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Abstract

This report is dedicated to the study of the solitary waves for the nonlinear
Schrödinger equation (NLS). The NLS equation is known as the dispersive partial
differential equation. By dispersion, we mean that waves of different wavelengths
propagate at different phase velocities.

Our study is focused on the solitary wave solutions of NLS. The solution is a
shape-preserving wave when propagating at a constant velocity. It results from a
balance of dispersive and nonlinear effects. To achieve our study, we shall divide
it into two parts: (i) the existence of solitary wave solutions and (ii) the stability
of solitary wave solutions.

Before we start discussing the solitary waves, we will first briefly go over the
well-posedness results of NLS. These results provide assurance of the existence of
solutions to NLS in certain function spaces. Then, by viewing the well-posedness
results, we shall specifically look into the existence of solitary wave solutions.
Moreover, we also study their stability, which by considering the nonlinear inter-
action, we will split into stable and unstable cases.
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Chapter 1

Introduction

1.1 Background

The phenomenon of solitary waves was initially uncovered in 1834 by the renowned
civil engineer John Scott Russel1. His discovery was prompted by the observation
of a swiftly moving boat in a canal, where he discerned that the abrupt cessation
of the boat’s movement generated a wave that persisted in its trajectory along
the canal with seemingly unaltered shape and speed. In 1895, the first theoreti-
cal justification for the existence of solitary waves was elucidated by Korteweg2

and De Vries3, who derived an equation accounting for the motion of water that
admitting solitary wave solutions. This equation has since become widely known
as the Korteweg-De Vries (KDV) equation.

In fact, solitary waves emerge as a consequence of the balance of two com-
peting effects: the dispersive effect of the linear component and the focusing
effect of the nonlinear component. The former effect strives to flatten the so-
lution over time, whereas the latter aims to concentrate the solution. So far,
numerous nonlinear model equations have since been demonstrated to possess
solitary wave solutions, including the Klein-Gordon, Kadomtsev-Petviashvili and
Nonlinear Schrödinger equations (NLS).

This report focuses on the study of solitary waves for NLS. This topic has
garnered significant attention owing to its broad-ranging applications in both
Physics and Mathematics, including the study of light propagation in nonlinear
optical fibers, fluid dynamics, and plasma physics. See [1, 2, 4, 12] for more
examples.

To study solitary waves of NLS, we begin by considering the Cauchy problem
of the following NLS:{

i∂tv +∆v = f(v)

v(x, 0) = v0
(x, t) ∈ Rn × I, (1.1)

1John Scott Russell (9 May 1808, Parkhead, Glasgow – 8 June 1882, Ventnor, Isle of Wight).
2Diederik Johannes Korteweg (31 March 1848 – 10 May 1941) was a Dutch mathematician.
3Gustav de Vries (22 January 1866 – 16 December 1934) was a Dutch mathematician.
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where i =
√
−1,∆ =

∑n
j=1 ∂

2
xj

and I = (−T, T ) with T > 0. Here, the function
f(v) represents the nonlinearity of the equation. Note that the nonlinearity of
the NLS can result in either a focusing or defocusing effect. For instance, Let us
consider the case when f takes the form f(v) = λ|v|p−1v. In this scenario, the
NLS is referred to as defocusing when λ > 0, whereas it is called focusing when
λ < 0. As previously discussed, the solitary waves arise from a balance between
the dispersive and focusing effects of the equation. Therefore, we will restrict our
attention to the focusing NLS in order to study the solitary waves.

It is well-known that when f satisfies certain conditions, NLS (1.1) admits
two conserved quantities, namely mass and energy. Specifically, let v be a smooth
solution of NLS (1.1) and f satisfies certain assumptions [See Lemma 2.2.1], the
following two quantities (mass and energy) are conserved for v:

M(v) :=

∫
|v|2dx = ∥v∥2L2 ,

E(v) :=
1

2
∥∇v∥2L2 +

∫
Rn

F (|v(x)|)dx,

where F is defined as

F (s) =

∫ s

0

f(τ)dτ, s ∈ R.

By means of conservation, we have ∂tM(v) = 0 and ∂tE(v) = 0. In particular,

M(v) = M(v0), E(v) = E(v0). (1.2)

The use of these conservation laws enables us to study the global-in-time dynam-
ics. In particular, let v be a solution to NLS (1.3) defined on a specific function
space over the time interval I. If v is the unique solution to NLS (1.3) and is
continuous with respect to the initial condition v0, then we can say that NLS
(1.3) is locally well-posed in this function space [See proposition 2.2.2]. The con-
servation laws (1.2) now would allow us to extend this local solution globally in
time. Roughly speaking for some appropriate nonlinearity, if the solution v lies
in the Sobolev space H1, we have M +E ∼ H1. Therefore they provide a global
control on the H1-solution, which implies that our solution exists for any T > 0.
This is known as the global well-posedness of NLS (1.3) [See proposition 2.2.4].

After verifying the existence of solutions to NLS (1.1), we discuss our main
topic: solitary wave solutions of NLS.

Let f(v) = −|v|p−1v with p > 1. From (1.1), we have the following NLS
associated with a polynomial nonlinearity:

i∂tv +∆v = −|v|p−1v. (1.3)

In studying the nonlinear dispersive equations, the behaviours of solutions are
determined by the interplay between nonlinear and dispersive effects. As the
parameter p increases, the nonlinear effect becomes stronger and the behaviour
of solutions changes accordingly. Therefore, when studying solitary wave solu-
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tions, different ranges of p can yield different results. In particular, Strass [10]
established the existence of non-trivial solitary wave solutions to NLS (1.3) when
1 < p < p∗(n), where p∗(n) = ∞ for n = 1, 2 and p∗(n) = n+2

n−2
for n ⩾ 3, and

showed that no non-trivial solitary wave solution exists when p ⩾ p∗(n). For
stability, Cazenave and Lions [3] demonstrated that the ground state solution of
NLS (1.3) is stable when 1 < p < 1 + 4

n
and unstable when 1 + 4

n
< p < p∗(n).

Weinstein [14] proved the instability also holds when p = 1 + 4
n
. In this report,

we concentrate on two cases: 1 < p < 1 + 4
n
and 1 + 4

n
< p < p∗(n).

Solitary wave solutions refer to a specific type of solutions represented by the
form:

v(x, t) = eiηtu(x), (1.4)

where u(x) denotes the solutions of the following nonlinear elliptic problem:

−ηu+∆u = −|u|p−1u, (1.5)

for u ̸≡ 0 and η > 0. We can verify v(x, t) satisfy NLS (1.3) by straightforward
calculations. Substituting (1.4) into (1.3) yields

−ηeiηtu(x) + eiηt∆u(x) = −|eiηtu(x)|p−1eiηtu(x),

−ηu(x) + ∆u(x) = −|eiηtu(x)|p−1u(x),

which is equivalent to (1.5) since |eiηt| = | cos(ηt)+i sin(ηt)|=
√
cos2(ηt) + sin2(ηt) =

1.Moreover,these solutions are also called the standing wave solutions of NLS
(1.3). As a consequence, we can prove the existence of standing wave solutions
to NLS (1.3) by demonstrating the existence of the solutions to the nonlinear
elliptic problem (1.5).

1.2 Main results

The first goal of this report is to establish the existence of solutions to (1.5). Our
approach to proving the existence involves using variational methods. Specifically,
we convert the elliptic problem (1.5) into a constrained minimization problem
and then prove the existence of the solution to this minimization problem while
subject to specific constraints.

We consider two different minimization problems in our analysis, depending
on the range of p values. When 1 < p < 1 + 4

n
, the minimization problem we

investigate is
bα = inf

u∈Kα

Sη(u), (1.6)

where η > 0, α > 0 and the definitions of Sη and Kα are given as

Sη(u) = ∥∇u∥2L2 + η∥u∥2L2 −
2

p+ 1
∥u∥p+1

Lp+1 , (1.7)

Kα = {u ∈ H1; ∥u∥L2 =
√
α}. (1.8)
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On the other hand, when p < 1 + 4
n
< p∗(n), we consider a different mini-

mization problem with the same functional Sη(u) but with different constraints:

cη = inf
u∈K

Sη(u), (1.9)

where η > 0 and K is defined as

K = {u ∈ H1; u ̸= 0, T (u) = 0},

with the expression of T (u) given as follows:

T (u) = 2∥∇u∥2L2 −
n(p− 1)

p+ 1
∥u∥p+1

Lp+1 .

Our main result about the existence is the following:

Theorem 1 (existence). Let n ⩾ 2, η > 0. Then, the following statements hold.

(i) Let 1 < p < 1 + 4
n
and α > 0. Then, there exists w ∈ Kα ∩H1

r such that
0 > bα > −∞. Moreover, this function w is a weak solution to (1.5) for
some η > 0.

(ii) Let 1 + 4
n

< p < p∗(n). Then, cη > 0 and there exists w ∈ K ∩ H1
r

attaining the minimum value cη in (1.9). In this case, the function w is a
weak solution to (1.5).

Theorem 1 shows that, for both 1 < p < 1 + 4
n
and 1 + 4

n
< p < p∗(n), there

exists a standing wave solution to NLS (1.3). After establishing the existence of
the standing wave solutions, we examine their stability. For this purpose, we will
need the following definitions of stability:

Definition 1.2.1 ([13] Definition of stability restricted to H1
r ). A ground state

solution v is stable under radially symmetric perturbations if, given ϵ > 0, there
exists δ > 0 such that

u0 ∈ H1
r , ∥u0 − v(0)∥H1 < δ

⇒ inf
θ∈R

∥(u(t)− eiθv(t)∥H1 < ϵ, t > 0.

Definition 1.2.2 ([13] Orbital stablity). A standing wave solution v is orbitally
stable if, given ϵ > 0, there exists δ > 0 such that

u0 ∈ H1, ∥u0 − v(·, 0)∥H1 < δ

⇒ inf
θ∈R;y∈Rn

∥(u(·, t)− eiθv(·+ y, t)∥H1 < ϵ, t > 0,

where u denotes the solution to NLS (1.3) with initial condition u |t=0= u0.

Now, we are ready to present the main result about the stability of standing
wave solutions to NLS (1.3).

8
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Theorem 2 (Stability). Let n ⩾ 2, η > 0. Then, the following statements hold.

(i) Let 1 < p < 1 + 4
n
. Then, a ground state solution v to NLS (1.3) is stable

in the sense of Definition 1.2.1.

(ii) Let 1 + 4
n
< p < p∗(n). Then, a ground state solution v to NLS (1.3) is

orbitally unstable.

Theorem 2 states that a ground state solution to NLS (1.3) is stable under
radially symmetric perturbations for 1 < p < 1 + 4

n
and orbitally unstable for

1 + 4
n
< p < p∗(n). To prove the stability, we utilize various lemmas, including

Rellich’s compactness theorem, the uniqueness of the standing wave solutions,
and the conservation laws satisfied by solutions to NLS (1.3). In the case where
instability occurs, we demonstrate the non-existence of global-in-time solutions to
NLS (1.3) and conclude that the standing wave solutions are unstable by blow-up.

The report is organized as follows:

Chapter 2 serves as an introduction to the preliminaries required for the sub-
sequent discussion on standing wave solutions. The chapter is divided into three
sections:

• In the first section, we display notations and some important background
materials from functional analysis.

