

Alternating Direction
 Method of Multipliers (ADMM)

Jacek Gondzio
Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/ ${ }^{\text {g gondzio }}$

Alternating Direction Method of Multipliers (ADMM)

- Exploits Duality
- Has inexpensive iterations
- Suitable for problems with loosely coupled variables
- Numerous applications:
- machine learning/statistics (large data sets),
- image processing,
- decentralized optimization.

Dual Decomposition

Consider equality constrained optimization problem

$$
\begin{array}{cc}
\min & f(x) \\
\text { s.t. } & A x=b
\end{array}
$$

where $x \in \mathcal{R}^{n}, f: \mathcal{R}^{n} \mapsto \mathcal{R}, A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}$. Usually $m \leq n$. In this lecture f is convex. (In general it does not have to be.) We associate Lagrange multipliers $y \in \mathcal{R}^{m}$ with equality constraints $A x=b$ and write the Lagrangian:

$$
L(x, y)=f(x)+y^{T}(A x-b)
$$

dual function:

$$
L_{D}(y)=\inf _{x} L(x, y)
$$

and dual problem:

$$
\max _{y} L_{D}(y)
$$

Having found the solution of the dual at \hat{y}, we recover

$$
\hat{x}=\operatorname{argmin}_{x} L(x, \hat{y}) .
$$

Bologna, January 2023

Dual Ascent Method

Apply a (simple) gradient method for the dual problem, i.e. make steps in direction of $\nabla L_{D}(y)$:

$$
y^{k+1}=y^{k}+\alpha^{k} \nabla L_{D}\left(y^{k}\right)
$$

Observe that

$$
\nabla L_{D}\left(y^{k}\right)=A \tilde{x}-b
$$

where $\tilde{x}=\operatorname{argmin}_{x} L\left(x, y^{k}\right)$.
Dual Ascent Method:
repeat until optimality is reached:

$$
\begin{aligned}
x^{k+1} & =\operatorname{argmin}_{x} L\left(x, y^{k}\right) & & \text { minimize in } x \\
y^{k+1} & =y^{k}+\alpha^{k}\left(A x^{k+1}-b\right) & & \text { update Lagrange multipliers } y
\end{aligned}
$$

Theory:
Strong assumptions are required for such a simple method to work.

Dual Decomposition and Separable Objective

 Suppose the objective function is separable:$$
f(x)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{p}\left(x_{p}\right), \quad x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)
$$

Rewrite the problem in the following form:

$$
\begin{array}{cl}
\min & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{p}\left(x_{p}\right) \\
\mathrm{s.t.} & A_{1} x_{1}+A_{2} x_{2}+\cdots+A_{p} x_{p}=b
\end{array}
$$

and observe that the Lagrangian is separable in x :

$$
L(x, y)=L_{1}\left(x_{1}, y\right)+L_{2}\left(x_{2}, y\right)+\cdots+L_{p}\left(x_{p}, y\right)-y^{T} b
$$

where $L_{i}\left(x_{i}, y\right)=f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}, i=1,2, \ldots, p$.
Hence the minimization in x may be split into p separate tasks:

$$
x_{i}^{k+1}=\operatorname{argmin}_{x_{i}} L_{i}\left(x_{i}, y^{k}\right), i=1,2, \ldots, p
$$

which do not depend on each other, and may be executed in parallel.
Bologna, January 2023

Dual Decomposition in Separable Case

 Dual Ascent Method (Separable Case): repeat until optimality is reached:$$
\begin{aligned}
x_{i}^{k+1} & =\operatorname{argmin}_{x_{i}} L_{i}\left(x_{i}, y^{k}\right), \quad i=1,2, \ldots, p, \\
y^{k+1} & =y^{k}+\alpha^{k}\left(\sum_{i=1}^{p} A_{i} x_{i}^{k+1}-b\right)
\end{aligned}
$$

'Decomposition' because we decompose a large problem into pieces. Two widely used decomposition schemes rely on such a framework:

- Dantzig-Wolfe Decomposition (1960)
- Benders Decomposition (1961)
\longrightarrow essential tools for solving combinatorial optimization problems. They have a weakness though: they may be slow.

