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Outline

• Motivation: sparsity, a desired feature
−→ for example, ℓ1-regularized least squares (LASSO)

• 1st-order vs 2nd-order methods

• Inexact Newton method

– How much of Hessian information is needed?

– Iterative methods with suitable preconditioners

−→ Newton Conjugte Gradients
−→ (Inexact) Interior Point Methods

• Applications

• Conclusions
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Sparse Approximations

• Statistics: Estimate x from observations

• Machine Learning: Classifications, SVMs, etc

• Inverse Problems

• Wavelet-based signal/image reconstruction & restoration

• Compressed Sensing (Signal Processing)

Such problems lead to some dense, often structured, possibly very
large optimization instances (LP, QP or NLP):

minx f (x) + τ1‖x‖1 + τ2‖Lx‖1
s.t. Ax = b.

Cutting-edge optimization techniques are needed!
Plethora of highly specialised 1st-order methods exist.
Work of Yu. Nesterov, S. Wright and an army of followers.
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1st-order methods vs 2nd-order methods

The 2nd-order methods are sometimes criticised as unsuitable:

“computing/using the 2nd-order information is too expensive”.

An unfounded criticism based on an unfair comparison:
specialised 1st-order methods compared with
general (of-the-shelf) 2nd-order methods.

The 1st-order methods have clear drawbacks:

• they struggle with accuracy, and

• they work only for trivial, well conditioned problems.

The specialised 2nd-order methods
overcome these drawbacks and are very competitive.

This talk will demonstrate why.
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ℓ1-regularization

min
x

f (x) + τ‖x‖1.

Think of LASSO:

min
x

‖Ax− b‖22 + τ‖x‖1.

Unconstrained optimization ⇒ easy

Serious Issue: nondifferentiability of ‖.‖1

Two possible tricks:

• Splitting x = u− v with u, v ≥ 0

• Smoothing with pseudo-Huber approximation

replaces ‖x‖1 with ψµ(x) =
∑n
i=1(

√

µ2 + x2i − µ)
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Huber:
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Continuation

Embed inexact Newton Method into a homotopy approach:

• Inequalities u ≥ 0, v ≥ 0 −→ use IPM

replace z ≥ 0 with −µ logz and drive µ to zero.

• Pseudo-Huber regression −→ use continuation

replace |xi| with µ(

√

1+
x2i
µ2

−1) and drive µ to zero.

Questions:
• How?

• Theory?

• Practice?
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How: Use approximate Hessian

Use 2nd-order information (Newton direction).

But, do not waste time on computing exact direction.

Use Inexact Newton Method

Dembo, Eisenstat and Steihaug,
Inexact Newton Methods,
SIAM J. on Numerical Analysis 19 (1982) 400–408.

Bellavia, Inexact Interior Point Method,
Journal of Optimization Theory and Appls 96 (1998) 109–121.
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Inexact Newton Method

Replace an exact Newton direction

∇2f (x)∆x = −∇f (x)

with an inexact one:

∇2f (x)∆x = −∇f (x) + r,

where the error r is small: ‖r‖ ≤ η‖∇f (x)‖, η ∈ (0, 1).

Use iterative methods of linear algebra:

• Continuation → Newton CG

• IPMs → Inexact IPM → Iterative schemes for KKT systems
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IMPs: Theorem: Suppose the feasible IPM for QP is used.

If the method operates in the small neighbourhood

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}

and uses the inexact Newton direction with η = 0.3, then it
converges in at most

K = O(
√
n ln(1/ǫ)) iterations.

If the method operates in the symmetric neighbourhood

NS(γ) := {(x, y, s) ∈ F0 : γµ ≤ xisi ≤ (1/γ)µ}

and uses the inexact Newton direction with η = 0.05, then it
converges in at most

K = O(n ln(1/ǫ)) iterations.

