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Alternating Direction Method of Multipliers
(ADMM)

• Exploits Duality
• Has inexpensive iterations
• Suitable for problems with loosely coupled variables
• Numerous applications:

– machine learning/statistics (large data sets),

– image processing,

– decentralized optimization.
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Dual Decomposition
Consider equality constrained optimization problem

min f (x)
s.t. Ax = b

where x∈Rn, f : Rn 7→R, A∈Rm×n, b∈Rm. Usually m≤n.
In this lecture f is convex. (In general it does not have to be.)
We associate Lagrange multipliers y ∈ Rm with equality constraints
Ax = b and write the Lagrangian:

L(x, y) = f (x) + yT (Ax− b),

dual function: LD(y) = inf
x
L(x, y)

and dual problem: max
y

LD(y).

Having found the solution of the dual at ŷ, we recover

x̂ = argminxL(x, ŷ).
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Dual Ascent Method
Apply a (simple) gradient method for the dual problem, i.e. make
steps in direction of ∇LD(y):

yk+1 = yk + αk∇LD(y
k).

Observe that ∇LD(y
k) = Ax̃− b,

where x̃ = argminxL(x, y
k).

Dual Ascent Method:
repeat until optimality is reached:

xk+1 = argminxL(x, y
k) minimize in x

yk+1 = yk + αk(Axk+1 − b) update Lagrange multipliers y

Theory:
Strong assumptions are required for such a simple method to work.
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Dual Decomposition and Separable Objective
Suppose the objective function is separable:

f (x) = f1(x1) + f2(x2) + · · · + fp(xp), x = (x1, x2, . . . , xp).

Rewrite the problem in the following form:

min f1(x1) + f2(x2) + · · · + fp(xp)
s.t. A1x1 + A2x2 + · · · + Apxp = b

and observe that the Lagrangian is separable in x:

L(x, y) = L1(x1, y) + L2(x2, y) + · · · + Lp(xp, y)− yT b,

where Li(xi, y) = fi(xi) + yTAixi, i = 1, 2, . . . , p.
Hence the minimization in x may be split into p separate tasks:

xk+1i = argminxiLi(xi, y
k), i = 1, 2, . . . , p

which do not depend on each other, and may be executed in parallel.
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Dual Decomposition in Separable Case
Dual Ascent Method (Separable Case):
repeat until optimality is reached:

xk+1i = argminxiLi(xi, y
k), i = 1, 2, . . . , p,

yk+1 = yk + αk(
∑p

i=1Aix
k+1
i − b)

‘Decomposition’ because we decompose a large problem into pieces.
Two widely used decomposition schemes rely on such a framework:

• Dantzig-Wolfe Decomposition (1960)
• Benders Decomposition (1961)

−→ essential tools for solving combinatorial optimization problems.
They have a weakness though: they may be slow.
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Method of Multiplers
An identifiable weakness of Dual Decomposition is the difficulty to
satisfy the constraint Ax = b. This may be addressed by giving this
constraint a more prominent role and adding to the Lagrangian the
quadratic penalty of the constraint violation.
Define the Augmented Lagrangian:

Lρ(x, y) = f (x) + yT (Ax− b) +
ρ

2
‖(Ax− b)‖2,

where ρ is a weight of the penalty.
This gives the Method of Multipliers (Hestenes, 1969, Powell,
1969):
repeat until optimality is reached:

xk+1 = argminxLρ(x, y
k)

yk+1 = yk + ρ(Axk+1 − b)

The method is similar to the dual ascent.
It minimizes Lρ(x, y

k) instead of L(x, yk)
and uses a fixed dual update stepsize ρ instead of α.
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Convergence of the Method of Multiplers
If the objective function in the optimization problem

min f (x) s.t. Ax = b

is differentiable, then the optimality conditions are:

∇f (x̂) + AT ŷ = 0 dual feasibility

Ax̂ = b primal feasibility

Observe that since xk+1 minimizes Lρ(x, y
k), the dual update

yk+1 = yk + ρ(Axk+1 − b)

ensures that (xk+1, yk+1) is dual feasible. Indeed:

0 = ∇xLρ(x
k+1, yk) = ∇xf (x

k+1) + AT (yk + ρ(Axk+1 − b))

= ∇xf (x
k+1) + ATyk+1.