Method of Multiplers

An identifiable weakness of Dual Decomposition is the difficulty to satisfy the constraint $A x=b$. This may be addressed by giving this constraint a more prominent role and adding to the Lagrangian the quadratic penalty of the constraint violation.
Define the Augmented Lagrangian:

$$
L_{\rho}(x, y)=f(x)+y^{T}(A x-b)+\frac{\rho}{2}\|(A x-b)\|^{2}
$$

where ρ is a weight of the penalty.
This gives the Method of Multipliers (Hestenes, 1969, Powell, 1969):
repeat until optimality is reached:

$$
\begin{aligned}
& x^{k+1}=\operatorname{argmin}_{x} L_{\rho}\left(x, y^{k}\right) \\
& y^{k+1}=y^{k}+\rho\left(A x^{k+1}-b\right)
\end{aligned}
$$

The method is similar to the dual ascent.
It minimizes $L_{\rho}\left(x, y^{k}\right)$ instead of $L\left(x, y^{k}\right)$
and uses a fixed dual update stepsize ρ instead of α.
Bologna, January 2023

Convergence of the Method of Multiplers

 If the objective function in the optimization problem$$
\min f(x) \text { s.t. } A x=b
$$

is differentiable, then the optimality conditions are:

$$
\begin{aligned}
\nabla f(\hat{x})+A^{T} \hat{y} & =0 & & \text { dual feasibility } \\
A \hat{x} & =b & & \text { primal feasibility }
\end{aligned}
$$

Observe that since x^{k+1} minimizes $L_{\rho}\left(x, y^{k}\right)$, the dual update

$$
y^{k+1}=y^{k}+\rho\left(A x^{k+1}-b\right)
$$

ensures that $\left(x^{k+1}, y^{k+1}\right)$ is dual feasible. Indeed:

$$
\begin{aligned}
0=\nabla_{x} L_{\rho}\left(x^{k+1}, y^{k}\right) & =\nabla_{x} f\left(x^{k+1}\right)+A^{T}\left(y^{k}+\rho\left(A x^{k+1}-b\right)\right) \\
& =\nabla_{x} f\left(x^{k+1}\right)+A^{T} y^{k+1}
\end{aligned}
$$

However, the primal feasibility is attained only in the limit

$$
A x^{k+1}-b \rightarrow 0
$$

Method of Multiplers vs Dual Decomposition

 Method of Multiplers:- converges under more relaxed assumptions (f can be nondifferentiable)
- deals better with the primal feasibility $A x-b$ (presence of $\|A x-b\|^{2}$ in the Augmented Lagrangian helps) but
- the quadratic penalty $\|A x-b\|^{2}$ in L_{ρ} destroys separability \rightarrow cannot be used in decomposition.
Alternating Direction Method of Multipliers (ADMM)
ADMM offers a compromise:
- enjoys some of the benefits of the method of multipliers
- is well-suited to decomposition

Gabay and Mercier (1976), Glowinski and Marrocco (1975).

Alternating Direction Method of Multipliers (ADMM)

Consider a problem in the following form:

$$
\begin{array}{cc}
\min & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { s.t. } & A_{1} x_{1}+A_{2} x_{2}=b,
\end{array}
$$

where $f_{1}: \mathcal{R}^{n_{1}} \mapsto \mathcal{R}$, and $f_{2}: \mathcal{R}^{n_{2}} \mapsto \mathcal{R}$ are convex functions (do not have to be differentiable), $A_{i} \in \mathcal{R}^{m \times n_{i}}, i=1,2, b \in \mathcal{R}^{m}$. Observe that the objective is separable, but the constraint links x_{1} and x_{2}.
Write down the associated Augmented Lagrangian:

$$
\begin{array}{r}
L_{\rho}\left(x_{1}, x_{2}, y\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+y^{T}\left(A_{1} x_{1}+A_{2} x_{2}-b\right) \tag{1}\\
+\frac{\rho}{2}\left\|\left(A_{1} x_{1}+A_{2} x_{2}-b\right)\right\|^{2} .
\end{array}
$$

Bologna, January 2023

Alternating Direction Method of Multipliers (ADMM)

repeat until optimality is reached:
$x_{1}^{k+1}=\operatorname{argmin}_{x_{1}} L_{\rho}\left(x_{1}, x_{2}^{k}, y^{k}\right)$
$x_{2}^{k+1}=\operatorname{argmin}_{x_{2}} L_{\rho}\left(x_{1}^{k+1}, x_{2}, y^{k}\right)$
minimize in x_{1}
$y^{k+1}=y^{k}+\rho\left(A_{1} x_{1}^{k+1}+A_{2} x_{2}^{k+1}-b\right) \quad$ update multipliers y
Observe that the optimization in x_{1} uses the "old" x_{2}^{k}, but the optimization in x_{2} uses already the "new" (updated) x_{1}^{k+1}.