Gondzio, Convergence Analysis of an Inexact Feasible IPM for Convex Quadratic Programming,

SIAM Journal on Optimization 23 (2013) No 3, pp. 1510-1527.
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Continuation: Compressed Sensing Case

Replace min
x

f (x) = τ‖WTx‖1 +
1

2
‖Ax− b‖22, −→ xτ

with min
x

fµ(x) = τψµ(W
Tx) +

1

2
‖Ax− b‖22, −→ xτ,µ

Solve approximately a family of problems for a (short) decreasing
sequence of µ’s: µ0 > µ1 > µ2 · · ·

Theorem (Brief description)

There exists a µ̃ such that ∀µ ≤ µ̃ the difference of the two solutions
satisfies

‖xτ,µ − xτ‖2 = O(µ1/2) ∀ τ, µ.

Primal-Dual Newton Conjugate Gradient Method:

Fountoulakis and Gondzio, A Second-order Method for Strongly Convex ℓ1-regularization Problems,
Mathematical Programming, 156 (2016) 189–219.

Dassios, Fountoulakis and Gondzio, A Preconditioner for a Primal-Dual Newton Conjugate Gradient

Method for Compressed Sensing Problems, SIAM J on Scientific Computing, 37 (2015) A2783–A2812.
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Examples
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Examples of ℓ1-regularization

• Compressed Sensing
with K. Fountoulakis and P. Zhlobich

min
x

τ‖x‖1 +
1

2
‖Ax− b‖22, A ∈ Rm×n

• Compressed Sensing (Coherent and Redundant Dict.)
with I. Dassios and K. Fountoulakis

min
x

τ‖W ∗x‖1 +
1

2
‖Ax− b‖22, W ∈ Cn×l, A ∈ Rm×n

think of Total Variation

• Big Data optimization (Machine Learning), LASSO
with K. Fountoulakis
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Example 1: Compressed Sensing

with K. Fountoulakis and P. Zhlobich

Large dense quadratic optimization problem:

min
x

τ‖x‖1 +
1

2
‖Ax− b‖22,

where A ∈ Rm×n is a very special matrix.

Fountoulakis, Gondzio, Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
Mathematical Programming Computation 6 (2014), pp. 1–31.

Dassios, Fountoulakis, Gondzio
A Preconditioner for a Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems,
SIAM J on Scientific Computing 37 (2015) A2783–A2812.

Software available at http://www.maths.ed.ac.uk/ERGO/
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Restricted Isometry Property (RIP)

• rows of A are orthogonal to each other (A is built of a subset
of rows of an othonormal matrix U ∈Rn×n)

AAT = Im.

• small subsets of columns of A are nearly-orthogonal to each
other: Restricted Isometry Property (RIP)

‖ĀT Ā−
m

n
Ik‖ ≤ δk ∈ (0, 1).

Candès, Romberg and Tao, Stable Signal Recovery from
Incomplete and Inaccurate Measurements,
Comm on Pure and Applied Mathematics 59 (2006) 1207-1233.
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Restricted Isometry Property

Matrix Ā ∈ Rm×k (k ≪ n) is built of a subset of columns
of A ∈ Rm×n.

A = −→ Ā =

ĀT Ā = = ≈
m

n
Ik.

This yields a very well conditioned optimization problem.
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Problem Reformulation

min
x

τ‖x‖1 +
1

2
‖Ax− b‖22

Replace x = x+ − x− to be able to use |x| = x+ + x−.

Use |xi| = zi + zi+n to replace ‖x‖1 with ‖x‖1 = 1T2nz.

(Increases problem dimension from n to 2n.)

min
z≥0

cT z +
1

2
zTQz,

where

Q =

[

AT

−AT

]

[A −A ] =

[

ATA −ATA
−ATA ATA

]

∈ R2n×2n
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Preconditioner

Approximate

M =

[

ATA −ATA
−ATA ATA

]

+

[

Θ−1
1

Θ−1
2

]

with

P =
m

n

[

In −In
−In In

]

+

[

Θ−1
1

Θ−1
2

]

.