• The second section focuses on the Cauchy problem of NLS (1.1). We present
known results regarding the local/global well-posedness of the problem,
which are essential for comprehending the subsequent discussion on stand-
ing wave solutions. Furthermore, these results are also used to prove our
main theorems.

• The final section of the chapter is dedicated to the study of variational
methods. Here, we demonstrate the propositions and lemmas that eluci-
date the process of transforming the nonlinear elliptic problem (1.5) into a
minimization problem.

In chapter 3, we investigate the existence and stability of standing wave solutions
to NLS (1.3). Our study is divided into two distinct sections, based on the range
of the parameter p:

• Section 3.1 focuses on the case where 1 < p < 1 + 4
n
and aims to prove the

first part of both main theorems.

• In Section 3.2, we consider the case where 1+ 4
n
< p < p∗(n) and concentrate

on proving the second part of the main theorems.
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Chapter 2

Preliminaries

In this chapter, we first introduce the notations and the background materials
from functional analysis. We then focus on the Cauchy problem of NLS (1.1) and
associated lemmas, which are essential to present the proof of the main theorems
accurately. Additionally, the variational method is presented. It is a powerful
method for proving the existence of solutions to a wide range of nonlinear partial
differential equations and has been used extensively in the study of nonlinear
dispersive equations. A general overview of variational methods can be found in
[11].

2.1 Notations and Functional analysis

First of all, we introduce the main notation that will be used throughout.

C > 0 stands for the universal constant, which varies at different occurrences.
We denote a ≲ b if a ⩽ Cb for some constant C > 0.

Lp(Ω) denotes the Banach space of measurable functions u : Ω → R(or C)
such that the norm ∥u∥Lp(Ω) < ∞ where for 1 ⩽ p < ∞

∥u∥Lp(Ω) =

(∫
Ω

|u(x)|pdx
) 1

p

,

and for p = ∞
∥u∥L∞(Ω) = Ess sup

x∈Ω
|u|.

We use the notation Lp ≡ Lp(Rn). Moreover, it is a Hilbert space when p = 2
and for u, v ∈ L2 the inner product is given as

(u, v) =

∫
Rn

u(x)v(x)dx.

H1(Ω) denotes the L2-based Sobolev space on Ω, which is defined as

H1(Ω) = {u ∈ L2(Ω); ∂xu ∈ L2(Ω)}.

10
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It is equipped with the norm

∥u∥H1(Ω) =

(∫
Ω

|u(x)|2 + |∂xu|2dx
) 1

2

.

and the scalar product

(u, v)H1(Ω) =

∫
Ω

Re
(
u(x)v(x)

)
dx.

We use the notation H1 ≡ H1(Rn), and H−1 = (H1)∗ denotes the dual of H1.
Additionally, a real Hilbert space H1

real and its inner product are defined as
H1

real = {u : u ∈ H1} and

(u, v)H1
real

= Re

∫
Rn

(
u(x)v(x) +∇u(x) · ∇v(x)

)
dx, u, v ∈ H1

real.

Note that although the Hilbert space H1
real is comprised of complex-valued func-

tions in H1, it is considered to be a real Hilbert space, as the coefficients are
taken to be real numbers. It is analogous to regarding C as R2 by separating into
the real and imaginary parts.

Moreover, we use the notation H1
r and Lp

r to denote the spaces H1 and Lp

with the property of radial symmetry, respectively. That is,

H1
r = {u ∈ H1;u is radially symmetric},

Lp
r = {u ∈ Lp;u is radially symmetric}.

Here, a function u defined on Rn is considered radially symmetric if it satisfies the
condition u(x) = u(|x|), meaning that u depends solely on the radial component
|x|.

Lastly, given a Banach space X and an open interval (−T, T ) with T > 0, we
let

Cb((−T, T );X) =

{
v ∈ C((−T, T );X); sup

t∈I
∥v(t)∥X < ∞

}
,

Cm
b ((−T, T );X) =

{
v ∈ Cm((−T, T );X);

m∑
j=0

sup
t∈I

∥∥∥∥ dj

dtj
(v(t))

∥∥∥∥
X

< ∞

}
.

We use the notation CTX ≡ Cb((−T, T );X) and Cm
T X ≡ Cm

b ((−T, T );X). More-
over, CtX ≡ Cb(R;X) and Cm

t X ≡ Cm
b (R;X).

Similarly, we denote Lr((−T, T );X) and Lr([−T ′, T ′];X) by Lr
TX and Lr

T ′X
respectively, where [−T ′, T ′] is any bounded closed subinterval of (−T, T ).

We then recall some important results from functional analysis [9].

Proposition 2.1.1 (Lebesgue dominated convergence theorem). Let f be mea-
surable in Ω, and {fn} be a sequence of measurable functions on Ω such that

lim
n→∞

fn(x) = f(x),

11
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for every x ∈ Ω. Suppose that there exists nonnegative g ∈ L1(Ω) such that

|fn(x)| ⩽ g(x),

for every x ∈ Ω and n ⩾ 1. Then, we have

lim
n→∞

∫
Ω

|fn(x)− f(x)|dx = 0,

i.e. lim
n→∞

∫
Ω

fn(x)dx =

∫
Ω

f(x)dx.

Proposition 2.1.2 (Hölder’s inequality). Let p and q be constants such that

1

p
+

1

q
= 1,

where p, q ∈ (1,∞). Then, for f ∈ Lp(Ω) and g ∈ Lq(Ω), we have∫
Ω

|f(x)g(x)|dx ⩽ ∥f∥Lp∥g∥Lq .

In particular, when p = q = 2, it is called Schwarz’s inequality.

The following proposition is well-known as Sobolev embedding theorem. It
plays an important role in the proof of the main theorems.

Proposition 2.1.3 ([5] Theorem 2 in Section 5.6 and Theorem 1 in Section 5.7).
Let 2 ⩽ p ⩽ ∞ and 0 ⩽ a ⩽ 1 such that

1

p
=

1

2
(1− a) +

(
1

2
− 1

n

)
a.

Then, except for (n, p) = (2,∞), the following inequality holds:

∥u∥Lp ≲ ∥u∥1−a
L2 ∥∇u∥aL2 , u ∈ H1.

In particular, the following embedding holds:

H1 ⊂ Lp,

except for (n, p) = (2,∞). Moreover, with p = p∗(n) + 1, n ⩾ 3, we have

∥u∥Lp∗(n)+1 ⩽ C∥u∥H1 .

Based on Proposition 2.1.3, we expand the statement by considering the func-
tional spaces H1

r and Lp
r. Note that the embedding H1

r ⊂ Lp
r holds except for

(n, p) = (2,∞), and the following proposition states this embedding H1
r ⊂ Lp

r is
compact, except for p = 2 or p = p∗(n) + 1.

Proposition 2.1.4 ([5] Theorem 1 in Section 5.7). Let n ⩾ 2 and 2 < p <
p∗(n) + 1. Then the embedding H1

r ⊂ Lp
r is compact. That is, for any bounded

sequence {um} in H1
r , there exists a subsequence {umk

} convergent in Lp
r.

12
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We end the section by recalling some definitions.

Definition 2.1.5 ([13] The differentiation of operators in Banach spaces). Let
(X1, ∥ · ∥X1) and (X2, ∥ · ∥X2) be real Banach spaces. B(X1, X2) denotes the
collection of bounded, linear operators from X1 into X2. Let F be a map from
X1 into X2. (i) F is said to be Fréchet differentiable at x ∈ X1 if, for given
x ∈ X1, there exists A ∈ B(X1, X2) such that

lim
∥h∥X1

→0

∥F (x+ h)− F (x)− Ah∥X2

∥h∥X1

= 0. (2.1)

Such an operator A is called the Fréchet derivative of F at x, denoted by dF (x).
(ii) F is said to be Gâteaux differentiable at x ∈ X1 if the limit

lim
t→0

F (x+ ty)− F (x)

t
,

exists for all y ∈ X1. Then the limit is called the Gâteaux derivative of F at x,
denoted by dF (x, y).

From the definition, we can conclude that if F is Fréchet differentiable, then it
is Gâteaux differentiable. Conversely, when F is Gâteaux differentiable at x ∈ X1,
it is Fréchet differentiable at x if the Gâteaux derivative dF (x, y) is linear in y
and dF (x, ·) is a continuous map from x ∈ X1 to dF (x, ·) ∈ B(X1, X2).

Definition 2.1.6 ([13] Definition 5.2.7 and 5.3.1). Let S be a functional mapping
from H1 into R and u ∈ H1

(i) u is called a critical point of S if dS(u, v) = 0 for all v ∈ H1. It follows that
S(u) is called a critical value.

(ii) u is a local maximum point of S if there exists ϵ > 0 such that

S(u) > S(v), (2.2)

for all v ∈ H1 with 0 < ∥u− v∥H1 < ϵ. Here the corresponding value S(u)
is called a local maximum value. On the other hand, if the inequality (2.2)
holds in the opposite direction, then u is a local minimum point of Sη and
its value S(u) is a local minimum value.

Definition 2.1.7 ([13] Definition 5.2.8). Let n ⩾ 1, 1 < p < p∗(n). w ∈ H1 is
called a weak solution to (1.5), if it satisfies (1.5) in distributional sense,

i.e. (∇v,∇w) + η(v, w)− (v, |w|p−1w) = 0, v ∈ H1.

Weak convergence

Definition 2.1.8 ([13] Definition A.3.13). Let X be a normed space over C. A
mapping from X into C is called a functional. The collection of bounded linear
functionals on X is called the dual space of X, denoted by X∗. For f ∈ X∗ and
x ∈ X, we write ⟨f, x⟩ for f(x). We say that X is reflexive if X∗∗ = X where
X∗∗ denotes the dual space of X∗.

13
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Remark. X∗ is a Banach space since C is a Banach space with the norm given by
the absolute value.

Remark. For x ∈ X, a mapping

f ∈ X∗ 7−→ ⟨f, x⟩,

is a bounded linear functional on X∗. Thus, x ∈ X can be regarded as an element
in X∗∗. Hence, X ⊂ X∗∗.

Definition 2.1.9 ([13] Definition A.3.16). Let X be a Banach space. We say
that a sequence {xn} ⊂ X converges weakly to x ∈ X and write

xn −→ x weakly,

if, for any f ∈ X∗, we have

⟨f, xn⟩ 7−→ ⟨f, x⟩,

as n → ∞.

Proposition 2.1.10 ([13] Theorem A.3.18). Let X be a Banach space. For
x ∈ X and {xn} ⊂ X, if xn → x strongly, then xn → x weakly.

Moreover, if xn → x weakly, then {xn} is bounded in X and

∥x∥X ⩽ lim inf
n→∞

∥xn∥X .

Proposition 2.1.11 ([13] Theorem A.3.19). Let X be a reflexive Banach space.
A bounded sequence {xn} in X always has a weakly convergent subsequence.

2.2 Cauchy problem of Nonlinear Schrödinger

Equations

In this section, we present some known results for the Cauchy problem of NLS
(1.1). First, the following assumptions for the nonlinearity f are stated:

A1 f is a function from C to C with f(0) = 0. By regarding C ∼= R2, we have
f ∈ C1(R2,R2).

A2 For 1 < p < p∗(n), there exists K > 0 such that

|f(z1)− f(z2)| ⩽ K(1 + |z1|+ |z2|)p−1|z1 − z2|, z1, z2 ∈ C.