Convergence of the $\mathbf{A D M M}$ If the functions f_{1} and f_{2} in the objective are differentiable, then the optimality conditions are:

$$
\begin{array}{rll}
\nabla f_{1}\left(\hat{x}_{1}\right)+A_{1}^{T} \hat{y}=0 & \text { 1st dual feasibility } \\
\nabla f_{2}\left(\hat{x}_{2}\right)+A_{2}^{T} \hat{y}=0 & \text { 2nd dual feasibility } \\
A_{1} \hat{x}_{1}+A_{2} \hat{x}_{2}=b & & \text { primal feasibility }
\end{array}
$$

Note that since x_{2}^{k+1} minimizes $L_{\rho}\left(x_{1}^{k+1}, x_{2}, y^{k}\right)$, the dual update

$$
y^{k+1}=y^{k}+\rho\left(A x^{k+1}-b\right)
$$

guarantees that $\left(x_{1}^{k+1}, x_{2}^{k+1}, y^{k+1}\right)$ satisfies the 2nd dual feasibility constraint. Indeed:

$$
\begin{aligned}
0 & =\nabla_{x_{2}} f_{2}\left(x_{2}^{k+1}\right)+A_{2}^{T} y^{k}+\rho A_{2}^{T}\left(A_{1} x_{1}^{k+1}+A_{2} x_{2}^{k+1}-b\right) \\
& =\nabla_{x_{2}} f_{2}\left(x_{2}^{k+1}\right)+A_{2}^{T}\left(y^{k}+\rho\left(A x^{k+1}-b\right)\right) \\
& =\nabla_{x_{2}} f_{2}\left(x_{2}^{k+1}\right)+A_{2}^{T} y^{k+1} .
\end{aligned}
$$

However, the 1st dual feasibility and primal feasibility are attained only in the limit (at convergence).
Bologna, January 2023

Convergence of the ADMM

Consider a problem in the following form:

$$
\begin{array}{cc}
\min & F\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { s.t. } & A_{1} x_{1}+A_{2} x_{2}=b,
\end{array}
$$

where $f_{1}: \mathcal{R}^{n_{1}} \mapsto \mathcal{R}$, and $f_{2}: \mathcal{R}^{n_{2}} \mapsto \mathcal{R}$ are convex functions (do not have to be differentiable), $A_{i} \in \mathcal{R}^{m \times n_{i}}, i=1,2, b \in \mathcal{R}^{m}$.

Convergence of the ADMM

Theorem. Suppose f_{1} and f_{2} are closed convex functions, and γ is any constant which satisfies $\gamma>2\|\hat{y}\|_{2}$. Then

$$
\begin{aligned}
F\left(x_{1}^{t}, x_{2}^{t}\right)-F\left(\hat{x}_{1}, \hat{x}_{2}\right) & \leq \frac{\left\|x_{2}^{0}-\hat{x}_{2}\right\|_{\rho A_{2}^{T} A_{2}}^{2}+\left(\gamma+\left\|y^{0}\right\|_{2}\right)^{2} / \rho}{2(t+1)} \\
\left\|A_{1} x_{1}^{t}+A_{2} x_{2}^{t}-b\right\|_{2} & \leq \frac{\left\|x_{2}^{0}-\hat{x}_{2}\right\|_{\rho A_{2}^{T} A_{2}}^{2}+\left(\gamma+\left\|y^{0}\right\|_{2}\right)^{2} / \rho}{\gamma(t+1)}
\end{aligned}
$$

where $x_{1}^{t}:=\frac{1}{t+1} \sum_{k=1}^{t+1} x_{1}^{k}, \quad x_{2}^{t}:=\frac{1}{t+1} \sum_{k=1}^{t+1} x_{2}^{k}$,
and for $C \succeq 0$, we define $\|u\|_{C}^{2}:=u^{T} C u$.
Theoretical convergence of ADMM is slow:
$\mathcal{O}(1 / t)$ convergence rate and $\mathcal{O}(1 / \epsilon)$ iteration complexity. (To compare: IPMs enjoy $\mathcal{O}(\log (1 / \epsilon))$ iteration complexity.)