However, the primal feasibility is attained only in the limit

Axk+1 − b → 0.
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Method of Multiplers vs Dual Decomposition
Method of Multiplers:

• converges under more relaxed assumptions
(f can be nondifferentiable)

• deals better with the primal feasibility Ax− b
(presence of ‖Ax− b‖2 in the Augmented Lagrangian helps)

but
• the quadratic penalty ‖Ax− b‖2 in Lρ destroys separability
→ cannot be used in decomposition.

Alternating Direction Method of Multipliers
(ADMM)
ADMM offers a compromise:

• enjoys some of the benefits of the method of multipliers

• is well-suited to decomposition

Gabay and Mercier (1976), Glowinski and Marrocco (1975).
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Alternating Direction Method of Multipliers
(ADMM)

Consider a problem in the following form:

min f1(x1) + f2(x2)
s.t. A1x1 + A2x2 = b,

where f1 : R
n1 7→ R, and f2 : R

n2 7→ R are convex functions (do
not have to be differentiable), Ai ∈ Rm×ni, i = 1, 2, b ∈ Rm.
Observe that the objective is separable, but the constraint links x1
and x2.
Write down the associated Augmented Lagrangian:

Lρ(x1, x2, y) = f1(x1) + f2(x2) + yT (A1x1+A2x2−b) (1)

+
ρ

2
‖(A1x1+A2x2−b)‖2.
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Alternating Direction Method of Multipliers
(ADMM)

repeat until optimality is reached:

xk+11 = argminx1 Lρ(x1, x
k
2 , y

k) minimize in x1

xk+12 = argminx2 Lρ(x
k+1
1 , x2, y

k) minimize in x2

yk+1 = yk + ρ(A1x
k+1
1 + A2x

k+1
2 − b) update multipliers y

Observe that the optimization in x1 uses the “old” xk2 , but

the optimization in x2 uses already the “new” (updated) xk+11 .
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Convergence of the ADMM If the functions f1 and
f2 in the objective are differentiable, then the optimality conditions
are: ∇f1(x̂1) + AT

1 ŷ = 0 1st dual feasibility

∇f2(x̂2) + AT
2 ŷ = 0 2nd dual feasibility

A1x̂1 + A2x̂2 = b primal feasibility

Note that since xk+12 minimizes Lρ(x
k+1
1 , x2, y

k), the dual update

yk+1 = yk + ρ(Axk+1 − b)

guarantees that (xk+11 , xk+12 , yk+1) satisfies the 2nd dual feasibility
constraint. Indeed:

0 = ∇x2f2(x
k+1
2 ) + AT

2 y
k + ρAT

2 (A1x
k+1
1 + A2x

k+1
2 − b)

= ∇x2f2(x
k+1
2 ) + AT

2 (y
k + ρ(Axk+1 − b))

= ∇x2f2(x
k+1
2 ) + AT

2 y
k+1.

However, the 1st dual feasibility and primal feasibility are attained
only in the limit (at convergence).
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Convergence of the ADMM

Consider a problem in the following form:

min F (x1, x2) = f1(x1) + f2(x2)
s.t. A1x1 + A2x2 = b,

where f1 : R
n1 7→ R, and f2 : R

n2 7→ R are convex functions (do
not have to be differentiable), Ai ∈ Rm×ni, i = 1, 2, b ∈ Rm.
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Convergence of the ADMM

Theorem. Suppose f1 and f2 are closed convex functions, and γ
is any constant which satisfies γ > 2‖ŷ‖2. Then

F (xt1, x
t
2)− F (x̂1, x̂2) ≤

‖x02−x̂2‖
2
ρAT2 A2

+ (γ+‖y0‖2)
2/ρ

2(t+1)

‖A1x
t
1 + A2x

t
2 − b‖2 ≤

‖x02−x̂2‖
2
ρAT2 A2

+ (γ+‖y0‖2)
2/ρ

γ(t+1)
,

where xt1 :=
1

t+1

∑t+1
k=1 x

k
1 , xt2 :=

1
t+1

∑t+1
k=1 x

k
2 ,

and for C � 0, we define ‖u‖2C := uTC u.

