

Applications of IPMs:
 From Sparse Approximations to Discrete Optimal Transport

Jacek Gondzio
Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~gondzio

Outline

- Motivation: sparsity, a desired feature
\longrightarrow for example, $\boldsymbol{\ell}_{\boldsymbol{1}}$-regularized least squares (LASSO)
- 1st-order vs 2 nd-order methods
- Inexact Newton method
- How much of Hessian information is needed?
- Iterative methods with suitable preconditioners
\longrightarrow Newton Conjugte Gradients
\longrightarrow (Inexact) Interior Point Methods
- Applications
- Conclusions

Sparse Approximations

- Statistics: Estimate x from observations
- Machine Learning: Classifications, SVMs, etc
- Inverse Problems
- Wavelet-based signal/image reconstruction \& restoration
- Compressed Sensing (Signal Processing)

Such problems lead to some dense, often structured, possibly very large optimization instances (LP, QP or NLP):

$$
\begin{array}{cl}
\min _{x} & f(x)+\tau_{1}\|x\|_{1}+\tau_{2}\|L x\|_{1} \\
\text { s.t. } & A x=b .
\end{array}
$$

Cutting-edge optimization techniques are needed! Plethora of highly specialised 1st-order methods exist. Work of Yu. Nesterov, S. Wright and an army of followers.

Bologna, January 2023

1 st-order methods vs 2 nd-order methods

The 2nd-order methods are sometimes criticised as unsuitable: "computing/using the 2nd-order information is too expensive".

An unfounded criticism based on an unfair comparison: specialised 1st-order methods compared with general (of-the-shelf) 2nd-order methods.

The 1st-order methods have clear drawbacks:

- they struggle with accuracy, and
- they work only for trivial, well conditioned problems.

The specialised 2nd-order methods overcome these drawbacks and are very competitive.

This talk will demonstrate why.
Bologna, January 2023

ℓ_{1}-regularization

$$
\min _{x} f(x)+\tau\|x\|_{1}
$$

Think of LASSO:

$$
\min _{x}\|A x-b\|_{2}^{2}+\tau\|x\|_{1} .
$$

Unconstrained optimization \Rightarrow easy Serious Issue: nondifferentiability of $\|.\|_{1}$

Two possible tricks:

- Splitting $x=u-v$ with $u, v \geq 0$
- Smoothing with pseudo-Huber approximation

$$
\text { replaces }\|x\|_{1} \text { with } \psi_{\mu}(x)=\sum_{i=1}^{n}\left(\sqrt{\mu^{2}+x_{i}^{2}}-\mu\right)
$$

Bologna, January 2023

Huber:

Bologna, January 2023

Continuation

Embed inexact Newton Method into a homotopy approach:

- Inequalities $u \geq 0, v \geq 0 \quad \longrightarrow$ use IPM replace $z \geq 0$ with $-\mu \log z$ and drive μ to zero.
- Pseudo-Huber regression \longrightarrow use continuation
replace $\left|x_{i}\right|$ with $\mu\left(\sqrt{1+\frac{x_{i}^{2}}{\mu^{2}}}-1\right)$ and drive μ to zero.

Questions:

- How?
- Theory?
- Practice?

Bologna, January 2023

How: Use approximate Hessian

Use 2nd-order information (Newton direction).
But, do not waste time on computing exact direction.

Use Inexact Newton Method

Dembo, Eisenstat and Steihaug,
Inexact Newton Methods,
SIAM J. on Numerical Analysis 19 (1982) 400-408.
Bellavia, Inexact Interior Point Method, Journal of Optimization Theory and Appls 96 (1998) 109-121.

Bologna, January 2023

Inexact Newton Method

Replace an exact Newton direction

$$
\nabla^{2} f(x) \Delta x=-\nabla f(x)
$$

with an inexact one:

$$
\nabla^{2} f(x) \Delta x=-\nabla f(x)+r
$$

where the error \boldsymbol{r} is small: $\|\boldsymbol{r}\| \leq \boldsymbol{\eta}\|\nabla f(x)\|, \boldsymbol{\eta} \in(0,1)$.