ADMM: From 2 blocks to p blocks

Consider a problem in the following form:

$$
\begin{array}{cc}
\min & \sum_{i=1}^{p} f_{i}\left(x_{i}\right) \\
\text { s.t. } & \sum_{i=1}^{p} A_{i} x_{i}=b,
\end{array}
$$

where $f_{i}: \mathcal{R}^{n_{i}} \mapsto \mathcal{R}, i=1,2, \ldots, p$, are convex functions (do not have to be differentiable), $A_{i} \in \mathcal{R}^{m \times n_{i}}, i=1,2, \ldots, p, b \in \mathcal{R}^{m}$. Observe that the objective is separable, but the constraint links all the variables x_{i}.
Write down the associated Augmented Lagrangian:

$$
\begin{array}{r}
L_{\rho}\left(x_{1}, x_{2}, \ldots, x_{p}, y\right)=\sum_{i=1}^{p} f_{i}\left(x_{i}\right)+y^{T}\left(\sum_{i=1}^{p} A_{i} x_{i}-b\right) \\
+\frac{\rho}{2}\left\|\left(\sum_{i=1}^{p} A_{i} x_{i}-b\right)\right\|^{2}
\end{array}
$$

ADMM: From 2 blocks to p blocks

Multiple block version of ADMM: repeat until optimality is reached:

$$
\begin{aligned}
x_{1}^{k+1} & =\operatorname{argmin}_{x_{1}} L_{\rho}\left(x_{1}, x_{2}^{k}, \ldots, x_{p}^{k}, y^{k}\right) & & \text { minimize in } x_{1} \\
x_{2}^{k+1} & =\operatorname{argmin}_{x_{2}} L_{\rho}\left(x_{1}^{k+1}, x_{2}, \ldots, x_{p}^{k}, y^{k}\right) & & \text { minimize in } x_{2} \\
\vdots & & & \\
x_{p}^{k+1} & =\operatorname{argmin}_{x_{p}} L_{\rho}\left(x_{1}^{k+1}, x_{2}^{k+1}, \ldots, x_{p}, y^{k}\right) & & \text { minimize in } x_{p} \\
y^{k+1} & =y^{k}+\rho\left(\sum_{i=1}^{p} A_{i} x_{i}^{k+1}-b\right) & & \text { update } y
\end{aligned}
$$

Comments on Convergence

While (under suitable assumptions) the 2-block ADMM is proved to converge, the p-block version does not have to converge, see:
C. Chen, B. He, Y. Ye, X. Yuan, "The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent", Mathematical Prog A 155 (2016) pp. 57-79. Example with null objective:
min 0

$$
\text { s.t. } A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}=0,
$$

where

$$
A_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad A_{2}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \quad A_{3}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] .
$$

Observe that $A=\left[A_{1}, A_{2}, A_{3}\right]$ is nonsingular. Since the right-handside $b=0$, the feasible set contains a single element $\hat{x}_{1}=\hat{x}_{2}=\hat{x}_{3}=$ 0 . Since the objective is null, the optimal Lagrange multiplier $\hat{y}=0$. The 3-block ADMM is divergent for this problem.
Bologna, January 2023

Applications

ADMM is particularly attractive when the independent minimizations in x_{i} are significantly easier than the minimization of the aggregate objective $\sum_{i=1}^{p} f_{i}\left(x_{i}\right)$.
Sometimes a non-separable problem is converted to a separable one, just to be able to apply ADMM because of its attractive features, namely, its ability to make independent optimizations in x_{i}. Example: Consider a non-separable problem

$$
\begin{array}{cc}
\min & f_{1}(x)+f_{2}(x) \\
\text { s.t. } & A x=b,
\end{array}
$$

in which both functions f_{1} and f_{2} depend on the same variable x. We create a copy of variable x and rewrite the above problem as:

$$
\begin{array}{cc}
\min & f_{1}(x)+f_{2}(z) \\
\text { s.t. } & A x=b \\
& x-z=0
\end{array}
$$

in a form suitable for ADMM.
Bologna, January 2023

Example: ADMM for ℓ_{1}-regularized Least Squares

Recall $\boldsymbol{\ell}_{\boldsymbol{1}}$-regularized least squares

$$
\min \tau\|x\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2}
$$

where $A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}$. Usually $m \geq n$ (and often $m \gg n$). This problem may be cast in a form suitable for ADMM:

$$
\begin{array}{cc}
\min & \tau\|z\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2} \\
\text { s.t. } & x-z=0 .
\end{array}
$$