Theoretical convergence of ADMM is slow:
O(1/t) convergence rate and O(1/ǫ) iteration complexity.
(To compare: IPMs enjoy O(log(1/ǫ)) iteration complexity.)
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ADMM: From 2 blocks to p blocks

Consider a problem in the following form:

min
∑p

i=1 fi(xi)

s.t.
∑p

i=1Aixi = b,

where fi : R
ni 7→ R, i = 1, 2, . . . , p, are convex functions (do not

have to be differentiable), Ai ∈ Rm×ni, i = 1, 2, . . . , p, b ∈ Rm.
Observe that the objective is separable, but the constraint links all
the variables xi.
Write down the associated Augmented Lagrangian:

Lρ(x1, x2, . . . , xp,y) =

p
∑

i=1

fi(xi) + yT (

p
∑

i=1

Aixi−b)

+
ρ

2
‖(

p
∑

i=1

Aixi−b)‖2.
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ADMM: From 2 blocks to p blocks

Multiple block version of ADMM:
repeat until optimality is reached:

xk+11 = argminx1 Lρ(x1, x
k
2 , . . . , x

k
p, y

k) minimize in x1

xk+12 = argminx2 Lρ(x
k+1
1 , x2, . . . , x

k
p, y

k) minimize in x2
... ...

xk+1p = argminxp Lρ(x
k+1
1 , xk+12 , . . . , xp, y

k) minimize in xp

yk+1 = yk + ρ(
∑p

i=1Aix
k+1
i − b) update y

Bologna, January 2023 16



J. Gondzio L6: ADMM

Comments on Convergence
While (under suitable assumptions) the 2-block ADMM is proved
to converge, the p-block version does not have to converge, see:
C. Chen, B. He, Y. Ye, X. Yuan, “The direct extension of
ADMM for multi-block convex minimization problems is not neces-
sarily convergent”, Mathematical Prog A 155 (2016) pp. 57–79.
Example with null objective:

min 0

s.t. A1x1 + A2x2 + A3x3 = 0,

where

A1 =

[
1
1
1

]

, A2 =

[
1
1
2

]

, A3 =

[
1
2
2

]

.

Observe that A = [A1, A2, A3] is nonsingular. Since the right-hand-
side b = 0, the feasible set contains a single element x̂1 = x̂2 = x̂3 =
0. Since the objective is null, the optimal Lagrange multiplier ŷ = 0.
The 3-block ADMM is divergent for this problem.
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Applications
ADMM is particularly attractive when the independent minimiza-
tions in xi are significantly easier than the minimization of the ag-
gregate objective

∑p
i=1 fi(xi).

Sometimes a non-separable problem is converted to a separable one,
just to be able to apply ADMM because of its attractive features,
namely, its ability to make independent optimizations in xi.
Example: Consider a non-separable problem

min f1(x) + f2(x)
s.t. Ax = b,

in which both functions f1 and f2 depend on the same variable x.
We create a copy of variable x and rewrite the above problem as:

min f1(x) + f2(z)
s.t. Ax = b

x− z = 0

in a form suitable for ADMM.
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Example: ADMM for ℓ1-regularized Least Squares
Recall ℓ1-regularized least squares

min τ‖x‖1 +
1

2
‖Ax− b‖22,

where A ∈ Rm×n, b ∈ Rm. Usually m ≥ n (and often m ≫ n).
This problem may be cast in a form suitable for ADMM:

min τ‖z‖1 +
1
2‖Ax− b‖22

s.t. x− z = 0.

Write down the associated Augmented Lagrangian:

Lρ(x, z, y) = τ‖z‖1 +
1

2
‖Ax−b‖22 + yT (x−z) +

ρ

2
‖x−z‖22.
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Example: ADMM for ℓ1-regularized Least Squares
With such Augmented Lagrangian:

Lρ(x, z, y) = τ‖z‖1 +
1

2
‖Ax−b‖22 + yT (x−z) +

ρ

2
‖x−z‖22.