Use iterative methods of linear algebra:

- Continuation \rightarrow Newton CG
- IPMs \rightarrow Inexact IPM \rightarrow Iterative schemes for KKT systems

Bologna, January 2023

IMPs: Theorem: Suppose the feasible IPM for QP is used. If the method operates in the small neighbourhood

$$
\mathcal{N}_{2}(\theta):=\left\{(x, y, s) \in \mathcal{F}^{0}:\|X S e-\mu e\|_{2} \leq \theta \mu\right\}
$$

and uses the inexact Newton direction with $\eta=0.3$, then it converges in at most

$$
K=\mathcal{O}(\sqrt{n} \ln (1 / \epsilon)) \quad \text { iterations }
$$

If the method operates in the symmetric neighbourhood

$$
\mathcal{N}_{S}(\gamma):=\left\{(x, y, s) \in \mathcal{F}^{0}: \gamma \mu \leq x_{i} s_{i} \leq(1 / \gamma) \mu\right\}
$$

and uses the inexact Newton direction with $\eta=0.05$, then it converges in at most

$$
K=\mathcal{O}(\boldsymbol{n} \ln (1 / \epsilon)) \quad \text { iterations }
$$

Gondzio, Convergence Analysis of an Inexact Feasible IPM for Convex Quadratic Programming, SIAM Journal on Optimization 23 (2013) No 3, pp. 1510-1527.
Bologna, January 2023

Continuation: Compressed Sensing Case

Replace

$$
\begin{aligned}
\min _{x} \quad f(x)=\tau\left\|W^{T} x\right\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2}, & \longrightarrow \boldsymbol{x}_{\boldsymbol{\tau}} \\
\min _{x} & f_{\mu}(x)=\tau \psi_{\mu}\left(W^{T} x\right)+\frac{1}{2}\|A x-b\|_{2}^{2},
\end{aligned} \quad \longrightarrow \boldsymbol{x}_{\boldsymbol{\tau}, \mu}
$$

with

Solve approximately a family of problems for a (short) decreasing sequence of μ 's: $\mu_{0}>\mu_{1}>\mu_{2} \cdots$

Theorem (Brief description)

There exists a $\tilde{\mu}$ such that $\forall \mu \leq \tilde{\mu}$ the difference of the two solutions satisfies

$$
\left\|x_{\tau, \mu}-x_{\tau}\right\|_{2}=\mathcal{O}\left(\mu^{1 / 2}\right) \quad \forall \tau, \mu
$$

Primal-Dual Newton Conjugate Gradient Method:
Fountoulakis and Gondzio, A Second-order Method for Strongly Convex ℓ_{1}-regularization Problems, Mathematical Programming, 156 (2016) 189-219.

Dassios, Fountoulakis and Gondzio, A Preconditioner for a Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems, SIAM J on Scientific Computing, 37 (2015) A2783-A2812.
Bologna, January 2023

Examples

Examples of ℓ_{1}-regularization

- Compressed Sensing with K. Fountoulakis and P. Zhlobich

$$
\min _{x} \tau\|x\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2}, \quad A \in \mathcal{R}^{m \times n}
$$

- Compressed Sensing (Coherent and Redundant Dict.) with I. Dassios and K. Fountoulakis

$$
\min _{x} \tau\left\|W^{*} x\right\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2}, \quad W \in \mathcal{C}^{n \times l}, A \in \mathcal{R}^{m \times n}
$$

think of Total Variation

- Big Data optimization (Machine Learning), LASSO with K. Fountoulakis

Example 1: Compressed Sensing

with K. Fountoulakis and P. Zhlobich

Large dense quadratic optimization problem:

$$
\min _{x} \tau\|x\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2},
$$

where $A \in \mathcal{R}^{m \times n}$ is a very special matrix.

Fountoulakis, Gondzio, Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
Mathematical Programming Computation 6 (2014), pp. 1-31.

Dassios, Fountoulakis, Gondzio
A Preconditioner for a Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems, SIAM J on Scientific Computing 37 (2015) A2783-A2812.

Software available at http://www.maths.ed.ac.uk/ERGO/
Bologna, January 2023

Restricted Isometry Property (RIP)

- rows of A are orthogonal to each other (A is built of a subset of rows of an othonormal matrix $U \in \mathcal{R}^{n \times n}$)

$$
A A^{T}=I_{m}
$$

- small subsets of columns of A are nearly-orthogonal to each other: Restricted Isometry Property (RIP)

$$
\left\|\bar{A}^{T} \bar{A}-\frac{m}{n} I_{k}\right\| \leq \delta_{k} \in(0,1) .
$$

Candès, Romberg and Tao, Stable Signal Recovery from Incomplete and Inaccurate Measurements, Comm on Pure and Applied Mathematics 59 (2006) 1207-1233.