Write down the associated Augmented Lagrangian:

$$
L_{\rho}(x, z, y)=\tau\|z\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2}+y^{T}(x-z)+\frac{\rho}{2}\|x-z\|_{2}^{2} .
$$

Example: ADMM for ℓ_{1}-regularized Least Squares

 With such Augmented Lagrangian:$$
L_{\rho}(x, z, y)=\tau\|z\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2}+y^{T}(x-z)+\frac{\rho}{2}\|x-z\|_{2}^{2}
$$

Minimization in x exploits the differentiability of L_{ρ} in x :

$$
\nabla_{x} L_{\rho}(x, z, y)=A^{T}(A x-b)+\rho(x-z)+y=0
$$

which gives

$$
x=\left(A^{T} A+\rho I\right)^{-1}\left(A^{T} b+\rho z-y\right) .
$$

Minimization in z requires:

$$
\min _{z}\left(\tau\|z\|_{1}+\frac{\rho}{2}\|z-x-y / \rho\|_{2}^{2}\right),
$$

and is perfectly separable into n independent coordinates:

$$
\min _{z_{i}}\left(\tau\left|z_{i}\right|+\frac{\rho}{2}\left(z_{i}-x_{i}-y_{i} / \rho\right)^{2}\right), \quad i=1,2, \ldots n
$$

Bologna, January 2023

Soft Thresholding

In ℓ_{1}-regularized least squares (and in many other applications) there is a need to perform a one-dimensional update of z_{i} :

$$
z_{i}^{+}:=\operatorname{argmin}_{z_{i}}\left(\tau\left|z_{i}\right|+\frac{\rho}{2}\left(z_{i}-u\right)^{2}\right),
$$

Although the first term is not differentiable because it involves the absolute value, we can easily compute a closed-form solution:

$$
z_{i}^{+}:=S_{\tau / \rho}(u)
$$

where the soft thresholding operator S is defined as:

$$
S_{\tau / \rho}(u)=\left\{\begin{array}{llc}
u-\tau / \rho & \text { if } \quad u>\tau / \rho \\
0 & \text { if }|u| \leq \tau / \rho \\
u+\tau / \rho & \text { if } \quad u<-\tau / \rho
\end{array}\right.
$$

or equivalently:

$$
S_{\tau / \rho}(u)=(u-\tau / \rho)_{+}-(-u-\tau / \rho)_{+},
$$

where $v_{+}:=\max (v, 0)$.
Bologna, January 2023

Example: ADMM for ℓ_{1}-regularized Least Squares

 ℓ_{1}-regularized least squares problem cast in a form suitable for ADMM:$$
\begin{array}{cc}
\min & \tau\|z\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2} \\
\text { s.t. } & x-z=0 .
\end{array}
$$

where $A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}$. Usually $m \geq n$ (and often $m \gg n$). ADMM:
repeat until optimality is reached:

$$
\begin{aligned}
x^{k+1} & =\left(A^{T} A+\rho I\right)^{-1}\left(A^{T} b+\rho z^{k}-y^{k}\right) \\
z^{k+1} & =S_{\tau / \rho}\left(x^{k+1}+y^{k} / \rho\right) \\
y^{k+1} & =y^{k}+\rho\left(x^{k+1}-z^{k+1}\right),
\end{aligned}
$$

where $S_{\tau / \rho}($.$) is the soft thresholding operator:$

$$
S_{\tau / \rho}(u)=(u-\tau / \rho)_{+}-(-u-\tau / \rho)_{+} .
$$

The optimization in z is split component-wise and enjoys a trivial solution.

Bologna, January 2023

Example: ADMM for Consensus optimization

Consider a non-separable problem

$$
\min \sum_{i=1}^{p} f_{i}(x)
$$

in which all functions $f_{i}, i=1,2, \ldots p$ depend on the same variable x. In machine learning, f_{i} might be the loss function for the i-th block of training data.
We create p copies of variable x, call them x_{i}, add new constraints $x_{i}=z, \forall i$, and then rewrite the above problem as:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{p} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{i}-z=0, \quad i=1,2, \ldots, p
\end{array}
$$

in a form suitable for ADMM. In this problem:
x_{i} are the local variables, z is a global variable and the constraint $x_{i}-z=0$ forces all (independent) sub-problems to agree on a common value z, i.e., to reach a consensus.