A3 f(s) ∈ R for s ∈ R and

f(eiθz) = eiθf(z), z ∈ C, θ ∈ R.

14
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A4 Define F (z) by

F (z) =

∫ z

0

f(s)ds.

Then we have

F (|z|) ⩾ −L1|z|q+1 − L2|z|2, z ∈ C, 1 < q < 1 +
4

n
,

where L1, L2 and q are positive constants that independent of z.

A5

f(z) = λ|z|p−1z, λ < 0, 1 +
4

n
⩽ p < p∗(n).

Remark. The conditions A1 and A2 guarantee the existence and uniqueness of
local-in-time solutions to the Cauchy problem (1.1). The condition A3 is well
known as the gauge condition, which ensures the solutions to (1.1) satisfy physical
principles, such as the conservation of energy.

Lemma 2.2.1 (The conservation laws). Assume A1 - A3 hold for f , there exists
a smooth solution v to (1.1). If it satisfies v(x, t) −→ 0 as |x| → ∞, then the
conservation laws (1.2) hold. Moreover, we can rewrite them as

∥v(t)∥L2 = ∥v0∥L2 , E(v(t)) = E(v0). (2.3)

Local well-posedness

Proposition 2.2.2 ([12] Theorem 3.13). Let n ⩾ 1 and f satisfies A1-A2. Given
v0 ∈ H1, there exists T > 0 and a unique solution v, satisfying (1.1) on (−T, T ),
such that

v ∈ CTH
1 ∩ C1

TH
−1,

∇v ∈ Lr
TL

p+1,

where 1 < p < p∗(n) , and r satisfies

r

(
n

2
− n

p+ 1

)
= 2. (2.4)

Here T depends on K, p, n, and ∥v0∥H1 , where K is as in A2.

Global well-posedness

By Proposition 2.2.2, we construct the local-in-time solutions to the Cauchy prob-
lem (1.1), and the next step is to extend them globally in time.

Lemma 2.2.3. Assume A1 - A3 hold for f . For an open interval (−T, T ) with
T > 0. Let v be a solution to (1.1) such that

v ∈ CTH
1 ∩ C1

TH
−1,

∇v ∈ Lr
T ′Lp+1,

(2.5)

15
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where 1 < p < p∗(n), and r satisfies (2.4). Then, the conservation laws (2.3) hold
for any t ∈ I.

Proposition 2.2.4 ([12] Theorem 3.14). Let n ⩾ 1. Suppose f satisfies A1 -
A4. Then, for any v0 ∈ H1, the local-in-time solution v to (1.1) constructed in
Proposition 2.2.2 can be extended globally in time such that it is unique and

v ∈ CtH
1 ∩ C1

t H
−1,

∇v ∈ Lr
TL

p+1.

Moreover, by Lemma 2.2.3, the global-in-time solution v follows the conservation
laws (2.3).

However, it is not always the case that we can find global-in-time solutions.
If we only focus on whether we can extend a local-in-time solution to [0,∞), the
following proposition holds.

Proposition 2.2.5 ([13] Theorem 4.5.1). Let n ⩾ 1. Assume A5 holds for f
and v0 ∈ H1, xv0 ∈ L2. If E(v0) < 0, then the local-in-time solution v to (1.1)
constructed in Proposition 2.2.2 can not be extended globally in time.

Moreover, when A5 is satisfied by f , we have the following lemma.

Lemma 2.2.6 ([13] Lemma 4.5.3). Let n ⩾ 1. Suppose A5 holds for f , v0 ∈ H
and xv0 ∈ L2. Let v be a solution to (1.1) on [0, T ) that satisfies (2.5). Then

xv ∈ C([0, T );L2),

and the following identity holds for t ∈ [0, T ):

∥xv(t)∥2L2 = ∥xv0∥2L2 + 4tIm

∫
Rn

v0x · ∇v0 dx

+ 4

∫ t

0

∫ s

0

[
2∥∇v(τ)∥2L2 +

nλ(p− 1)

p+ 1
∥v(τ)∥p+1

Lp+1

]
dτds.

We end this section by recalling the nonlinearity f(z) in NLS (1.3):

f(z) = −|z|p+1z.

Note that it satisfies all the conditions A1 - A5 for 1 < p < p∗(n).

2.3 Variational formulation

To study the existence of standing wave solutions, it is important to comprehend
the variational methods. Following this section, one can understand the principle
of converting the elliptic problem into a minimization problem.

Let us recall the definition of Sη(u) (1.7) and consider Sη(u) : H1
real → R

as a functional on H1
real. Moreover, if it is Gâteaux differentiable, its Gâteaux

derivative is denoted by dSη(u, v), v ∈ H1
real.

16
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Proposition 2.3.1 ([13] Theorem 5.2.5). Let n ⩾ 1, 1 < p < p∗(n) and η > 0.
Then the functional Sη is defined on all ofH1 and its Gâteaux derivative dSη(u, v),
v ∈ H1

real exists for all u ∈ H1
real. Furthermore, for u, v ∈ H1, the Gâteaux

derivative dSη(u, v) can be written as

dSη(u, v) = ∂uSη(u)v + ∂uSη(u)v

= 2Re[∂uSη(u)v],

where, for each u ∈ H1, ∂uSη(u) and ∂uSη(u) are bounded linear functionals from
H1 into C given as

∂uSη(u)v = (∇v,∇u) + η(v, u)− (v, |u|p−1u),

∂uSη(u)v = ∂uSη(u)v,
(2.6)

Proof. By the Proposition 2.1.3, we obtain that for u ∈ H1,

∥u∥Lp+1 ⩽ C∥u∥H1 , (2.7)

which implies that Sη maps H1 into R.

Given u, v ∈ H1
real, we define

R(t) = Sη(u+ tv)− Sη(u)− t2
(
∥∇v∥2L2 + η∥v∥2L2

)
,

for t ∈ R with |t| < 1. It follows from the definition of Sη (1.7) that

R(t) = ∥∇(u+ tv)∥2L2 + η∥u+ tv∥2L2 −
2

p+ 1
∥u+ tv∥p+1

Lp+1

− ∥∇u∥2L2 − η∥u∥2L2 +
2

p+ 1
∥u∥p+1

Lp+1 − t2
(
∥∇v∥2L2 + η∥v∥2L2

)
.

Rearranging it and evaluating the norms, we have

R(t) =

∫
Rn

(
|∇u+ t∇v|2 − |∇u|2 − t2|∇v|2

)
dx

+ η

∫
Rn

(
|u+ tv|2 − |u|2 − t2|v|2

)
dx

=

∫
Rn

(
|∇u|2 + 2tRe(∇u∇v) + t2|∇v|2 − |∇u|2 − t2|∇v|2

)
dx

+ η

∫
Rn

(
|u|2 + 2tRe(uv) + t2|v|2 − |u|2 − t2|v|2

)
dx

− 2

p+ 1

∫
Rn

∫ 1

0

d

dθ
(θ|u+ tv|2 + (1− θ)|u|2)

p+1
2 dθdx

= 2tRe

( ∫
Rn

(∇u∇v)dx+ η

∫
Rn

(uv)dx

)
−
∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p+1
2

−1dθ(|u+ tv|2 − |u|2)dx.

17
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Expanding |u+ tv|2 − |u|2 yields 2tRe + (uv) + t2|v|2. Consequently,

R(t) = 2tRe[(∇v,∇u) + η(v, u)]

− 2t

∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθRe(uv)dx

− t2
∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθ|v|2dx

= 2tRe[(∇v,∇u) + η(v, u)]− tI(t)− t2J(t),

(2.8)

where

I(t) = 2

∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθRe(uv)dx,

J(t) =

∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθ|v|2dx.

(2.9)

For estimating I(t), we notice that for x ∈ Rn,

lim
t→0

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθRe(uv)

= |u|p−1Re(uv),

(2.10)

and, for all t such that |t| < 1, the following inequality holds:∣∣∣∣ ∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθRe(uv)

∣∣∣∣
≲ (|u|p−1 + |v|p−1)|u||v|.

(2.11)

From Proposition 2.1.3, it follows u, v ∈ Lp+1. Therefore, by (2.10)-(2.11) and
Lebesque dominated convergence theorem 2.1.1, we derive

lim
t→0

∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθRe(uv)dx

=

∫
Rn

|u|p−1Re(uv)dx.

Then, from (2.9), it follows that

lim
t→0

I(t) = 2Re

∫
Rn

(|u|p−1uv)dx,

i.e. lim
t→0

I(t) = 2Re(|u|p−1u, v).

For estimating J(t), it follows from Proposition 2.1.2 and (2.7) that, for all t such
that |t| < 1,

|J(t)| ≲
∫
Rn

(
|u|p−1 + |v|p−1

)
|v|2dx

≲ (∥u∥p−1
Lp+1 + ∥v∥p−1

Lp+1)∥v∥2Lp+1

≲ (∥u∥p−1
H1 + ∥v∥p−1

H1 )∥v∥2H1 .

(2.12)

18
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Finally, we can conclude the Gâteaux derivative dSη(u, v) by (2.8)-(2.12) that

dSη(u, v) = lim
t→0

Sη(u+ tv)− Sη(u)

t
= lim

t→0

R(t)

t
= 2Re

[
(∇v,∇u) + η(v, u)]− 2Re(|u|p−1u, v)

]
= 2Re

[
(∇v,∇u) + η(v, u)− (|u|p−1u, v)

]
= ∂uSη(u)v + ∂uSη(u)v,

where, by (2.6), the operators ∂uSη(u) and ∂uSη(u) are clearly linear for each
u ∈ H1. Moreover, from (2.7), we have

|∂uSη(u)v|, |∂uSη(u)v| = |(∇v,∇u) + η(v, u)− (v, |u|p−1u)|
≲ (∥u∥H1 + ∥u∥pH1)∥v∥H1 ,

which implies that the operators ∂uSη(u) and ∂uSη(u) are also bounded for each
u ∈ H1.

Remark. As ∂uSη(u) and ∂uSη(u) are operators from H1 into C, we regard
dSη(u, v) as an operator from H1 ×H1 into C.

Proposition 2.3.2 ([13] Theorem 5.2.10). Let n ⩾ 1, 1 < p < p∗(n). u ∈ H1 is
a critical point of Sη if and only if u ∈ H1 is a weak solution to (1.5). Moreover,
for u, v ∈ H1,

dSη(u, v) = 0,

if and only if
∂uSη(u)v = 0.

Proof. If u ∈ H1 is a critical point of Sη, then by Proposition 2.3.1 and definition
2.1.6(i) we have

dSη(u, v) = 2Re[∂uSη(u)v] = 0,

for v ∈ H1. It is followed by

Re[(∇v,∇u) + η(v, u)− (v, |u|p−1u)] = 0. (2.13)

Replacing v by iv yields

Im[(∇v,∇u) + η(v, u)− (v, |u|p−1u)] = 0. (2.14)

Combining (2.13) and (2.14) gives

(∇v,∇u) + η(v, u)− (v, |u|p−1u) = 0,

i.e. ∂uSη(u)v = 0.

Thus, by definition 2.1.7, u is a weak solution to (1.5).
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Conversely, if u ∈ H1 is a weak solution of Sη, then we have

∂uSη(u)v = 0,

dSη(u, v) = 2Re[∂uSη(u)v]

= 0,

for v ∈ H1, which implies u ∈ H1 is a critical point of Sη.