Bologna, January 2023

Restricted Isometry Property

Matrix $\bar{A} \in \mathcal{R}^{m \times k}(k \ll n)$ is built of a subset of columns of $A \in \mathcal{R}^{m \times n}$.

$$
\begin{aligned}
& A=\square \quad \longrightarrow \quad \bar{A}= \\
& \bar{A}^{T} \bar{A}=\square=\square \approx \frac{m}{n} I_{k}
\end{aligned}
$$

This yields a very well conditioned optimization problem.

Problem Reformulation

$$
\min _{x} \tau\|x\|_{1}+\frac{1}{2}\|A x-b\|_{2}^{2}
$$

Replace $x=x^{+}-x^{-}$to be able to use $|x|=x^{+}+x^{-}$.
Use $\left|x_{i}\right|=z_{i}+z_{i+n}$ to replace $\|x\|_{1}$ with $\|x\|_{1}=1_{2 n}^{T} z$.
(Increases problem dimension from n to $2 n$.)

$$
\min _{z \geq 0} c^{T} z+\frac{1}{2} z^{T} Q z
$$

where

$$
Q=\left[\begin{array}{c}
A^{T} \\
-A^{T}
\end{array}\right][A-A]=\left[\begin{array}{rr}
A^{T} A & -A^{T} A \\
-A^{T} A & A^{T} A
\end{array}\right] \in \mathcal{R}^{2 n \times 2 n}
$$

Bologna, January 2023

Preconditioner

Approximate

$$
\mathcal{M}=\left[\begin{array}{rr}
A^{T} A & -A^{T} A \\
-A^{T} A & A^{T} A
\end{array}\right]+\left[\begin{array}{ll}
\Theta_{1}^{-1} & \\
& \Theta_{2}^{-1}
\end{array}\right]
$$

with

$$
\mathcal{P}=\frac{m}{n}\left[\begin{array}{rr}
I_{n} & -I_{n} \\
-I_{n} & I_{n}
\end{array}\right]+\left[\begin{array}{ll}
\Theta_{1}^{-1} & \\
& \Theta_{2}^{-1}
\end{array}\right] .
$$

We expect (optimal partition):

- k entries of $\Theta^{-1} \rightarrow 0, \quad k \ll 2 n$,
- $2 n-k$ entries of $\Theta^{-1} \rightarrow \infty$.

Spectral Properties of $\mathcal{P}^{-1} \mathcal{M}$

Theorem

- Exactly n eigenvalues of $\mathcal{P}^{-1} \mathcal{M}$ are 1 .
- The remaining n eigenvalues satisfy

$$
\left|\lambda\left(\mathcal{P}^{-1} \mathcal{M}\right)-1\right| \leq \delta_{k}+\frac{n}{m \delta_{k} L}
$$

where δ_{k} is the RIP-constant, and
L is a threshold of "large" $\left(\Theta_{1}+\Theta_{2}\right)^{-1}$.

Fountoulakis, Gondzio, Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
Mathematical Programming Computation 6 (2014), pp. 1-31.

Preconditioning

\longrightarrow good clustering of eigenvalues
mf-IPM compares favourably with NestA on easy probs (NestA: Becker, Bobin and Candés).

Example 2: Simple test for ℓ_{1}-regularization

$$
\min _{x} \tau\|x\|_{1}+\|A x-b\|_{2}^{2}
$$

Special matrix given in SVD form $A=U \Sigma V^{T}$, where U and V are products of Givens rotations. The user controls:

- the condition number $\kappa(A)$,
- the sparsity of matrix A.

Matlab generator:
https://www.maths.ed.ac.uk/ERGO/trillion/

Fountoulakis and Gondzio
Performance of First- and Second-Order Methods for ℓ_{1}-regularized Least Squares Problems, Computational Optimization and Applications 65 (2016) 605-635.

