right)^{2} \\
& \leq 2^{-3 / 2} \sum_{j=1}^{n}\left(u_{j}+v_{j}\right)^{2} \\
& =2^{-3 / 2}\|u+v\|^{2}, \quad \text { as requested. }
\end{aligned}
$$

IPM Technical Results (cont'd)

Lemma 4
If $(x, y, s) \in N_{2}(\theta)$ for some $\theta \in(0,1)$, then

$$
(1-\theta) \mu \leq x_{j} s_{j} \leq(1+\theta) \mu \quad \forall j
$$

In other words,

$$
\begin{aligned}
\min _{j \in\{1 . . n\}} x_{j} s_{j} & \geq(1-\theta) \mu, \\
\max _{j \in\{1 . . n\}} x_{j} s_{j} & \leq(1+\theta) \mu .
\end{aligned}
$$

Proof:

Since $\|x\|_{\infty} \leq\|x\|$, from the definition of $N_{2}(\theta)$,

$$
N_{2}(\theta)=\left\{(x, y, s) \in \mathcal{F}^{0} \mid\|X S e-\mu e\| \leq \theta \mu\right\}
$$

we conclude

$$
\|X S e-\mu e\|_{\infty} \leq\|X S e-\mu e\| \leq \theta \mu
$$

Hence

$$
\left|x_{j} s_{j}-\mu\right| \leq \theta \mu \quad \forall j
$$

which is equivalent to

$$
-\theta \mu \leq x_{j} s_{j}-\mu \leq \theta \mu \quad \forall j
$$

Thus

$$
(1-\theta) \mu \leq x_{j} s_{j} \leq(1+\theta) \mu \quad \forall j
$$

IPM Technical Results (cont'd)

Lemma 5

If $(x, y, s) \in N_{2}(\theta)$ for some $\theta \in(0,1)$, then

$$
\|X S e-\sigma \mu e\|^{2} \leq \theta^{2} \mu^{2}+(1-\sigma)^{2} \mu^{2} n
$$

Proof:
Note first that

$$
e^{T}(X S e-\mu e)=x^{T} s-\mu e^{T} e=n \mu-n \mu=0
$$

Therefore

$$
\begin{aligned}
& \|X S e-\sigma \mu e\|^{2} \\
& \quad=\|(X S e-\mu e)+(1-\sigma) \mu e\|^{2} \\
& \quad=\|X S e-\mu e\|^{2}+2(1-\sigma) \mu e^{T}(X S e-\mu e)+(1-\sigma)^{2} \mu^{2} e^{T} e \\
& \quad \leq \theta^{2} \mu^{2}+(1-\sigma)^{2} \mu^{2} n .
\end{aligned}
$$

IPM Technical Results (cont'd)

Lemma 6

If $(x, y, s) \in N_{2}(\theta)$ for some $\theta \in(0,1)$, then

$$
\|\Delta X \Delta S e\| \leq \frac{\theta^{2}+n(1-\sigma)^{2}}{2^{3 / 2}(1-\theta)} \mu
$$

Proof: 3rd equation in the Newton system gives

$$
S \Delta x+X \Delta s=-X S e+\sigma \mu e .
$$

Having multiplied it with $(X S)^{-1 / 2}$, we obtain

$$
X^{-1 / 2} S^{1 / 2} \Delta x+X^{1 / 2} S^{-1 / 2} \Delta s=(X S)^{-1 / 2}(-X S e+\sigma \mu e)
$$

Proof (cont'd)

Define $u=X^{-1 / 2} S^{1 / 2} \Delta x$ and $v=X^{1 / 2} S^{-1 / 2} \Delta s$ and observe that (by Lemma 1) $u^{T} v=\Delta x^{T} \Delta s=0$. Now apply Lemma 3:

$$
\begin{aligned}
&\|\Delta X \Delta S e\|=\left\|\left(X^{-1 / 2} S^{1 / 2} \Delta X\right)\left(X^{1 / 2} S^{-1 / 2} \Delta S\right) e\right\| \\
& \leq 2^{-3 / 2}\left\|X^{-1 / 2} S^{1 / 2} \Delta x+X^{1 / 2} S^{-1 / 2} \Delta s\right\|^{2} \\
&=2^{-3 / 2}\left\|X^{-1 / 2} S^{-1 / 2}(-X S e+\sigma \mu e)\right\|^{2} \\
&=2^{-3 / 2} \sum_{j=1}^{n} \frac{\left(-x_{j} s_{j}+\sigma \mu\right)^{2}}{x_{j} s_{j}} \\
& \leq 2^{-3 / 2\|X S e-\sigma \mu e\|^{2}} \\
& \min _{j} x_{j} s_{j} \\
& \leq \frac{\theta^{2}+n(1-\sigma)^{2}}{2^{3 / 2}(1-\theta)} \mu \quad \text { (by Lemmas } 4 \text { and 5). }
\end{aligned}
$$

Magic Numbers

We have previously set two parameters for the short-step pathfollowing method:

$$
\theta \in[0.05,0.1] \quad \text { and } \beta \in[0.05,0.1] .
$$

Now it's time to justify this particular choice.
Both θ and β have to be small to make sure that a full step in the Newton direction does not take the new iterate outside the neighbourhood $N_{2}(\theta)$.
θ controls the proximity to the central path;
β controls the progress to optimality.

Magic numbers choice lemma

Lemma 7 If $\theta \in[0.05,0.1]$ and $\beta \in[0.05,0.1]$, then

$$
\frac{\theta^{2}+n(1-\sigma)^{2}}{2^{3 / 2}(1-\theta)} \leq \sigma \theta
$$

Proof:
Recall that

$$
\sigma=1-\beta / \sqrt{n}
$$

Hence

$$
n(1-\sigma)^{2}=\beta^{2}
$$

and for any $\beta \in[0.05,0.1]$ (for any $n \geq 1$)

$$
\sigma \geq 0.9
$$

Substituting $\theta \in[0.05,0.1]$ and $\beta \in[0.05,0.1]$, we obtain

$$
\frac{\theta^{2}+n(1-\sigma)^{2}}{2^{3 / 2}(1-\theta)}=\frac{0.1^{2}+0.1^{2}}{2^{3 / 2} \cdot 0.9} \leq 0.02 \leq 0.9 \cdot 0.1 \leq \sigma \theta
$$

Bologna, January 2023

Full Newton step in $N_{2}(\theta)$

Lemma 8 Suppose $(x, y, s) \in N_{2}(\theta)$ and $(\Delta x, \Delta y, \Delta s)$ is the Newton direction computed from the system (1). Then the new iterate

$$
(\bar{x}, \bar{y}, \bar{s})=(x, y, s)+(\Delta x, \Delta y, \Delta s)
$$

satisfies $(\bar{x}, \bar{y}, \bar{s}) \in N_{2}(\theta)$, i.e. $\|\bar{X} \bar{S} e-\bar{\mu} e\| \leq \theta \bar{\mu}$.
Proof: From Lemma 2, the new iterate $(\bar{x}, \bar{y}, \bar{s})$ satisfies

$$
\bar{x}^{T} \bar{s}=n \bar{\mu}=n \sigma \mu,
$$

so we have to prove that $\|\bar{X} \bar{S} e-\bar{\mu} e\| \leq \theta \bar{\mu}$.
For a given component $j \in\{1 . . n\}$, we have

$$
\begin{aligned}
\bar{x}_{j} \bar{s}_{j}-\bar{\mu} & =\left(x_{j}+\Delta x_{j}\right)\left(s_{j}+\Delta s_{j}\right)-\bar{\mu} \\
& =x_{j} s_{j}+\left(s_{j} \Delta x_{j}+x_{j} \Delta s_{j}\right)+\Delta x_{j} \Delta s_{j}-\bar{\mu} \\
& =x_{j} s_{j}+\left(-x_{j} s_{j}+\sigma \mu\right)+\Delta x_{j} \Delta s_{j}-\sigma \mu \\
& =\Delta x_{j} \Delta s_{j} .
\end{aligned}
$$

Proof (cont'd)