We expect (optimal partition):

• k entries of Θ−1 → 0, k ≪ 2n,

• 2n− k entries of Θ−1 → ∞.
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Spectral Properties of P−1M

Theorem

• Exactly n eigenvalues of P−1M are 1.

• The remaining n eigenvalues satisfy

|λ(P−1M)− 1| ≤ δk +
n

mδkL
,

where δk is the RIP-constant, and

L is a threshold of “large” (Θ1 + Θ2)
−1.

Fountoulakis, Gondzio, Zhlobich

Matrix-free IPM for Compressed Sensing Problems,

Mathematical Programming Computation 6 (2014), pp. 1–31.
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Preconditioning
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−→ good clustering of eigenvalues

mf-IPM compares favourably with NestA on easy probs
(NestA: Becker, Bobin and Candés).
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Example 2: Simple test for ℓ1-regularization

min
x

τ‖x‖1 + ‖Ax− b‖22

Special matrix given in SVD form A = UΣV T , where U and V are
products of Givens rotations. The user controls:

• the condition number κ(A),

• the sparsity of matrix A.

Matlab generator:
https://www.maths.ed.ac.uk/ERGO/trillion/

Fountoulakis and Gondzio
Performance of First- and Second-Order Methods for ℓ1-regularized Least Squares Problems,
Computational Optimization and Applications 65 (2016) 605–635.
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Excessive Computational Tests (4 mths of CPU)

• FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

• PCDM (Parallel Coordinate Descent Method)

• PSSgb (Projected Scaled Subgradient, Gafni-Bertsekas)

• pdNCG (primal-dual Newton Conjugate Gradient)

The 1st order methods:

• work well if the condition number κ(A) ≤ 102,

• struggle when κ(A) ≥ 103,

• stall when κ(A) ≥ 104.

The 2nd order method (pdNCG, diagonal preconditioner):

• works well if the condition number κ(A) ≤ 106.
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Let us go big: a trillion (240 ≈ 1012) variables

n (billions) Processors Memory (TB) time (s)
1 64 0.192 1923
4 256 0.768 1968
16 1024 3.072 1986
64 4096 12.288 1970
256 16384 49.152 1990

1,024 65536 196.608 2006

ARCHER (ranked 25 on top500.com, 11 March 2015)

Linpack Performance (Rmax) 1,642.54 TFlop/s
Theoretical Peak (Rpeak) 2,550.53 TFlop/s

Fountoulakis and Gondzio
Performance of First- and Second-Order Methods for ℓ1-regularized Least Squares Problems,
Computational Optimization and Applications 65 (2016) 605–635.
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More Examples of Sparse Approximations

• Sparse Approximations with IPMs
→ ℓ1-regularized problems,
work with V. De Simone, D. di Serafino,
S. Pougkakiotis, M. Viola

• Discrete Optimal Transport with IPMs
→ large, but highly structured,
work with F. Zanetti
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More Sparse Approximations: Use IPMs
Problems of the form

min f (x) + τ1‖x‖1 + τ2‖Lx‖1
s.t. Ax = b.

• Sparse portfolio selection
comparison with Split Bregman method

• Classification models for funct’l Magnetic Resonance Imaging
comparison with FISTA and ADMM

• TV-based Poisson Image Restoration
comparison with PDAL

• Linear Classification via Regularized Logistic Regression
comparison with newGLMNET and ADMM

De Simone, di Serafino, Gondzio, Pougkakiotis, Viola,

Sparse Approximations with Interior Point Methods,

SIAM Review 64 (2022) pp. 954–988. https://arxiv.org/abs/2102.13608
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Example 3: Binary Classification of fMRI Data

min
w

1

2s
‖Dw − ŷ‖2 + τ1 ‖w‖1 + τ2 ‖Lw‖1

where: τ1, τ2 > 0, ‖Lw‖1 is a discrete anisotropic TV of w,

and L = [LTx LTy LTz ]
T ∈ Rl×q are the first-order forward finite

differences in x, y, z.