Bologna, January 2023

Excessive Computational Tests (4 mths of CPU)

- FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)
- PCDM (Parallel Coordinate Descent Method)
- PSSgb (Projected Scaled Subgradient, Gafni-Bertsekas)
- pdNCG (primal-dual Newton Conjugate Gradient)

The 1st order methods:

- work well if the condition number $\kappa(A) \leq 10^{2}$,
- struggle when $\kappa(A) \geq 10^{3}$,
- stall when $\kappa(A) \geq 10^{4}$.

The 2nd order method (pdNCG, diagonal preconditioner):

- works well if the condition number $\kappa(A) \leq 10^{6}$.

Let us go big: a trillion ($2^{40} \approx 10^{12}$) variables

n (billions)	Processors	Memory (TB)	time (s)
1	64	0.192	1923
4	256	0.768	1968
16	1024	3.072	1986
64	4096	12.288	1970
256	16384	49.152	1990
1,024	65536	196.608	2006

ARCHER (ranked 25 on top500.com, 11 March 2015)
Linpack Performance (Rmax) 1,642.54 TFlop/s
Theoretical Peak (Rpeak) 2,550.53 TFlop/s

Fountoulakis and Gondzio
Performance of First- and Second-Order Methods for ℓ_{1}-regularized Least Squares Problems, Computational Optimization and Applications 65 (2016) 605-635.

More Examples of Sparse Approximations

- Sparse Approximations with IPMs
$\rightarrow \ell_{1}$-regularized problems, work with V. De Simone, D. di Serafino, S. Pougkakiotis, M. Viola
- Discrete Optimal Transport with IPMs
\rightarrow large, but highly structured, work with F. Zanetti

More Sparse Approximations: Use IPMs

Problems of the form

$$
\begin{aligned}
\min & f(x)+\tau_{1}\|x\|_{1}+\tau_{2}\|L x\|_{1} \\
\text { s.t. } & A x=b .
\end{aligned}
$$

- Sparse portfolio selection comparison with Split Bregman method
- Classification models for funct'l Magnetic Resonance Imaging comparison with FISTA and ADMM
- TV-based Poisson Image Restoration comparison with PDAL
- Linear Classification via Regularized Logistic Regression comparison with newGLMNET and ADMM

De Simone, di Serafino, Gondzio, Pougkakiotis, Viola,
Sparse Approximations with Interior Point Methods,
SIAM Review 64 (2022) pp. 954-988. https://arxiv.org/abs/2102. 13608
Bologna, January 2023

Example 3: Binary Classification of fMRI Data

$$
\min _{w} \frac{1}{2 s}\|D w-\hat{y}\|^{2}+\tau_{1}\|w\|_{1}+\tau_{2}\|L w\|_{1}
$$

where: $\tau_{1}, \tau_{2}>0, \quad\|L w\|_{1}$ is a discrete anisotropic TV of w,
and $L=\left[\begin{array}{lll}L_{x}^{T} & L_{y}^{T} & L_{z}^{T}\end{array}\right]^{T} \in \mathcal{R}^{l \times q}$ are the first-order forward finite differences in x, y, z.

Baldassarre, Pontil \& Mouraõ-Miranda,
Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding,
Frontiers of Neuroscience 2017. https://doi.org/10.3389/fnins.2017.00062

Bologna, January 2023

Classification models for fMRI

Comparison of IPM, FISTA and ADMM (opt tol 10^{-5}). We report:

- classification accuracy (ACC),
- corrected pairwise overlap (CORR OVR); measures the "stability" of each voxel selection,
- solution density (DEN).

Algorithm	$\tau_{1}=\tau_{2}$	ACC	CORR OVR	DEN
IP-PMM	10^{-2}	86.16 ± 7.11	43.47 ± 9.09	20.56 ± 6.63
	$5 \cdot 10^{-2}$	84.90 ± 4.80	62.70 ± 10.39	3.77 ± 0.84
	10^{-1}	82.29 ± 6.22	82.60 ± 9.24	2.49 ± 0.34
FISTA	10^{-2}	86.90 ± 5.01	5.43 ± 0.43	88.97 ± 0.71
	$5 \cdot 10^{-2}$	84.15 ± 5.92	65.50 ± 2.68	19.36 ± 0.86
	10^{-1}	81.62 ± 7.58	80.44 ± 5.72	5.14 ± 0.44
ADMM	10^{-2}	86.46 ± 6.91	0.03 ± 0.01	98.70 ± 0.03
	$5 \cdot 10^{-2}$	85.57 ± 5.37	0.15 ± 0.04	97.97 ± 0.05
	10^{-1}	82.07 ± 6.51	0.26 ± 0.13	97.50 ± 0.19

We want: ACC and CORR OVR close to 100, and small DEN.