Minimization in x exploits the differentiability of Lρ in x:

∇xLρ(x, z, y) = AT (Ax− b) + ρ(x− z) + y = 0,

which gives

x = (ATA + ρI)−1(AT b + ρz − y).

Minimization in z requires:

min
z

(

τ‖z‖1 +
ρ

2
‖z − x− y/ρ‖22

)

,

and is perfectly separable into n independent coordinates:

min
zi

(

τ |zi| +
ρ

2
(zi − xi − yi/ρ)

2
)

, i = 1, 2, . . . n.
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Soft Thresholding
In ℓ1-regularized least squares (and in many other applications)
there is a need to perform a one-dimensional update of zi:

z+i := argminzi

(

τ |zi| +
ρ

2
(zi − u)2

)

,

Although the first term is not differentiable because it involves the
absolute value, we can easily compute a closed-form solution:

z+i := Sτ/ρ(u),

where the soft thresholding operator S is defined as:

Sτ/ρ(u) =







u− τ/ρ if u > τ/ρ
0 if |u| ≤ τ/ρ
u + τ/ρ if u < −τ/ρ,

or equivalently:

Sτ/ρ(u) = (u− τ/ρ)+ − (−u− τ/ρ)+,

where v+ := max(v, 0).
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Example: ADMM for ℓ1-regularized Least Squares
ℓ1-regularized least squares problem cast in a form suitable for
ADMM:

min τ‖z‖1 +
1
2‖Ax− b‖22

s.t. x− z = 0.

where A ∈ Rm×n, b ∈ Rm. Usually m ≥ n (and often m ≫ n).
ADMM:
repeat until optimality is reached:

xk+1 = (ATA + ρI)−1(AT b + ρzk − yk)

zk+1 = Sτ/ρ(x
k+1 + yk/ρ)

yk+1 = yk + ρ(xk+1 − zk+1),

where Sτ/ρ(.) is the soft thresholding operator:

Sτ/ρ(u) = (u− τ/ρ)+ − (−u− τ/ρ)+.

The optimization in z is split component-wise and enjoys a trivial
solution.
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Example: ADMM for Consensus optimization
Consider a non-separable problem

min
∑p

i=1 fi(x)

in which all functions fi, i = 1, 2, . . . p depend on the same variable
x. In machine learning, fi might be the loss function for the i-th
block of training data.
We create p copies of variable x, call them xi, add new constraints
xi = z,∀i, and then rewrite the above problem as:

min
∑p

i=1 fi(xi)

s.t. xi − z = 0, i = 1, 2, . . . , p

in a form suitable for ADMM. In this problem:
xi are the local variables, z is a global variable and the constraint
xi − z = 0 forces all (independent) sub-problems to agree on a
common value z, i.e., to reach a consensus.
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Example: ADMM for Consensus optimization
(cont’d)
Write down the associated Augmented Lagrangian:

Lρ(x1,x2, ...,xp,z,y1,y2, ...,yp)=

p
∑

i=1

(

fi(xi)+yTi (xi−z) +
ρ

2
‖xi−z‖2

)

.

ADMM:
repeat until optimality is reached:

xk+1i = argminxi

(

fi(xi) + (yki )
T (xi−zk) + ρ

2‖xi−zk‖2
)

, i = 1..p

zk+1 = 1
p

∑p
i=1(x

k+1
i + yki /ρ)

yk+1i = yki + ρ(xk+1i − zk+1), i = 1..p

Observe that averaging is performed in the update of z.
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Example: ADMM for QP
Consider a convex quadratic programming problem

min 1
2x

TH x + cTx
s.t. Ax = b,

where x=

[

x1
x2

]

∈Rn, xi∈Rni, n1+n2=n, H=

[

H11 HT
21

H21 H22

]

∈Rn×n

is a symmetric pos. definite matrix, A = [A1,A2]∈Rm×n, b∈Rm.
Write down the associated Augmented Lagrangian:

Lρ(x1,x2,y) =
1

2
xTH x+cTx+yT (Ax−b)+

ρ

2
‖(Ax−b)‖2

=
1

2

[

xT1 , x
T
2

]
[

H11 + ρAT
1 A1 HT

21 + ρAT
1 A2

H21 + ρAT
2 A1 H22 + ρAT

2 A2

] [

x1
x2

]