Baldassarre, Pontil & Mouraõ-Miranda,

Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding,

Frontiers of Neuroscience 2017. https://doi.org/10.3389/fnins.2017.00062
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Classification models for fMRI
Comparison of IPM, FISTA and ADMM (opt tol 10−5). We report:

• classification accuracy (ACC),

• corrected pairwise overlap (CORR OVR);
measures the “stability” of each voxel selection,

• solution density (DEN).

Algorithm τ1 = τ2 ACC CORR OVR DEN
IP-PMM 10−2 86.16± 7.11 43.47± 9.09 20.56± 6.63

5 · 10−2 84.90± 4.80 62.70± 10.39 3.77± 0.84
10−1 82.29± 6.22 82.60± 9.24 2.49± 0.34

FISTA 10−2 86.90± 5.01 5.43± 0.43 88.97± 0.71
5 · 10−2 84.15± 5.92 65.50± 2.68 19.36± 0.86

10−1 81.62± 7.58 80.44± 5.72 5.14± 0.44
ADMM 10−2 86.46± 6.91 0.03± 0.01 98.70± 0.03

5 · 10−2 85.57± 5.37 0.15± 0.04 97.97± 0.05
10−1 82.07± 6.51 0.26± 0.13 97.50± 0.19

We want: ACC and CORR OVR close to 100, and small DEN.
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Classification models for fMRI (cont’d)

Performance comparison in terms of elapsed time:

Evolution of ACC, DEN and CORR OVR with time;
IP-PMM (left) and FISTA (right).
We report average measures with 95% confidence intervals.
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Optimal Transport

Significant research interest:

Gaspard Monge (1781)
Leonid Kantorovich (1942) Nobel Prize in 1975
Alessio Figalli (2008) Fields Medal in 2018

Good reading:

F. Santambrogio,
Optimal Transport for Applied Mathematicians, Birkhauser Basel,
2016.

G. Peyré and M. Cuturi,
Computational Optimal Transport: With Applications to Data
Science. Foundations and Trends in Machine Learning 11 (2019)
No 5-6, pp. 355–607.
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Example 4: Discrete Optimal Transport

Kantorovich formulation of the discrete Optimal Transport problem:

given a starting vector a ∈ Rm
+ and a final vector b ∈ Rn

+,
such that

∑

aj =
∑

bj, find a coupling matrix P inside the set

U(a,b) =
{

P ∈ Rm×n
+ , Pen = a, PTem = b

}

that is optimal with respect to a certain cost matrix C ∈ Rm×n
+ ;

i.e. find the solution of the following optimization problem

min
P∈U (a,b)

∑

i,j

CijPij.

Move the mass in the configuration a into the configuration b.
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Discrete Optimal Transport (cont’d)

We can rewrite the optimization problem as a standard LP:

min
p∈Rmn

cTp

s.t.

[

eTn ⊗ Im
In ⊗ eTm

]

p =

[

a
b

]

= f ,

p ≥ 0,

where ⊗ denotes the Kronecker product,
c ∈ Rmn and p ∈ Rmn are the vectorized versions of C and P ,
respectively, c = vec(C) and p = vec(P).

LP with m + n constraints and m× n variables.

Zanetti and Gondzio,

A Sparse Interior Point Method for Linear Programs arising in Discrete Optimal Transport,

(submitted 22 Jun 2022, revised 6 Dec 2022). https://arxiv.org/abs/2206.11009
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Small OT Example

Move the mass in the red configuration into the blue configuration.
Right figure: the corresponding bipartite graph. → Sparse solution!
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IPM Specialized for Discrete OT Problems

• Ignore “long” matrix A
−→ use column-generation-type approach

• Work with expected “sparse” solution set
−→ do not update all variables x

• Use simplex-type pricing mechanism
−→ update dual slacks only for a subset of variables x