Classification models for fMRI (cont'd)

Performance comparison in terms of elapsed time:

Evolution of ACC, DEN and CORR OVR with time; IP-PMM (left) and FISTA (right).
We report average measures with 95\% confidence intervals.
Bologna, January 2023

Optimal Transport

Significant research interest:
Gaspard Monge (1781)
Leonid Kantorovich (1942) Nobel Prize in 1975
Alessio Figalli (2008) Fields Medal in 2018
Good reading:

F. Santambrogio,

Optimal Transport for Applied Mathematicians, Birkhauser Basel, 2016.
G. Peyré and M. Cuturi,

Computational Optimal Transport: With Applications to Data
Science. Foundations and Trends in Machine Learning 11 (2019) No 5-6, pp. 355-607.

Example 4: Discrete Optimal Transport

Kantorovich formulation of the discrete Optimal Transport problem: given a starting vector $\mathbf{a} \in \mathcal{R}_{+}^{m}$ and a final vector $\mathbf{b} \in \mathcal{R}_{+}^{n}$, such that $\sum \mathbf{a}_{j}=\sum \mathbf{b}_{j}$, find a coupling matrix \mathcal{P} inside the set

$$
U(\mathbf{a}, \mathbf{b})=\left\{\mathcal{P} \in \mathcal{R}_{+}^{m \times n}, \mathcal{P} \mathbf{e}_{n}=\mathbf{a}, \mathcal{P}^{T} \mathbf{e}_{m}=\mathbf{b}\right\}
$$

that is optimal with respect to a certain cost matrix $\mathcal{C} \in \mathcal{R}_{+}^{m \times n}$; i.e. find the solution of the following optimization problem

$$
\min _{\mathcal{P} \in U(\mathbf{a}, \mathbf{b})} \sum_{i, j} \mathcal{C}_{i j} \mathcal{P}_{i j}
$$

Move the mass in the configuration \mathbf{a} into the configuration \mathbf{b}.

Discrete Optimal Transport (cont'd)

We can rewrite the optimization problem as a standard LP:

$$
\begin{aligned}
\min _{\mathbf{p} \in \mathcal{R}^{m n}} & \mathbf{c}^{T} \mathbf{p} \\
\text { s.t. } & {\left[\begin{array}{c}
\mathbf{e}_{n}^{T} \otimes I_{m} \\
I_{n} \otimes \mathbf{e}_{m}^{T}
\end{array}\right] \mathbf{p}=\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right]=\mathbf{f}, } \\
& \mathbf{p} \geq 0
\end{aligned}
$$

where \otimes denotes the Kronecker product, $\mathbf{c} \in \mathcal{R}^{m n}$ and $\mathbf{p} \in \mathcal{R}^{m n}$ are the vectorized versions of \mathcal{C} and \mathcal{P}, respectively, $\mathbf{c}=\operatorname{vec}(\mathcal{C})$ and $\mathbf{p}=\operatorname{vec}(\mathcal{P})$.
LP with $m+n$ constraints and $m \times n$ variables.

Zanetti and Gondzio,
A Sparse Interior Point Method for Linear Programs arising in Discrete Optimal Transport, (submitted 22 Jun 2022, revised 6 Dec 2022). https://arxiv.org/abs/2206.11009
Bologna, January 2023

Small OT Example

Move the mass in the red configuration into the blue configuration. Right figure: the corresponding bipartite graph. \rightarrow Sparse solution!