In summary, the nonlinear elliptic problem (1.5) can be solved in distributional
sense by determining the critical point of the functional Sη. As per the standard
understanding that the derivative of a function is zero at local extremum points,
namely local maximum or minimum points. Moreover, from Definition 2.1.6(i),
we have dSη(u, v) = 0 at critical points of Sη. Therefore, it is logical to explore
the relationship between critical points of Sη and its local extremum points.

Proposition 2.3.3 ([13] Proposition 5.3.3). Let n > 1, 1 < p < p∗(n). If u ∈ H1

is a local extremum point for the functional Sη, then we have ∂uSη(u)v = 0 for
v ∈ H1.

Proof. Suppose u is a local maximum point for the functional Sη. Then, by
Definition 2.1.6(ii), we have

Sη(u+ tv)− Sη(u) < 0,

for v ∈ H1 and |t| ≪ 1. Let t > 0, divide both sides by t and take limits as t → 0:

lim
t→0

Sη(u+ tv)− Sη(u)

t
⩽ 0.

Thus, by Definition 2.1.5(ii) and Proposition 2.3.1, we obtain

dSη(u, v) ⩽ 0. (2.15)

The one for t < 0 is treated similarly, then we have

dSη(u, v) ⩾ 0. (2.16)

From (2.15)-(2.16) and Proposition 2.3.2, it follows that

∂uSη(u)v = 0,

for v ∈ H1. A similar argument is applied for u being a local minimum point.

Thus, it is clear that the local extremum points for the functional Sη are the
weak solutions of (1.5).

Regarding extremum points, we usually think of absolute maximum or min-
imum points. However, since u ranges over the entire space, the functional Sη

is not bounded H1. Therefore, in finding the local extremum values of an un-
bounded functional, we must impose some constraints and then find the maximum
or minimum points. Such problems are known as conditional extremum problems.
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Next, we present a useful proposition in considering the conditional extremum
problems.

Proposition 2.3.4 ([13] Theorem 5.3.5). Let n ⩾ 1, 1 < p < p∗(n), and u ∈ H1,

T (u) := a∥∇u∥2L2 + b∥u∥2L2 + c∥u∥p+1
Lp+1 ,

for some a, b, c ∈ R.

(i) By regarding T (u) as a functional onH1
real, the Gâteaux derivative dT (u, v)),

v ∈ H1
real, exists for any u ∈ H1

real and can be expressed as

dT (u, v) = ∂uT (u)v + ∂uT (u)v

= 2Re[∂uT (u)v],

where u, v ∈ H1 and, for each u ∈ H1, ∂uT (u) and ∂uT (u) are bounded
linear operators from H1 into C with expressions

∂uT (u)v = a(∇v,∇u) + b(v, u) +
c(p+ 1)

2
(v, |u|p−1u),

∂uT (u)v = ∂uT (u)v,

(2.17)

(ii) For α ∈ R, define a subset K of H1 by K = {v ∈ H1; T (v) = α}. If u ∈ K
is a local extremum point of Sη on K and ∂uT (u) ̸= 0, then the following
holds :

∂uSη(u)− λ∂uT (u) = 0,

λ =
Re[∂uSη(u)v]

Re[∂uT (u)v]
,

where v ∈ H1, Re[∂uT (u)v] ̸= 0.

To prove it, we need the following lemma which is known as the Lagrange
multiplier method.

Lemma 2.3.5 ([13] Theorem A.1.3). LetD be a domain in R2 and f(x, y), g(x, y) ∈
C1(D). Also, let E = {(x, y) : f(x, y) = 0}. Suppose that f(x, y) takes an ex-
treme value at (x0, y0) ∈ E under the condition g(x, y) = 0. Then there exists a
constant λ ∈ R such that

fx((x0, y0))− λgx(x0, y0) = 0,

fy((x0, y0))− λgy(x0, y0) = 0.

Now it is possible to present the proof of Proposition 2.3.4.

Proof. The proof of part (i) is analogous to that of Proposition 2.3.1. Thus we
provide a sketch proof here. First, we have T maps H1 into R from Proposition
2.1.3.

Given u, v ∈ H1
real, define

R(t) = T (u+ tv)− T (u)− t2
(
a∥∇v∥2L2 + b∥v∥2L2

)
,
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for t ∈ R with |t| < 1. It follows that

R(t) = 2tRe[a(∇v,∇u) + b(v, u)] +
ct(p+ 1)

2
I(t) +

ct2(p+ 1)

2
J(t),

where

I(t) = 2

∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθRe(uv)dx,

J(t) =

∫
Rn

∫ 1

0

(θ|u+ tv|2 + (1− θ)|u|2)
p−1
2 dθ|v|2dx.

Then, we deduce
lim
t→0

I(t) = 2Re(|u|p−1u, v),

and, for |t| < 1, we have

|J(t)| ⩽ C(∥u∥p−1
H1 + ∥v∥p−1

H1 )∥v∥2H1 .

Consequently, we obtain

dT (u, v) = lim
t→0

T (u+ tv)− T (u)

t
= lim

t→0

R(t)

t

= 2Re

[
a(∇v,∇u) + b(v, u) +

c(p+ 1)

2
(|u|p−1u, v)

]
= ∂uT (u)v + ∂uT (u)v,

for u, v ∈ H1, where ∂uT (u) and ∂uT (u) are bounded linear operators from H1

into C.

Next, we prove part (ii). In view of the assumption ∂uT (u) ̸= 0, there exists
w ∈ H1 such that

Re[∂uT (u)w] ̸= 0.

Fix v ∈ H1 and let

F (s, t) = Sη(u+ sv + tw),

G(s, t) = T (u+ sv + tw)− α.

It follows from Proposition 2.3.1 and part (i) that F,G ∈ C1(R2). Moreover,
since u is a local extremum point of Sη on the set K where T (u) = α, the point
(s, t) = (0, 0) is a local extremum point of F on the set

K̃ = {(s, t) ∈ R2; G(s, t) = 0}.

From Lemma 2.3.5, it follows that there exists λ ∈ R such that

∂F

∂s
(0, 0)− λ

∂G

∂s
(0, 0) = 0,

∂F

∂t
(0, 0)− λ

∂G

∂t
(0, 0) = 0.

(2.18)
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Moreover, by taking the partial derivative of G(s, t) with respect to t, we deduce
that

∂G

∂t
(0, 0) = ∂uT (u)w + ∂uT (u)w

= 2Re[∂uT (u)w] ̸= 0.

Since ∂G
∂t
(0, 0) ̸= 0, we can rewrite (2.18) as

Re[∂uSη(u)v − λ∂uT (u)v] = 0,

λ =
Re[∂uSη(u)w]

Re[∂uT (u)w]
.

As ∂uSη(u) and ∂uT (u) are linear operators, we can replace v by iv which then
leads to

Im[∂uSη(u)v − λ∂uT (u)v]

= −Re[i∂uSη(u)v − iλ∂uT (u)v]

= −Re[∂uSη(u)(iv)− λ∂uT (u)(iv)]

= 0.

Therefore, we have
∂uSη(u)v − λ∂uT (u)v = 0.

which completes the proof.
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Chapter 3

Standing wave solutions of the
Nonlinear Schrödinger Equations

In this chapter, we give the proof of the main theorems. As mentioned before, we
first let 1 < p < 1 + 4

n
and prove the first part of both theorems, and then prove

the second part where 1 + 4
n
< p < p∗(n).

3.1 Existence of standing wave solutions and

their stability for 1 < p < 1 + n
4

In this section, we let n ⩾ 2 and 1 < p < 1 + 4
n
throughout and investigate

the existence of standing wave solutions along with their stability by proving
Theorem 1(i) and 2(i).

3.1.1 Proof of Theorem 1(i)

Let us recall the conditional minimization problem (1.6) for 1 < p < 1 + n
4
:

bα = inf
u∈Kα

Sη(u),

where η > 0, α > 0 and the definitions of Sη and Kα are given as

Sη(u) = ∥∇u∥2L2 + η∥u∥2L2 −
2

p+ 1
∥u∥p+1

Lp+1 ,

Kα = {u ∈ H1; ∥u∥L2 =
√
α}.

Remark. If there exists u ∈ Kα such that bα = Sη(u) < ∞, then we say it
is a solution of the minimization problem (1.6) and the corresponding bα is a
minimum of the problem.

To prove the theorem, we will use the following lemmas.

Lemma 3.1.1. The minimization problem (1.6) is equivalent to the following
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conditional extremum problem:

cα = inf
u∈Kα

E(u), (3.1)

where α > 0 and E(u) denotes the energy functional with expression

E(u) =
1

2
∥∇u∥2L2 −

1

p+ 1
∥u∥p+1

Lp+1 . (3.2)

Proof. Suppose w ∈ Kα is a solution to the problem (3.1), then

∥w∥L2 =
√
α,

cα = E(w) = inf
u∈Kα

E(u).

By Definition 1.7, we have

Sη(u) = ∥∇u∥2L2 + η∥u∥2L2 −
2

p+ 1
∥u∥p+1

Lp+1

= 2

(
1

2
∥∇u∥2L2 −

1

p+ 1
∥u∥p+1

Lp+1

)
+ η∥u∥2L2

= 2E(u) + ηα,

(3.3)

for u ∈ Kα. Take the infimum on both sides:

inf
u∈Kα

Sη(u) = 2 inf
u∈Kα

E(u) + ηα

= 2E(w) + ηα

= Sη(w),

which implies w is also a solution of problem (1.6).
Moreover, the following equality holds:

bα = 2cα + ηα.

Lemma 3.1.2 ([13] Lemma 5.3.8). Let v ∈ H1, then there exists v∗ ∈ H1 with
the following properties:

i. v∗ ⩾ 0, a.e. x ∈ Rn.

ii. radial symmetry: v∗(x) = v∗(|x|).

iii. |x| ⩽ |y| ⇒ v∗(x) ⩽ v∗(y).

iv. meas{x; v∗(x) > t} = meas{x; |v(x)| > t}, t > 0.

v. ∥∇v∗∥L2 ⩽ ∥∇v∥L2 .

Here meas denotes the Lebesque measure on Rn and (iv) is equivalent to

∥v∥Lq = ∥v∗∥Lq ,
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for 1 ⩽ q ⩽ ∞. We call such v∗(x) the symmetric decreasing rearrangement
of v. Moreover, for a given v ∈ H1, if there exist two symmetric decreasing
rearrangements v∗1 and v∗2, then v∗1(x) = v∗2(x) for almost every x ∈ Rn.

Lemma 3.1.3 ([13] Lemma 5.4.2). Let n ⩾ 1, 1 < p < 1 + 4
n
. Given α > 0,

suppose cα is a finite negative value. Let {um} be a sequence in H1
r . If the

following holds:
∥um∥L2 →

√
α,

E(um) → cα,

as m → ∞. Then there exists a subsequence {umk
} of {um} and w ∈ H1

r such
that, as mk → ∞,

{umk
} −→ w in H1,

cα = E(w), ∥w∥L2 =
√
α.

Furthermore, w is a weak solution to (1.5) for some η > 0.

The proof for Lemma 3.1.3 is postponed to the end of this section. We can
easily prove Theorem 1(i) and Theorem 2(i) by assuming this lemma.