+

+(c1+AT
1 y+ρAT

1 b)
Tx1 + (c2+AT

2 y+ρAT
2 b)

Tx2 +

+
ρ

2
bT b− bTy.
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Example: ADMM for QP (continued)
Recall the general ADMM:
repeat until optimality is reached:

xk+11 = argminx1 Lρ(x1, x
k
2 , y

k) minimize in x1

xk+12 = argminx2 Lρ(x
k+1
1 , x2, y

k) minimize in x2

yk+1 = yk + ρ(A1x
k+1
1 + A2x

k+1
2 − b) update multipliers y

For convex QP the first two tasks have closed form solutions

∇x1Lρ=(H11+ρAT
1 A1)x1+(HT

21+ρAT
1 A2)x2+(c1+AT

1 y+ρAT
1 b) = 0

∇x2Lρ=(H21+ρAT
2 A1)x1+(H22+ρAT

2 A2)x2+(c2+AT
2 y+ρAT

2 b) = 0

hence ADMM for QP repeats the following steps:

xk+11 = −(H11+ρAT
1 A1)

−1
(

(HT
21+ρAT

1 A2)x
k
2+(c1+AT

1 y+ρAT
1 b)

)

xk+12 = −(H22+ρAT
2 A2)

−1
(

(H21+ρAT
2 A1)x

k+1
1 +(c2+AT

2 y+ρAT
2 b)

)

yk+1 = yk + ρ(A1x
k+1
1 + A2x

k+1
2 − b)
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Relation between ADMM and Gauss-Seidel
Consider a large system of linear equations Qx = r which involves
a positive definite matrix Q that is decomposed into p× p blocks:






Q11 Q12 · · · Q1p
Q21 Q22 · · · Q2p
... ... . . . ...
Qp1 Qp2 · · · Qpp











x1
x2
...
xp




 =






r1
r2
...
rp






(blocks may have different sizes).
Gauss-Seidel Method repeats the following steps:

xk+11 = Q−1
11 (r1 −Q12x

k
2−. . .−Q1px

k
p)

xk+12 = Q−1
22 (r2 −Q21x

k+1
1 −Q23x

k
3 −. . .−Q2px

k
p)

... ...

xk+1p = Q−1
pp (rp −Qp1x

k+1
1 −Qp2x

k+1
2 −. . .−Qp,p−1x

k+1
p−1).

S. Cipolla, J. Gondzio, ADMM and inexact ALM: the QP case.
https://www.maths.ed.ac.uk/~gondzio/reports/ADMMandIALM.html
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(Block) Gauss-Seidel Method
Consider the following splitting of the matrix





Q11 Q12 · · · Q1p
Q21 Q22 · · · Q2p... ... . . . ...
Qp1 Qp2 · · · Qpp




 =





Q11 0 · · · 0
Q21 Q22 · · · 0... ... . . . ...
Qp1 Qp2 · · · Qpp





︸ ︷︷ ︸

L

+






0 Q12 · · · Q1p
0 0 · · · Q2p... ... . . . ...
0 0 · · · 0






︸ ︷︷ ︸

U

,

and rearrange the equation

Qx = (L + U)x = r ⇔ Lx = r − Ux ⇔ x = L−1(r − Ux).

Gauss-Seidel Method is a fixed point iteration:

xk+1 = L−1(r − Uxk).

Gauss-Seidel iteration overwrites the approximate solution with the
new value as soon as it is computed:

xk+1i = Q−1
ii (ri −

∑

j<iQijx
k+1
j −

∑

j>iQijx
k
j ),

ADMM for QP acts as a Gauss-Seidel iteration.
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Final Remarks

Alternating Direction Method of Multipliers (ADMM)

• is suitable for problems with loosely coupled variables

• has inexpensive iterations
hence is attractive for very large scale optimization

• may be slow, but
is often sufficiently fast when appropriately tuned

• has numerous applications due to its ‘decoupling’ ability:

– machine learning/statistics (large data sets),
– image processing,
– decentralized optimization.
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Modern Techniques

of Large Scale Optimization

for Data Science

Thank you for your attention!
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