Example: ADMM for Consensus optimization (cont'd)

Write down the associated Augmented Lagrangian:
$L_{\rho}\left(x_{1}, x_{2}, \ldots, x_{p}, z, y_{1}, y_{2}, \ldots, y_{p}\right)=\sum_{i=1}^{p}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+\frac{\rho}{2}\left\|x_{i}-z\right\|^{2}\right)$.

ADMM:

repeat until optimality is reached:

$$
\begin{aligned}
x_{i}^{k+1} & =\operatorname{argmin}_{x_{i}}\left(f_{i}\left(x_{i}\right)+\left(y_{i}^{k}\right)^{T}\left(x_{i}-z^{k}\right)+\frac{\rho}{2}\left\|x_{i}-z^{k}\right\|^{2}\right), i=1 . . p \\
z^{k+1} & =\frac{1}{p} \sum_{i=1}^{p}\left(x_{i}^{k+1}+y_{i}^{k} / \rho\right) \\
y_{i}^{k+1} & =y_{i}^{k}+\rho\left(x_{i}^{k+1}-z^{k+1}\right), \quad i=1 . . p
\end{aligned}
$$

Observe that averaging is performed in the update of z.

Example: ADMM for QP

Consider a convex quadratic programming problem

$$
\begin{array}{cc}
\min & \frac{1}{2} x^{T} H x+c^{T} x \\
\text { s.t. } & A x=b,
\end{array}
$$

where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathcal{R}^{n}, x_{i} \in \mathcal{R}^{n_{i}}, n_{1}+n_{2}=n, \quad H=\left[\begin{array}{ll}H_{11} & H_{21}^{T} \\ H_{21} & H_{22}\end{array}\right] \in \mathcal{R}^{n \times n}$ is a symmetric pos. definite matrix, $A=\left[A_{1}, A_{2}\right] \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}$. Write down the associated Augmented Lagrangian:

$$
\begin{aligned}
L_{\rho}\left(x_{1}, x_{2}, y\right)= & \frac{1}{2} x^{T} H x+c^{T} x+y^{T}(A x-b)+\frac{\rho}{2}\|(A x-b)\|^{2} \\
= & \frac{1}{2}\left[x_{1}^{T}, x_{2}^{T}\right]\left[\begin{array}{l}
H_{11}+\rho A_{1}^{T} A_{1} H_{21}^{T}+\rho A_{1}^{T} A_{2} \\
H_{21}+\rho A_{2}^{T} A_{1} H_{22}+\rho A_{2}^{T} A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+ \\
& +\left(c_{1}+A_{1}^{T} y+\rho A_{1}^{T} b\right)^{T} x_{1}+\left(c_{2}+A_{2}^{T} y+\rho A_{2}^{T} b\right)^{T} x_{2}+ \\
& +\frac{\rho}{2} b^{T} b-b^{T} y .
\end{aligned}
$$

Bologna, January 2023

Example: ADMM for QP (continued)

Recall the general ADMM:
repeat until optimality is reached:
$x_{1}^{k+1}=\operatorname{argmin}_{x_{1}} L_{\rho}\left(x_{1}, x_{2}^{k}, y^{k}\right)$
$x_{2}^{k+1}=\operatorname{argmin}_{x_{2}} L_{\rho}\left(x_{1}^{k+1}, x_{2}, y^{k}\right)$
minimize in x_{1}
$y^{k+1}=y^{k}+\rho\left(A_{1} x_{1}^{k+1}+A_{2} x_{2}^{k+1}-b\right) \quad$ update multipliers y
For convex QP the first two tasks have closed form solutions
$\nabla_{x_{1}} L_{\rho}=\left(H_{11}+\rho A_{1}^{T} A_{1}\right) x_{1}+\left(H_{21}^{T}+\rho A_{1}^{T} A_{2}\right) x_{2}+\left(c_{1}+A_{1}^{T} y+\rho A_{1}^{T} b\right)=0$
$\nabla_{x_{2}} L_{\rho}=\left(H_{21}+\rho A_{2}^{T} A_{1}\right) x_{1}+\left(H_{22}+\rho A_{2}^{T} A_{2}\right) x_{2}+\left(c_{2}+A_{2}^{T} y+\rho A_{2}^{T} b\right)=0$
hence ADMM for QP repeats the following steps:
$x_{1}^{k+1}=-\left(H_{11}+\rho A_{1}^{T} A_{1}\right)^{-1}\left(\left(H_{21}^{T}+\rho A_{1}^{T} A_{2}\right) x_{2}^{k}+\left(c_{1}+A_{1}^{T} y+\rho A_{1}^{T} b\right)\right)$
$x_{2}^{k+1}=-\left(H_{22}+\rho A_{2}^{T} A_{2}\right)^{-1}\left(\left(H_{21}+\rho A_{2}^{T} A_{1}\right) x_{1}^{k+1}+\left(c_{2}+A_{2}^{T} y+\rho A_{2}^{T} b\right)\right)$
$y^{k+1}=y^{k}+\rho\left(A_{1} x_{1}^{k+1}+A_{2} x_{2}^{k+1}-b\right)$
Bologna, January 2023