Now, we are able to present the proof of Theorem 1(i).

Proof. First, in view of Lemma 3.1.1, it suffices to prove there exists w ∈ Kα∩H1
r

such that 0 > cα > −∞, and w is a weak solution to (1.5) for some η > 0.
Step 1: We claim 0 > cα > −∞.

Given u ∈ H1, define
uλ(x) = λβu(λx), (3.4)

where λ > 0 and β ∈ R. Then we have

∥uλ∥2L2 =

∫
Rn

|uλ(x)|2dx =

∫
Rn

λ2β|u(λx)|2dx,

by the change of variables,

∥uλ∥2L2 = λ2β

∫
Rn

|u(y)|2

λn
dy

= λ2β−n

∫
Rn

|u(y)|2dy

= λ2β−n∥u∥2L2 .

(3.5)

In like manner, we obtain

∥∇uλ∥2L2 = λ2β

∫
Rn

|∇(u(λx))|2dx

= λ2β+2

∫
Rn

|(∇u)(λx)|2dx

= λ2β+2−n

∫
Rn

|(∇u)(y)|2dy

= λ2β+2−n∥∇u∥2L2 .

(3.6)
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and
∥uλ∥p+1

Lp+1 = λ(p+1)β−n∥u∥p+1
Lp+1 . (3.7)

Let β = n
2
and u ∈ Kα. Substituting (3.5)-(3.7) into the energy functional (3.2)

yields

E(uλ) =
λ2

2
∥∇uλ∥2L2 −

λ
n(p+1)

2
−n

p+ 1
∥u∥p+1

Lp+1

=
λ2

2
∥∇uλ∥2L2 −

λ
n(p−1)

2

p+ 1
∥u∥p+1

Lp+1 .

Since 1 < p < 1 + 4
n
, E(uλ) < 0 if and only if

0 < λ <

(
2∥u∥p+1

Lp+1

(p+ 1)∥∇u∥2L2

)
1

2−n(p−1)
2 .

Moreover, ∥uλ∥2L2 = ∥u∥2L2 =
√
α indicates that uλ ∈ Kα. Since cα is defined as

the infimum of the energy on the set u ∈ Kα, E(uλ) < 0 is equivalent to cα < 0.

Next, we use Proposition 2.1.3 to show cα > −∞. Recall the proposition, we
have 2 ⩽ p+ 1 ⩽ ∞ and evaluate a = n(p−1)

2(p+1)
from

1

p+ 1
=

1

2
(1− a) +

(
1

2
− 1

n

)
a.

Since n ⩾ 2, we have 0 ⩽ a ⩽ 1. Thus, the following inequality holds:

∥u∥Lp+1 ⩽ C∥u∥
1−n(p−1)

2(p+1)

L2 ∥∇u∥
n(p−1)
2(p+1)

L2 ,

i.e. ∥u∥p+1
Lp+1 , ⩽ C∥u∥

n+2−p(n−2)
2

L2 ∥∇u∥
n(p−1)

2

L2 ,

for u ∈ H1. Then, we deduce that

E(u) ⩾
1

2
∥∇u∥2L2 − C∥u∥

n+2−p(n−2)
2

L2 ∥∇u∥
n(p−1)

2

L2 . (3.8)

By ∥u∥L2 =
√
α and n(p−1)

2
< 2, we can conclude that

0 > cα ⩾ inf
s>0

[
1

2
s2 − Cα

n+2−p(n−2)
4 s

n(p−1)
2

]
> −∞.

Step 2: We show w is a weak solution to (1.5) for some η > 0.
By the definition (3.1) of cα, there exists a sequence {um} in Kα such that

E(um) → cα,

as m → ∞, and for all m ⩾ 1, we have

cα ⩽ E(um).
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From Lemma 3.1.2, it follows that there exists a symmetric decreasing rearrange-
ment {u∗

m} in Kα ∩H1
r such that, as m → ∞,

E(u∗
m) −→ cα,

∥u∗
m∥L2 =

√
α.

It is clear that {u∗
m} satisfies the hypothesis in Lemma 3.1.3, therefore, by Lemma

3.1.3, there exists a subsequence {u∗
mk

} and w ∈ H1
r such that, as mk → ∞,

{u∗
mk

} −→ w in H1,

cα = E(w), ∥w∥L2 =
√
α,

Furthermore, w is a weak solution to (1.5) for some η > 0.

The Theorem 1(i) states that there exists at least one weak solution to (1.5)
for some η > 0. Then, for any η̃ > 0, define w̃ by

w̃(x) =

(
η̃

η

)
1

p−1w

( √
η̃

η
x

)
. (3.9)

Let θ denote η̃
η
. Substituting (3.9) into

−∆w̃ + η̃w̃ − |w̃|p−1w̃,

yields

θ
p

p−1

(
−∆w(

√
θx) + ηw(

√
θx)−

∣∣∣w(√θx)
∣∣∣p−1

w(
√
θx)

)
.

Since w is a weak solution to (1.5), we have

−∆w(
√
θx) + ηw(

√
θx)−

∣∣∣w(√θx)
∣∣∣p−1

w(
√
θx) = 0,

i.e. −∆w̃ + η̃w̃ − |w̃|p−1w̃ = 0,

which implies that w̃ is a weak solution to (1.5) for η = η̃. As a consequence,
(1.5) has weak solutions for any η > 0.

Uniqueness of the standing wave solutions After verifying the existence,
we fix a value of η > 0 to derive the uniqueness of standing wave solutions.

Proposition 3.1.4 ([13] Proposition 5.4.3). Let n ⩾ 2, 1 < p < p∗(n) and η > 0.
Suppose that w ∈ H1

r is a weak solution to (1.5) such that

w(x) ⩾ 0, (3.10)

for every x ∈ Rn. Let Gη be the collection of weak solutions v to (1.5) satisfying
Sη(v) = Sη(w). Then we have

Gη = {v ∈ H1; v(x) = eiθw(x+ a), θ ∈ R, a ∈ Rn}.
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In other words, the proposition states that all weak solutions v such that
Sη(v) = Sη(w) are equal to w, modulo translations and modulations, which
implies the uniqueness of standing wave solutions.

Remark. Recall the solution w(x) we constructed in the proof of Theorem 1(i).
It appears as a limit of the symmetric decreasing rearrangement u∗

mk
. Therefore,

it must satisfy (3.10). Moreover, if w is a solution to (1.5), v(·) = eiθw(· + a) is
a solution to (1.5) for all θ ∈ R, a ∈ Rn.

The notable thing is there are still infinitely many solutions to (1.5) that are
not contained in Gη and we call them excited state solutions or excited states.
Meanwhile, the solutions contained in Gη are called ground state solutions or
ground states. In particular, the solution w given by Theorem 1(i) is a ground
state solution as w ∈ Gη.

Furthermore, since the ground states minimize the functional Sη among all
non-zero solutions, the values of Sη for excited states are always greater than that
of ground states. Physically, the functional Sη corresponds to the quantity called
action. Hence, ground states are known as least-action solutions.

If w is a ground state solution to (1.5), then the standing wave solution v to
(1.3) constructed by v(x, t) = eiηtw(x) is called a ground state solution. If w is
an excited state solution to (1.5), then v is called an excited state solution.

3.1.2 Proof of Theorem 2(i)

To prove the Theorem 2(i), we let w denote the solution to (1.5) constructed
in Theorem 1(i) and show that the standing wave solution v given by v(x, t) =
eiηtw(x) is stable under small radially symmetric perturbations.

As we know, w is a ground state solution to (1.5), then v(x, t) = eiηtw(x)
is a ground state solution to (1.3). Note that the ground state solutions are
radially symmetric for each t, then we restrict ourselves to H1

r when considering
the stability of ground state solutions. Thus, we shall prove the stability of the
standing wave solution v in the sense of Definition 1.2.1.

Since the Laplacian in NLS (1.3) is invariant under rotations, even if a solution
u(x, t) to (1.3) is rotated in spatial variables, it remains a solution to (1.3). Thus,
if an initial condition u0 ∈ H1

r , from Proposition 2.2.2, we have the corresponding
solution u(x, t) is also radially symmetric for each t. More precisely, if we take a
solution u that has a radially symmetric initial condition and let uθ denote the
solution obtained from rotating u by angle θ around some axis of rotation for all
t. As the initial condition u0 ∈ H1

r , we have

u(x, 0) = uθ(x, 0),

for x ∈ R and t = 0. Then according to the uniqueness of solutions, we have
u ≡ uθ for all t, which implies that both the angle and the axis of rotation are
arbitrary. That is to say, the solution u is radially symmetric.

In Definition 1.2.1, we do not need translations in spatial variables since only
radially symmetric solutions are being considered.
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Now, let us prove the standing wave solution v is stable under small radially
symmetric perturbations, i.e. Theorem 2(i).

Proof. We prove this theorem by contradiction. Let v be a ground state solution
to (1.3) and we assume it is unstable in the sense of Definition 1.2.1. Then there
exists ϵ0 > 0, a sequence {tk} ⊂ R+, and a sequence {u0,k} ⊂ H1

r such that

∥u0,k − v(0)∥H1 <
1

k
,

inf
θ∈R

∥(uk(tk)− eiθv(tk)∥H1 ⩾ ϵ0,
(3.11)

for all k ∈ N, where uk denotes the solution to (1.3) with i.c. uk(0) = u0,k. From
Proposition 2.2.4, it follows that uk(t) exists for all 0 ⩽ t < ∞ and

∥uk(t)∥L2 = ∥u0,k∥L2 ,

E(uk(t)) = E(u0,k).

Now, let α = ∥v(0)∥2L2 , then, as k goes to infinity, we have

∥uk(tk)∥L2 = ∥u0,k∥L2 →
√
α. (3.12)

Moreover, by Proposition 3.1.4, we have

E(v(x)) = E(eiθw(x+ a))

=
1

2
∥∇eiθw(x+ a)∥2L2 −

1

p+ 1
∥eiθw(x+ a)∥p+1

Lp+1

=
1

2
∥∇w∥2L2 −

1

p+ 1
∥w∥p+1

Lp+1

= E(w) = cα,

for all t ⩾ 0. Together with the assumption u0,k → v(0) in H1 and Proposition
2.1.3, we obtain that, as k → ∞,

E(u0,k) → cα,

i.e. E(uk(tk)) → cα,
(3.13)

for all t ⩾ 0. From (3.12)-(3.13), we can apply the Lemma 3.1.3 to (uk(tk)),
then there exists a subsequence {ukl(tkl)} of {uk(tk)} and w̃ ∈ H1

r such that as
kl → ∞,

{ukl(tkl)} −→ w̃ in H1,

E(w̃) = cα, ∥w̃∥L2 =
√
α.

Therefore, we have w̃ ∈ Gη. It is followed by

{ukl(tkl)} −→ eiθw in H1,

as kl → ∞, which contradicts (3.11). This completes the proof.

The final part of this section is devoted to proving Lemma 3.1.3. In the
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following, we introduce one more lemma to present the proof of Lemma 3.1.3.

Lemma 3.1.5 ([13] Lemma 5.4.11). Let n ⩾ 2, 1 < p < 1 + 4
n
. For α > 0,

suppose that we have
lim

m→∞
∥um∥L2 =

√
α.

Then,
lim inf
m→∞

E(um) ⩾ cα.