• Simplify normal equations
−→ replace

∑N
j=1 θjAjA

T
j with

∑

j∈S θjAjA
T
j ,

where S is a likely “sparse” solution set

• Precondition Cholesky matrix of the normal equations
−→ keep it sparse at all times
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Test examples from DOTmark collection

Class 1 Class 2 Class 3 Class 4 Class 5

Class 6 Class 7 Class 8 Class 9 Class 10

For the resolution r, the LP has 2r2 constraints and r4 variables.
For r = 32: 2,048 constraints and 1 million variables;
For r = 64: 8,192 constraints and 16.8 million variables;
For r = 128: 32,768 constraints and 268.4 million variables;
For r = 256: 131,072 constraints and 4.295 billion variables.
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Discrete Optimal Transport (cont’d)

DOTmark test collection:
Schrieber, Schuhmacher, and Gottschlich,

DOTmark - A Benchmark for Discrete Optimal Transport, IEEE Access, 5 (2017), pp. 271–282.

Softwares compared:
• Cuturi,

Sinkhorn distances: Lightspeed computation of optimal transport,
Proc. NIPS, (2013), pp. 2292–2300.

• Gottschlich and Schuhmacher,
The Shortlist Method for Fast Computation of the Earth Mover’s Distance and Finding Optimal
Solutions to Transportation Problems,
PLoS ONE, 9 (2014), p. e110214.

• Merigot,
A Multiscale Approach to Optimal Transport,
Computer Graphics Forum, 30 (2011), pp. 1583–1592.

• Network Simplex Method, IBM ILOG CPLEX.
https://www.ibm.com/analytics/cplex-optimizer.

• Kovacs,
Minimum-cost flow algorithms: An experimental evaluation, OMS, 30(1):94–127.
https://lemon.cs.elte.hu/trac/lemon.

Bologna, January 2023 35



J. Gondzio L5: Sparse Approximations with IPMs

Comparison: SparseIPM vs Cplex Network

Res = 32× 32 Res = 64× 64
Class Iter IPM t Cplex t RWE Iter IPM t Cplex t RWE
1 11.4 0.35 0.62 1.2e-07 14.4 2.18 20.92 5.5e-08
2 11.7 0.39 0.60 1.4e-07 18.1 3.46 20.64 4.5e-08
3 15.9 0.59 0.61 2.4e-08 26.8 6.02 20.83 2.1e-08
4 20.3 0.85 0.57 2.0e-08 38.4 9.69 20.69 2.1e-08
5 25.6 1.16 0.61 1.4e-08 40.8 10.78 21.84 1.6e-08
6 18.8 0.72 0.64 3.3e-08 36.2 9.04 23.25 1.3e-08
7 30.8 1.47 0.57 3.8e-08 72.2 39.11 21.80 2.3e-08
8 17.4 0.65 0.58 3.8e-08 52.5 21.69 18.55 8.7e-08
9 14.9 0.52 0.60 2.8e-08 25.0 5.24 21.27 1.4e-08
10 22.4 0.92 0.62 2.0e-08 40.8 10.48 18.33 2.1e-08
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CPU time of SparseIPM (1−norm, 128 pixels)

m = 2r2

n = r4
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Comparison: Scalability of three solvers

SparseIPM for Discrete OT

Cplex (Simplex Method for Network Problems)

LEMON (Specialized Network Algorithm)
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Overarching Feature of IPMs

They possess an unequalled ability to identify
the “essential subspace”

in which the optimal solution is hidden.
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Conclusions

2nd-order methods for optimization:

• employ inexact Newton method

• rely on preconditioners

• enjoy matrix-free implementation

Trick:

• find the “essential subspace” and

• exploit it to simplify the linear algebra

– works in IPMs for LP
– works in Newton CG for ℓ1-regularization

Simple, reliable test example for ℓ1-regularization:
http://www.maths.ed.ac.uk/ERGO/trillion/
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