Relation between ADMM and Gauss-Seidel

Consider a large system of linear equations $Q x=r$ which involves a positive definite matrix Q that is decomposed into $p \times p$ blocks:

$$
\left[\begin{array}{cccc}
Q_{11} & Q_{12} & \cdots & Q_{1 p} \\
Q_{21} & Q_{22} & \cdots & Q_{2 p} \\
\vdots & \vdots & \cdots & \vdots \\
Q_{p 1} & Q_{p 2} & \cdots & Q_{p p}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
\vdots \\
r_{p}
\end{array}\right]
$$

(blocks may have different sizes).
Gauss-Seidel Method repeats the following steps:

$$
\begin{aligned}
x_{1}^{k+1} & =Q_{11}^{-1}\left(r_{1}-Q_{12} x_{2}^{k}-\ldots-Q_{1 p} x_{p}^{k}\right) \\
x_{2}^{k+1} & =Q_{22}^{-1}\left(r_{2}-Q_{21} x_{1}^{k+1}-Q_{23} x_{3}^{k}-\ldots-Q_{2 p} x_{p}^{k}\right) \\
\vdots & \vdots \\
x_{p}^{k+1}= & Q_{p p}^{-1}\left(r_{p}-Q_{p 1} x_{1}^{k+1}-Q_{p 2} x_{2}^{k+1}-\ldots-Q_{p, p-1} x_{p-1}^{k+1}\right) .
\end{aligned}
$$

S. Cipolla, J. Gondzio, ADMM and inexact ALM: the QP case.
https://www.maths.ed.ac.uk/~gondzio/reports/ADMMandIALM.html
Bologna, January 2023

(Block) Gauss-Seidel Method

 Consider the following splitting of the matrix$$
\left[\begin{array}{cccc}
Q_{11} & Q_{12} & \cdots & Q_{1 p} \\
Q_{21} & Q_{22} & \cdots & Q_{2 p} \\
\vdots & \vdots & \cdots & \vdots \\
Q_{p 1} & Q_{p 2} & \cdots & Q_{p p}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
Q_{11} & 0 & \cdots & 0 \\
Q_{21} & Q_{22} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
Q_{p 1} & Q_{p 2} & \cdots & Q_{p p}
\end{array}\right]}_{L}+\underbrace{\left[\begin{array}{cccc}
0 & Q_{12} & \cdots & Q_{1 p} \\
0 & 0 & \cdots & Q_{2 p} \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]}_{U}
$$

and rearrange the equation

$$
Q x=(L+U) x=r \quad \Leftrightarrow \quad L x=r-U x \quad \Leftrightarrow \quad x=L^{-1}(r-U x) \text {. }
$$

Gauss-Seidel Method is a fixed point iteration:

$$
x^{k+1}=L^{-1}\left(r-U x^{k}\right)
$$

Gauss-Seidel iteration overwrites the approximate solution with the new value as soon as it is computed:

$$
x_{i}^{k+1}=Q_{i i}^{-1}\left(r_{i}-\sum_{j<i} Q_{i j} x_{j}^{k+1}-\sum_{j>i} Q_{i j} x_{j}^{k}\right)
$$

ADMM for QP acts as a Gauss-Seidel iteration.
Bologna, January 2023

Final Remarks

Alternating Direction Method of Multipliers (ADMM)

- is suitable for problems with loosely coupled variables
- has inexpensive iterations hence is attractive for very large scale optimization
- may be slow, but is often sufficiently fast when appropriately tuned
- has numerous applications due to its 'decoupling' ability:
- machine learning/statistics (large data sets),
- image processing,
- decentralized optimization.

Modern Techniques of Large Scale Optimization for Data Science

Thank you for your attention!