Proof. Since we can easily see that the lemma holds when lim infm→∞E(um) =
∞, we just need to consider the case lim infm→∞E(um) < ∞. Assume by con-
tradiction that there exists a subsequence {umk

} such that

E(umk
) ⩽ cα − ϵ0, (3.14)

for any mk. Define

uλ
mk

= (1 + λ)umk
,

λ =
α

∥umk
∥2L2

− 1.

Then, we obtain
∥uλ

mk
∥2L2 = (1 + λ)∥umk

∥2L2 = α,

which implies uλ
mk

∈ kα. From (3.8) and n(p−1)
2

< 2, it follows that

E(umk
) ⩾

1

2
∥∇umk

∥2L2 − C∥umk
∥

n+2−p(n−2)
2

L2 ∥∇umk
∥

n(p−1)
2

L2

> −∞,

for any umk
∈ H1. That is saying the sequence {umk

} is bounded in H1
r . Thus,

lim
mk→∞

∥uλ
mk

− umk
∥H1 = 0.

Then there must exist some N ⩾ 0 such that

E(uλ
mk

) ⩽ E(umk
) +

1

2
ϵ0 ⩽ cα − 1

2
ϵ0, (3.15)

for allmk ⩾ N.However, by definition of cα and uλ
mk

∈ kα, we shall have E(uλ
mk

) ⩾
cα. Therefore, (3.15) is a contradiction which completes the proof.

Proof of Lemma 3.1.3 : The proof consists of four steps. The first step
employs the compactness property of the embedding H1

r ⊂ Lp
r to demonstrate

that w ̸= 0. In step 2, we establish that ∥w∥L2 = lim infmk→∞ ∥umk
∥L2 =

√
α.

Step 3 demonstrates the convergence of umk
to w in the H1 space. Lastly, in step

4, we show w is a weak solution to (1.5) for some η > 0.

Step 1: By the hypothesis ∥um∥L2 →
√
α and (3.8) with n(p−1)

2
< 2, we have

{um} is bounded H1
r . Then, by Lemma 2.1.4, there exists a subsequence {umk

},
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w ∈ H1
r and δ ⩾ 0 such that

umk
−→ w weakly in H1

r , (3.16)

umk
−→ w in Lp+1, (3.17)

∥∇umk
∥L2 −→ δ, (3.18)

∥w∥L2 ⩽ lim inf
mk→∞

∥umk
∥L2 =

√
α. (3.19)

We claim w ̸= 0 and prove it by contradiction. Suppose w = 0. Recall the
expression of E(u) and substitute (3.18) into it, then we have

lim
mk→∞

E(umk
) = lim

mk→∞
(
1

2
∥∇umk

∥2L2 −
1

p+ 1
∥umk

∥p+1
Lp+1)

=
1

2
δ2 − 1

p+ 1
∥w∥p+1

Lp+1

=
1

2
δ2.

On the other hand, {umk
} is a subsequence of {um}, thus

E(umk
) −→ cα, (3.20)

as mk → ∞. By the uniqueness of limits,

cα =
1

2
δ2 ⩾ 0,

which contradicts the assumption cα < 0. Therefore, we have w ̸= 0.

Step 2: Let γ = ∥w∥2L2 , then γ ⩽ α by (3.19). We aim to show γ = α in this
step. First we assume γ < α, and then let

ũmk
:= umk

− w.

From (3.16)-(3.17), it follows that

ũmk
−→ 0 weakly in H1

r ,

ũmk
−→ 0 in Lp+1,

(3.21)

as mk → ∞. Moreover, we derive that

(ũmk
, w) −→ 0,

∥umk
∥2L2 = ∥ũmk

+ w∥2L2

= ∥ũmk
∥2L2 + ∥w∥2L2 + 2Re(ũmk

, w)

−→ α,

Thus, we obtain
∥ũmk

∥2L2 −→ α− γ, (3.22)

as mk → ∞.
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Recall the proof of Theorem 1(i), we define uλ(x) = λβu(λx), with λ > 0 and
β ∈ R. Now let β = 2

(p−1)
. Then, by (3.5)-(3.7), we have

∥uλ∥2L2 = λ
4

p−1
−n∥u∥2L2 = λ

4−n(p−1)
p−1

−∥u∥2L2 ,

E(uλ) =
1

2
∥∇uλ∥2L2 −

1

p+ 1
∥uλ∥p+1

Lp+1

=
1

2
λ

4
p−1

−n+2∥∇u∥2L2 −
1

p+ 1
λ

2(p+1)
p−1

−n∥u∥p+1
Lp+1

= λ
n+2−(n−2)p

p−1 E(u).

(3.23)

For 0 < γ < α, let

λ =
(γ
α

) p−1
4−n(p−1)

,

then
∥uλ∥2L2 =

(γ
α

)
∥u∥2L2 = γ,

which means uλ ∈ Kγ. Taking infimum on both sides of (3.23) yields

inf
u∈Kα

E(uλ) = inf
uλ∈Kγ

E(uλ)

= λ
n+2−(n−2)p

p−1 inf
u∈Kα

E(uλ).

By the definition of cα, it can be rewritten as

cγ = λ
n+2−(n−2)p

p−1 cα =
(γ
α

)n+2−(n−2)p
4−n(p−1)

cα.

Replacing γ by α− γ gives us

cα−γ =

(
α− γ

α

)n+2−(n−2)p
4−n(p−1)

cα.

Recall the following technique: A function Φ : R → R is convex if for all
x, y ∈ R and a ∈ [0, 1], we have

Φ(ax+ (1− a)y) ⩽ aΦ(x) + (1− a)Φ(y).

Moreover, it has the following property:

Φ(x) + Φ(y) ⩽ Φ(x+ y).

Thus, from convexity of the function Φ(s) = sq, s > 0 with q > 1, it follows that

Φ(θ) + Φ(1− θ) < Φ(θ + 1− θ)

θq + (1− θ)q < 1.

where 0 < θ < 1.
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By the assumption 1 < p < 4
n
, we have n+2−(n−2)p

4−n(p−1)
> 1. Using the above

technique, we derive that

(γ
α

)n+2−(n−2)p
4−n(p−1)

+

(
α− γ

α

)n+2−(n−2)p
4−n(p−1)

< 1.

Thus, we obtain

cγ + cα−γ =

[(γ
α

)n+2−(n−2)p
4−n(p−1)

+

(
α− γ

α

)n+2−(n−2)p
4−n(p−1)

]
cα

> cα.

(3.24)

On the other hand, we have

E(umk
) = E(ũmk

+ w)

=
1

2
∥∇ũmk

+∇w∥2L2 −
1

p+ 1
∥ũmk

+ w∥p+1
Lp+1

= E(ũmk
) + E(w) + A(ũmk

, w),

(3.25)

where

A(ũmk
, w) = Re(∇ũmk

,∇w)

− 1

p+ 1
[∥ũmk

+ w∥p+1
Lp+1 − ∥ũmk

∥p+1
Lp+1 − ∥w∥p+1

Lp+1 ].

By (3.21), we have that, as mk → ∞,

Re(∇ũmk
,∇w) → 0,

∥ũmk
∥Lp+1 → 0.

Moreover, we apply Dominated convergence theorem to derive

lim
mk→∞

∥ũmk
+ w∥Lp+1 = ∥ lim

mk→∞
(ũmk

+ w)∥Lp+1 = ∥w∥Lp+1 .

Thus, as mk → ∞, we have

A(ũmk
, w) −→ 0.

By (3.22) and Lemma 3.1.5, taking limit infimum on both sides of (3.25) yields

cα = lim inf
mk→∞

E(umk
)

⩾ lim inf
mk→∞

E(ũmk
) + E(w) + lim inf

mk→∞
A(ũmk

, w)

⩾ cα−γ + cγ,

which contradicts to (3.24). Therefore, we conclude γ = α.

Step 3: In this step, we show umk
→ w in H1 as mk → ∞.
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First, we have (3.16) which is equivalent to the following:

umk
→ w weakly in L2, (3.26)

∇umk
→ ∇w weakly in L2. (3.27)

Then, we deduce from (3.26) that

∥umk
− w∥2L2 = ∥umk

∥2L2 − 2Re(umk
, w) + ∥w∥2L2

→ ∥umk
∥2L2 − 2∥w∥2L2 + ∥w∥2L2 .

→ α− γ,

as mk → ∞. Since we have γ = α, then limmk→∞ ∥umk
− w∥2L2 = 0. It is known

as a strong convergence:
umk

→ w in L2.

Next, from (3.16), (3.17) and (3.20), it follows that

cα = lim
mk→∞

E(umk
)

⩾
1

2
lim inf
mk→∞

∥∇umk
∥2L2 −

1

p+ 1
∥umk

∥p+1
Lp+1

⩾ E(w).

From step 2, we have ∥w∥L2 =
√
γ =

√
α which implies w ∈ kα. Thus, by the

definition of cα, we have cα ⩽ E(w). Then, we conclude that

cα = E(w). (3.28)

From (3.16), (3.20) and (3.28), we deduce

lim
mk→∞

∥∇umk
∥2L2 = 2 lim

mk→∞

[
E(umk

) +
1

p+ 1
∥umk

∥p+1
Lp+1

]
= 2

(
cα +

1

p+ 1
∥w∥p+1

Lp+1

)
= ∥∇w∥2L2 ,

which together with (3.27), implies

lim
mk→∞

∥∇umk
−∇w∥2L2

= lim
mk→∞

(∥∇umk
∥2L2 − 2Re(∇umk

,∇w) + ∥∇w∥2L2)

= ∥∇w∥2L2 − 2∥∇w∥2L2 + ∥∇w∥2L2

= 0.

It is followed by
∇umk

→ ∇w in L2.

As a consequence, umk
−→ w in H1.
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Step 4: The final step of the proof is to show the function w is a weak solution
to (1.5) for some η > 0.
From step 3, we have w ∈ Kα and E(w) = cα. That is to say, w solves the
minimization problem (3.1):

E(w) = inf
u∈Kα

E(u).

By Lemma 3.1.1, we know that the problem (3.1) is equivalent to the problem
(1.6). Thus,

Sη(w) = bα = inf
u∈Kα

Sη(u).

It indicates that w ∈ Kα is a local extremum point of Sη on Kα.
Now, we apply Proposition 2.3.4(ii) with a = c = 0 and b = 1 such that

T (w) = ∥w∥2L2 = α, (3.29)

∂wT (w)v = (v, w), (3.30)

K = {v ∈ H1; ∥v∥2L2 = α} = Kα. (3.31)

Then it follows from ∥w∥2L2 =
√
α ̸= 0 that, for v ∈ H1,

∂wSη(w)v − λ∂wT (w)v = 0,

where

λ =
Re[∂wSη(w)w]

Re[∂wT (w)w]
=

∥∇w∥2L2 − ∥w∥p+1
Lp+1

∥w∥2L2

.

Substitute (2.6) and (3.30) into the equation, we get

(∇v,∇w) + η(v, w)− (v, |w|p−1w) = λ(v, w),

(∇v,∇w) + (η − λ)(v, w)− (v, |w|p−1w) = 0,

where η > 0 and v ∈ H1. Since E(w) = 1
2
∥∇w∥2L2 − 1

p+1
∥w∥p+1

Lp+1 = cα < 0, we

have λ < 0. Thus, w is a weak solution to (1.5) for some η′ = η − λ > 0.