Thus, from Lemmas 6 and 7, we get

$$
\begin{aligned}
\|\bar{X} \bar{S} e-\bar{\mu} e\| & =\|\Delta X \Delta S e\| \\
& \leq \frac{\theta^{2}+n(1-\sigma)^{2}}{2^{3 / 2}(1-\theta)} \mu \\
& \leq \sigma \theta \mu \\
& =\theta \bar{\mu} .
\end{aligned}
$$

A property of \log function

Lemma 9 For all $\delta>-1$:

$$
\ln (1+\delta) \leq \delta
$$

Proof:

Consider the function

$$
f(\delta)=\delta-\ln (1+\delta)
$$

and its derivative

$$
f^{\prime}(\delta)=1-\frac{1}{1+\delta}=\frac{\delta}{1+\delta}
$$

Obviously $f^{\prime}(\delta)<0$ for $\delta \in(-1,0)$ and $f^{\prime}(\delta)>0$ for $\delta \in(0, \infty)$. Hence $f($.$) has a minimum at \delta=0$. We find that $f(\delta=0)=0$. Consequently, for any $\delta \in(-1, \infty), f(\delta) \geq 0$, i.e.

$$
\delta-\ln (1+\delta) \geq 0
$$

$\mathcal{O}(\sqrt{n})$ Complexity Result

Theorem 10

Given $\epsilon>0$, suppose that a feasible starting point $\left(x^{0}, y^{0}, s^{0}\right) \in$ $N_{2}(0.1)$ satisfies

$$
\left(x^{0}\right)^{T} s^{0}=n \mu^{0}, \text { where } \mu^{0} \leq 1 / \epsilon^{\kappa}
$$

for some positive constant κ. Then there exists an index K with $K=\mathcal{O}(\sqrt{n} \ln (1 / \epsilon))$ such that

$$
\mu^{k} \leq \epsilon, \quad \forall k \geq K
$$

$\mathcal{O}(\sqrt{n})$ Complexity Result

Proof: From Lemma 2, $\mu^{k+1}=\sigma \mu^{k}$. Having taken logarithms of both sides of this equality we obtain

$$
\ln \mu^{k+1}=\ln \sigma+\ln \mu^{k} .
$$

By repeatedly applying this formula and using $\mu^{0} \leq 1 / \epsilon^{\kappa}$, we get

$$
\ln \mu^{k}=k \ln \sigma+\ln \mu^{0} \leq k \ln (1-\beta / \sqrt{n})+\kappa \ln (1 / \epsilon)
$$

From Lemma 9 we have $\ln (1-\beta / \sqrt{n}) \leq-\beta / \sqrt{n}$. Thus

$$
\ln \mu^{k} \leq k(-\beta / \sqrt{n})+\kappa \ln (1 / \epsilon)
$$

To satisfy $\mu^{k} \leq \epsilon$, we need:

$$
k(-\beta / \sqrt{n})+\kappa \ln (1 / \epsilon) \leq \ln \epsilon
$$

This inequality holds for any $k \geq K$, where

$$
K=\frac{\kappa+1}{\beta} \cdot \sqrt{n} \cdot \ln (1 / \epsilon) .
$$

Polynomial Complexity Result

Main ingredients of the polynomial complexity result for the shortstep path-following algorithm:

Stay close to the central path:
all iterates stay in the $N_{2}(\theta)$ neighbourhood of the central path.
Make (slow) progress towards optimality: reduce systematically duality gap

$$
\mu^{k+1}=\sigma \mu^{k}
$$

where

$$
\sigma=1-\beta / \sqrt{n}
$$

for some $\beta \in(0,1)$.

Reading about IPMs

S. Wright

Primal-Dual Interior-Point Methods, SIAM Philadelphia, 1997.

Gondzio

Interior point methods 25 years later,
European J. of Operational Research 218 (2012) 587-601.
http://www.maths.ed.ac.uk/~gondzio/reports/ipmXXV.html
Gondzio and Grothey
Direct solution of linear systems of size 10^{9} arising in optimization with interior point methods, in: Parallel Processing and Applied Mathematics PPAM 2005, R. Wyrzykowski, J. Dongarra, N. Meyer and J. Wasniewski (eds.), Lecture Notes in Computer Science, 3911, Springer-Verlag, Berlin, 2006, pp 513-525.

OOPS: Object-Oriented Parallel Solver http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