Bologna, January 2023

IPM Specialized for Discrete OT Problems

- Ignore "long" matrix A
\longrightarrow use column-generation-type approach
- Work with expected "sparse" solution set \longrightarrow do not update all variables x
- Use simplex-type pricing mechanism \longrightarrow update dual slacks only for a subset of variables x
- Simplify normal equations
\longrightarrow replace $\sum_{j=1}^{N} \theta_{j} A_{j} A_{j}^{T}$ with $\sum_{j \in \mathcal{S}} \theta_{j} A_{j} A_{j}^{T}$, where \mathcal{S} is a likely "sparse" solution set
- Precondition Cholesky matrix of the normal equations \longrightarrow keep it sparse at all times

Test examples from DOTmark collection

Class 1

Class 6

Class 2

Class 7

Class 3

Class 8

Class 4

Class 9

Class 5

Class 10

For the resolution r, the LP has $2 r^{2}$ constraints and r^{4} variables. For $r=32: \quad 2,048$ constraints and $\quad 1$ million variables; For $r=64: \quad 8,192$ constraints and 16.8 million variables; For $r=128: \quad 32,768$ constraints and 268.4 million variables; For $r=256$: 131,072 constraints and 4.295 billion variables.
Bologna, January 2023

Discrete Optimal Transport (cont'd)
 DOTmark test collection:

Schrieber, Schuhmacher, and Gottschlich,
DOTmark - A Benchmark for Discrete Optimal Transport, IEEE Access, 5 (2017), pp. 271-282.

Softwares compared:

- Cuturi,

Sinkhorn distances: Lightspeed computation of optimal transport, Proc. NIPS, (2013), pp. 2292-2300.

- Gottschlich and Schuhmacher, The Shortlist Method for Fast Computation of the Earth Mover's Distance and Finding Optimal Solutions to Transportation Problems, PLoS ONE, 9 (2014), p. e110214.
- Merigot,

A Multiscale Approach to Optimal Transport,
Computer Graphics Forum, 30 (2011), pp. 1583-1592.

- Network Simplex Method, IBM ILOG CPLEX.
https://www.ibm.com/analytics/cplex-optimizer.
- Kovacs,

Minimum-cost flow algorithms: An experimental evaluation, OMS, 30(1):94-127.
https://lemon.cs.elte.hu/trac/lemon.

L5: Sparse Approximations with IPMs

Comparison: SparseIPM vs Cplex Network

	Res $=32 \times 32$				Res $=64 \times 64$			
Class	Iter	IPM t	Cplex t	RWE	Iter	IPM t	Cplex t	RWE
1	11.4	0.35	0.62	$1.2 \mathrm{e}-07$	14.4	2.18	20.92	$5.5 \mathrm{e}-08$
2	11.7	0.39	0.60	$1.4 \mathrm{e}-07$	18.1	3.46	20.64	$4.5 \mathrm{e}-08$
3	15.9	0.59	0.61	$2.4 \mathrm{e}-08$	26.8	6.02	20.83	$2.1 \mathrm{e}-08$
4	20.3	0.85	0.57	$2.0 \mathrm{e}-08$	38.4	9.69	20.69	$2.1 \mathrm{e}-08$
5	25.6	1.16	0.61	$1.4 \mathrm{e}-08$	40.8	10.78	21.84	$1.6 \mathrm{e}-08$
6	18.8	0.72	0.64	$3.3 \mathrm{e}-08$	36.2	9.04	23.25	$1.3 \mathrm{e}-08$
7	30.8	1.47	0.57	$3.8 \mathrm{e}-08$	72.2	39.11	21.80	$2.3 \mathrm{e}-08$
8	17.4	0.65	0.58	$3.8 \mathrm{e}-08$	52.5	21.69	18.55	$8.7 \mathrm{e}-08$
9	14.9	0.52	0.60	$2.8 \mathrm{e}-08$	25.0	5.24	21.27	$1.4 \mathrm{e}-08$
10	22.4	0.92	0.62	$2.0 \mathrm{e}-08$	40.8	10.48	18.33	$2.1 \mathrm{e}-08$

CPU time of SparseIPM (1-norm, 128 pixels)

Comparison: Scalability of three solvers

SparseIPM for Discrete OT
Cplex (Simplex Method for Network Problems) LEMON (Specialized Network Algorithm)

Overarching Feature of IPMs

> They possess an unequalled ability to identify the "essential subspace" in which the optimal solution is hidden.

Conclusions

2nd-order methods for optimization:

- employ inexact Newton method
- rely on preconditioners
- enjoy matrix-free implementation

Trick:

- find the "essential subspace" and
- exploit it to simplify the linear algebra
- works in IPMs for LP
- works in Newton CG for ℓ_{1}-regularization

Simple, reliable test example for ℓ_{1}-regularization: http://www.maths.ed.ac.uk/ERGO/trillion/