This completes the proof of Lemma 3.1.3.

3.2 Existence of standing wave solutions and

their stability for 1 + 4
n < p < p∗(n)

In this section, we discuss the existence and instability of standing wave solutions
when n ⩾ 2 and 1 + 4

n
< p < p∗(n).

3.2.1 Proof of Theorem 1(ii)

Let us recall the conditional minimization problem (1.7) for 1 < p < 1 + n
4
:

cη = inf
u∈K

Sη(u),
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where η > 0 and K is defined as

K = {u ∈ H1; u ̸= 0, T (u) = 0},

with

T (u) = 2∥∇u∥2L2 −
n(p− 1)

p+ 1
∥u∥p+1

Lp+1 . (3.32)

For simplicity, we use another equivalent minimization problem to prove the
theorem:

cη = inf
u∈K

Jη(u), (3.33)

where

Jη(u) =
n(p− 1)− 4

n(p− 1)
∥∇u∥2L2 + η∥u∥2L2 . (3.34)

It follows from p > 1+ 4
n
that the coefficient of the first term in (3.34) is positive.

Hence, cη is a finite non-negative number.

Proof. Since the minimization problem (1.9) is equivalent to (3.33), it suffices to
show there exists w ∈ K ∩H1

r attaining the minimum value cη in (3.33) and this
function w is a weak solution to (1.5).

The proof of Theorem 1(ii) is made of two steps. In step 1, we find a solution
w ∈ K∩H1

r to the minimization problem (3.33). Then, we prove w is also a weak
solution to (1.5) in step 2.

Step 1: By the definition of cη, we can find a sequence {um} in K such that,
as m → ∞,

Jη(um) −→ cη, (3.35)

From the definition of the functional Jη, it follows that {um} is bounded in H1.
In view of Lemma 3.1.2, there exists a bounded sequence {u∗

m} in H1 satisfying

∥u∗
m∥Lp = ∥um∥Lp , 2 ⩽ p < p∗(n),

∥∇u∗
m∥L2 ⩽ ∥∇um∥L2 .

Then, by (3.32), (3.34) and the fact that {um} ∈ K, we have

Jη(u
∗
m) ⩽ Jη(um),

T (u∗
m) ⩽ T (um) = 0.

(3.36)

When T (u∗
m) < 0, we choose λ ∈ (0, 1) such that

T (λu∗
m) = 2λ2∥∇u∗

m∥2L2 − λp+1n(p− 1)

p+ 1
∥u∗

m∥
p+1
Lp+1 = 0.

There exists unique such λ since p+1 > 2. Then, we define a new sequence {vm}
such that vm = u∗

m when T (u∗
m) = 0, and vm = λu∗

m when T (u∗
m) < 0. Thus, we

have T (vm) = 0 which implies that {vm} ∈ K.
By definition of cη, we have

cη ⩽ Jη(vm). (3.37)
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Note that λ ∈ (0, 1). Hence,

Jη(λu
∗
m) = λ2n(p− 1)− 4

n(p− 1)
∥∇u∗

m∥2L2 + λ2η∥u∗
m∥2L2

⩽
n(p− 1)− 4

n(p− 1)
∥∇u∗

m∥2L2 + η∥u∗
m∥2L2

= Jη(u
∗
m),

i.e. Jη(vm) ⩽ Jη(u
∗
m).

(3.38)

Combining (3.36),(3.37) with (3.38) yields

cη ⩽ Jη(vm) ⩽ Jη(u
∗
m) ⩽ Jη(um).

for all m ⩾ 1. Hence, vm is bounded in H1
r . Moreover, by (3.35), we have

Jη(vm) −→ cη, (3.39)

as m → ∞. By Lemma 2.1.4 and Proposition 2.1.11, there exists a subsequence
{vmk

} ∈ K and w ∈ H1
r such that

vmk
−→ w weakly in H1, (3.40)

vmk
−→ w in Lp+1. (3.41)

Now we claim that w ∈ K. It suffices to prove T (w) = 0 and w ̸= 0. From
(3.39),(3.40) and Proposition 2.1.10, it follows that

cη = lim
mk→∞

Jη(vmk
)

⩾
n(p− 1)− 4

n(p− 1)
lim inf
mk→∞

∥∇vmk
∥2L2 + η lim

mk→∞
∥vmk

∥2L2

⩾
n(p− 1)− 4

n(p− 1)
∥∇w∥2L2 + η∥w∥2L2

= Jη(w).

(3.42)

In a like manner, we obtain the following inequality:

lim
mk→∞

T (vmk
) ⩾ 2 lim inf

mk→∞
∥∇vmk

∥2L2 −
n(p− 1)

p+ 1
lim

mk→∞
∥vmk

∥p+1
Lp+1

⩾ 2∥∇w∥2L2 −
n(p− 1)

p+ 1
∥w∥p+1

Lp+1

= T (w).

Since {vmk
} ∈ K, we have T (vmk

) = 0. Thus, T (w) ⩽ 0.

Let us prove T (w) = 0 by contradiction. Suppose T (w) < 0, then we choose
λ ∈ (0, 1) such that

T (λw) = 2λ2∥∇w∥2L2 − λp+1n(p− 1)

p+ 1
∥w∥p+1

Lp+1 = 0.
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Let w̃ = λw. If w ̸= 0, then w̃ ∈ K. Furthermore, by (3.42), we have

Jη(w̃) = λ2Jη(w) < Jη(w) ⩽ cη.

It contradicts the definition of cη (3.33). Hence, T (w) = 0.

To complete the proof, we still need to show w ̸= 0. From Proposition 2.1.3
and T (vmk

) = 0, it follows that

∥∇vmk
∥2L2 =

n(p− 1)

2(p+ 1)
∥vmk

∥p+1
Lp+1

≲ ∥vmk
∥(1−a)(p+1)

L2 ∥∇vmk
∥a(p+1)

L2 ,

where

a =
n

2
− n

p+ 1
=

n(p− 1)

2(p+ 1)
.

Since vmk
̸= 0, dividing both sides by ∥∇vmk

∥2L2 gives

1 ≲ ∥vmk
∥

(2−n)p+n+2
2

L2 ∥∇vmk
∥

n(p−1)
2

−2

L2 . (3.43)

Now suppose w = 0, then from (3.41), we obtain

lim
mk→∞

∥∇vmk
∥2L2 = lim

mk→∞

(
n(p− 1)

2(p+ 1)
∥vmk

∥p+1
Lp+1

)
=

n(p− 1)

2(p+ 1)
∥w∥p+1

Lp+1

= 0.

(3.44)

Since {vmk
} is bounded in H1

r , we have ∥vmk
∥L2 bounded. Also, by the hypothesis

of p, we deduce n(p−1)
2

− 2 > 0. Moreover, we have ∥∇vmk
∥L2 → 0 from (3.44).

Therefore,

lim
mk→∞

(
∥vmk

∥
(2−n)p+n+2

2

L2 ∥∇vmk
∥

n(p−1)
2

−2

L2

)
= 0.

This contradicts (3.43). Hence, w ̸= 0. Now, we conclude w ∈ K and it is
followed by cη ⩽ Jη(w). Combining this with (3.42) yields

Jη(w) = cη.

Step 1 illustrates that there exists w ∈ K ∩H1
r attaining the minimum value cη

in (3.33). In step 2, we shall prove it is a weak solution to (1.5).

Step 2: Notice that w is also a solution to the minimization problem (1.9).
Then, by Proposition 2.3.4(ii), we have

∂wSη(w)v − µ∂wT (w)v = 0, (3.45)

for v ∈ H1, where

µ =
Re[∂wSη(w)w]

Re[∂uT (w)w]
. (3.46)
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To satisfy the hypothesis of Proposition 2.3.4, we claim that Re[∂uT (w)w] ̸= 0.
From (2.17) and (3.32), we obtain

Re[∂uT (w)w] = 2∥∇w∥2L2 −
n(p− 1)(p+ 1)

2(p+ 1)
∥w∥p+1

Lp+1

= 2∥∇w∥2L2 −
n(p− 1)

2
∥w∥p+1

Lp+1 .

Moreover, in step 1 we have

T (w) = 2∥∇w∥2L2 −
n(p− 1)

p+ 1
∥w∥p+1

Lp+1 = 0, (3.47)

which together with p+ 1 > 2, implies that

Re[∂uT (w)w] < T (w) = 0.

Next, we claim µ = 0. Define

wλ = λβw(λx),

where λ > 0. Then, we deduce from (3.5)-(3.7) that

T (wλ) = 2∥∇wλ∥2L2 −
n(p− 1)

p+ 1
∥wλ∥p+1

Lp+1

= 2λ2β−n+2∥∇w∥2L2 −
n(p− 1)

p+ 1
λβ(p+1)−n∥w∥p+1

Lp+1 .

By letting β = 2
p−1

, we have

T (wλ) = λ
n+2−(n−2)p

p−1 T (w) = 0,

which implies that wλ ∈ K.

In a like mannar, from (3.5)-(3.7), we have

Sη(wλ) = ∥∇wλ∥2L2 + η∥wλ∥2L2 −
2

p+ 1
∥wλ∥p+1

Lp+1

= λ
4

p−1
−n+2∥∇w∥2L2 + λ

4
p−1

−nη∥w∥2L2 −
2

p+ 1
λ

2(p+1)
p−1

−n∥w∥p+1
Lp+1

= λ
n+2−(n−2)p

p−1

(
∥∇w∥2L2 −

2

p+ 1
∥w∥p+1

Lp+1

)
+ λ

4+n−np
p−1 η∥w∥2L2 .

Since w attains the minimum of Sη(u) on the set K and wλ ∈ K, then

Sη(wλ) ⩾ cη = Sη(w).

We observe that Sη(wλ) attains its minimum at λ = 1.

Recall that the derivative of a function at an extremum point is zero. There-
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fore, let us take a derivative of Sη(wλ) at λ = 1,

d

dλ
Sη(wλ)

∣∣∣∣
λ=1

=
n+ 2− (n− 2)p

p− 1

(
∥∇w∥2L2 −

2

p+ 1
∥w∥p+1

Lp+1

)
+

4 + n− np

p− 1
η∥w∥2L2

= 0.

(3.48)

Moreover, from (3.47), it follows that

∥∇w∥2L2 =
n(p− 1)

2(p+ 1)
∥w∥p+1

Lp+1 .

Substituting this into (3.48) yields

− (4 + n− np) η∥w∥2L2 = (n+ 2− (n− 2)p)

(
n(p− 1)− 4

2(p+ 1)
∥w∥p+1

Lp+1

)
,

η∥w∥2L2 =
n+ 2− (n− 2)p

np− n+ 4

(
n(p− 1)− 4

2(p+ 1)
∥w∥p+1

Lp+1

)
=

n+ 2− (n− 2)p

2(p+ 1)
∥w∥p+1

Lp+1 .

Thus, we deduce that

∥∇w∥2L2 + η∥w∥2L2 − ∥w∥p+1
Lp+1

=
n(p− 1)

2(p+ 1)
∥w∥p+1

Lp+1 +
n+ 2− (n− 2)p

2(p+ 1)
∥w∥p+1

Lp+1 − ∥w∥p+1
Lp+1

= 0.

It is equivalent to ∂wSη(w)w = 0 which implies µ = 0 by (3.46). Then, it follows
from (3.45) that

∂wSη(w)v = 0,

for v ∈ H1. Lastly, by Definition 2.1.7, we conclude w ∈ K ∩ H1
r is a weak

solution to (1.5).

From the proof of Theorem 1(ii), it follows that w ∈ K ∩ H1
r is radially

symmetric, non-increasing in r = |x|, and non-negative for all x ∈ Rn. In other
words, w is a ground state solution to (1.5). By Proposition 3.1.4, any weak
solution z to (1.5) such that Sη(z) = Sη(w) coincides with the solution w, modulo
translations and modulations.

We then construct a ground state solution v to (1.3) by v = eiηtw and show
it is indeed unstable.

3.2.2 Proof of Theorem 2(ii)

First, we need to understand the definition of orbital stability 1.2.2.
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For a solution u to (1.3), the set {u(·, t) ∈ H1; t ⩾ 0} is called the orbit of the
solution u. Since a standing wave solution v is periodic with period 2π

η
, the orbit

is given by

L = {v(·, t); 0 ⩽ t <
2π

η
}.

Theoretically, Definition 1.2.2 is saying that for a stable standing wave solution
v, if an initial condition u0 is close to it, then the corresponding solution u to
(1.3) stays close to its orbits.

In the following, we introduce two important lemmas that will appear in the
proof of Theorem 2(ii).

Lemma 3.2.1 ([13] Lemma 5.5.4). Let n ⩾ 2, 1 + 4
n
< p < p∗(n) and η > 0.

Suppose u ∈ H1 satisfies
T (u) < 0,

Sη(u) < cη.

Then, the following inequality holds:

T (u) ⩽ Sη(u)− cη.

Proof. Define uλ by
uλ(x) = λβu(λx),

where λ > 0 and β ∈ R. Let β = n
2
. It follows from (3.5)-(3.7) that

T (uλ) = λ2

(
2∥∇u∥2L2 −

n(p− 1)

p+ 1
λ

n(p−1− 4
n )

2 ∥u∥p+1
Lp+1

)
, (3.49)

Sη(uλ) = λ2∥∇u∥2L2 + η∥u∥2L2 −
2

p+ 1
λ

n(p−1)
2 ∥u∥p+1

Lp+1 . (3.50)

Notice that, at λ = 1, we have the assumption T (u) < 0,

i.e. 2∥∇u∥2L2 <
n(p− 1)

p+ 1
∥u∥p+1

Lp+1 . (3.51)

Since p > 1+ 4
n
, we have

n(p−1− 4
n
)

2
> 0. Thus, there must exist a unique λ∗ ∈ (0, 1)

such that

2∥∇u∥2L2 =
n(p− 1)

p+ 1
λ∗

n(p−1− 4
n )

2 ∥u∥p+1
Lp+1 ,

which implies that
T (uλ∗) = 0.

Moreover, for all λ ∈ (λ∗, 1],
T (uλ) < 0.

Differentiating (3.50) in λ yields

d

dλ
Sη(uλ) = 2λ∥∇u∥2L2 −

n(p− 1)

(p+ 1)
λ

n(p−1− 2
n )

2 ∥u∥p+1
Lp+1 ,
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Then, we derive the second derivative:

d2

dλ2
Sη(uλ) = 2∥∇u∥2L2 −

n(p− 1)

(p+ 1)

(n(p− 1)− 2)

2
λ

n(p−1− 4
n )

2 ∥u∥p+1
Lp+1 . (3.52)

Define h(λ) := Sη(uλ), then

h′(1) =
d

dλ
Sη(uλ)

∣∣
λ=1

= 2∥∇u∥2L2 −
n(p− 1)

(p+ 1)
∥u∥p+1

Lp+1

= T (u).

Furthermore, since (n(p−1)−2)
2

> 1, we have

h′′(λ) =
d2

dλ2
Sη(uλ) < T (uλ).

It is followed by
h′′(λ) < 0, ∀λ ∈ [λ∗, 1]. (3.53)

By Taylor’s theorem, there exists θ ∈ (0, 1) such that

h(λ∗) = h(1) + (λ∗ − 1)h′(1) +
1

2
(λ∗ − 1)2h′′(1 + θ(λ∗ − 1)), (3.54)

where 1 + θ(λ∗ − 1) denotes every λ ∈ (λ∗, 1). Then, it follows from (3.53) that

h′′(1 + θ(λ∗ − 1)) < 0.

Thus, from (3.54), the following inequality holds:

Sη(uλ∗) ⩽ Sη(u) + (λ∗ − 1)T (u). (3.55)

Since T (uλ∗) = 0, we have uλ∗ ∈ K. Therefore, by the definition of cη,

cη ⩽ Sη(uλ∗).

Then, from (3.55), it follows that

(λ∗ − 1)T (u) ⩾ Sη(uλ∗)− Sη(u)

⩾ cη − Sη(u).

Moreover, by λ∗ ∈ (0, 1) and Sη(u) < cη, we derive that

T (u) ⩽
1

1− λ∗ (Sη(u)− cη)

⩽ Sη(u)− cη,

which completes the proof.
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Lemma 3.2.2 ([13] Lemma 5.5.5). Let n ≥ 2, 1 + 4
n
< p < p∗(n) and η > 0. For

d < cη, define
Ad := {u ∈ H1; T (u) < 0, Sη(u) ⩽ d}.

Suppose that a solution u to (1.3) with initial condition u0 ∈ Ad at time t = 0
exists on [0, T ), satisfying

u ∈ C([0, T );H1) ∩ C1([0, T );H−1),

∇u ∈ Lr((0, T ′);Lp+1),

where 0 < T ′ < T and r satisfies

r

(
n

2
− n

p+ 1

)
= 2.

Then, we have u(t) ∈ Ad for all t ∈ [0, T ).

Proof. By Proposition 2.2.3, the conservation laws (2.3) hold for t ∈ [0, T ). Thus,
we have

Sη(u(t)) = 2E(u(t)) + η∥u(t)∥2L2

= 2E(u0) + η∥u0∥2L2

= Sη(u0) ⩽ d,

(3.56)

for t ∈ [0, T ). Next, set

t0 = sup{t ∈ [0, T ); T (u(t)) < 0}.

Since T (u(t)) is a continuous function in t and T (u0) < 0, we have t0 > 0.
Suppose t0 < T , then by the continuity of T (u(t)) in t,

T (u(t0)) = 0.

Moreover, it is followed from the L2-conservation that u(t0) ̸= 0. Thus, u(t0) ∈ K.
Then the following holds by the definition of cη:

d < cη ⩽ Sη(u(t0)).

This is a contradiction with (3.56). Therefore, we have t0 = T which indicates
T (u(t)) < 0 for all t ∈ [0, T ). As a consequence,

u(t) ∈ Ad, ∀ t ∈ [0, T ).

Now we can prove the final theorem of this report which states the instability
of the standing wave solutions for 1 + 4

n
< p < p∗(n), i.e. Theorem 2(ii).

Proof. In general, we know that to demonstrate the instability of a ground state
solution v to (1.3), it suffices to show, in any neighbourhood of v(0), there exists
an initial condition such that the corresponding solution blows up in a finite
amount of time.
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Step 1: Let d < cη. Suppose u0 ∈ Ad and xu0 ∈ L2, where Ad ⊂ H1 as
defined in Lemma 3.2.2. Let u be the corresponding solution to (1.3) with initial
condition u(0) = u0.

We claim the solution u(t) can not be extended to [0,∞) and prove it by
contradiction. Suppose the solution u exists on [0,∞). By Lemma 2.2.6, we
derive that

∥xu(t)∥2L2 = ∥xu0∥2L2 + 4t

∫
Rn

u0x · ∇u0dx

+ 4

∫ t

0

∫ s

0

[
2∥∇u(τ)∥2L2 −

n(p− 1)

p+ 1
∥u(τ)∥p+1

Lp+1

]
dτds

= ∥xu0∥2L2 + 4t

∫
Rn

u0x · ∇u0dx

+ 4

∫ t

0

∫ s

0

T (u(τ)) dτds,

(3.57)

for t ∈ [0,∞). Moreover, from the assumption u0 ∈ Ad and Lemma 3.2.2, it
follows that

u(t) ∈ Ad, ∀ t ∈ [0,∞),

which means u(t) satisfies the hypothesis of Lemma 3.2.1 for all t ∈ (0,∞]. It is
then followed by

T (u(t)) ⩽ Sη(u(t))− cη ⩽ d− cη.

Hence, the equation (3.57) can be converted to

∥xu(t)∥2L2 ⩽ ∥xu0∥2L2 + 4t

∫
Rn

v0x · ∇u0dx

+ 4t2(d− cη).

Since d < cη, the right-hand side of the inequality is negative when t is sufficiently
large. It is obviously a contradiction since the square on the left-hand side can
not be negative. Therefore, the solution u(t) can not be extended to t ∈ (0,∞].

More specifically, there exists T > 0 such that

lim
t→T−

∥∇u(t)∥L2 = ∞.

Step 2: Let w be a solution to the minimization problem (1.9) (i.e. w ∈ K
and Sη(w) = cη), then by Theorem 1(ii), w is a weak solution to (1.5). Therefore,
w satisfies

∥∇w∥2L2 + η∥w∥2L2 − ∥w∥p+1
Lp+1 = 0. (3.58)

Now, define
wλ(x) := λw(x),

where λ > 0. Substituting it into (1.7) yields

Sη(wλ) = λ2∥∇w∥2L2 + ηλ2∥w∥2L2 −
2

p+ 1
λp+1∥w∥p+1

Lp+1 . (3.59)
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Then differentiating (3.59) in λ, we have

d

dλ
Sη(wλ) = 2λ

(
∥∇w∥2L2 + η∥w∥2L2 − λp−1∥w∥p+1

Lp+1

)
.

It follows from (3.58) that for all λ > 1,

d

dλ
Sη(wλ) < 2λ

(
∥∇w∥2L2 + η∥w∥2L2 − ∥w∥p+1

Lp+1

)
= 0.

It is equivalent to
Sη(wλ)− Sη(w)

λ− 1
< 0.

Thus for λ > 1, we deduce Sη(wλ) < Sη(w) = cη.
Also, we have T (w) = 0 from w ∈ K. Then,

T (wλ) = λ2

[
2∥w∥2L2 − λp−1n(p− 1)

p+ 1
∥w∥p+1

Lp+1

]
< λ2

[
2∥w∥2L2 −

n(p− 1)

p+ 1
∥w∥p+1

Lp+1

]
= λ2T (w) = 0.

Moreover, by definition of wλ, it is clear that the following holds as λ → 1 :

∥wλ∥L2 → ∥w∥L2 ,

∥wλ∥Lp+1 → ∥w∥Lp+1 ,

∥∇wλ∥L2 → ∥∇w∥L2 .

Therefore, we have

wλ → w in H1,

Sη(wλ) → Sη(w),

as λ → 1. Now, let dλ := Sη(wλ), then dλ → cη as λ → 1. Hence, given any
ϵ > 0, there exists λ > 0 such that

∥wλ − w∥H1 < ϵ, wλ ∈ Adλ , xwλ ∈ L2.

It follows from Step 1 that the solution u to (1.3) with initial condition u(0) = wλ

blows up in finite time. This implies that a ground state solution v to (1.3) is
orbitally unstable.
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