
Large scale spatial statistics

with SPDEs, GMRFs,

and multi-scale component models

Finn Lindgren (finn.lindgren@ed.ac.uk)

SIAM UQ 2018-04-17



EUSTACE
EU Surface Temperatures for All Corners of Earth

EUSTACE will give publicly available daily estimates of surface air temperature since
1850 across the globe for the first time by combining surface and satellite data using
novel statistical techniques.



Quarter degree output grid
365 daily estimates each year

165 years
Two fields: daily mean and range

360 · 180 · 42 · 365 · 165 · 2 = 124, 882, 560, 000

Storing∼ 1011 latent variables as double takes∼ 1 TB

We want a joint estimate of the entire space-time process
at several time scales (daily, climatological, seasonal)

Methods based on direct covariance calculations are infeasible.

An additive hierarchical stochastic PDE model
and matrix-free iterative solvers

will (hopefully) save us!



Gaussian random field

A Gaussian random field x : D 7→ R is defined via

E(x(s)) = m(s),

Cov(x(s), x(s′)) = K(s, s′), (covariance kernel)[
x(si), i = 1, . . . , n

]
∼ N (m =

[
m(si), i = 1, . . . , n

]
,

Σ =
[
K(si, sj), i, j = 1, . . . , n

]
)

for all finite location sets {s1, . . . , sn}, and K(·, ·) symmetric positive definite.

Generalised Gaussian random field

A generalised Gaussian random field x : D 7→ R is defined via a random measure,
〈f, x〉D = x∗(f) : HR(D) 7→ R,R a covariance operator:

E(〈f, x〉D) = 〈f,m〉D =

∫
D

f(s)m(s) ds,

Cov(〈f, x〉D , 〈g, x〉D) = 〈f,Rg〉D ≡
∫∫

D×D
f(s)K(s, s′)g(s′) ds ds′,

〈f, x〉D ∼ N (〈f,m〉D , 〈f,Rf〉D)

for all f, g ∈ HR(D) ≡ {f : D 7→ R; 〈f,Rf〉D <∞}.



Covariance functions and SPDEs

The Matérn covariance family on Rd

Cov(x(0), x(s)) = σ2 21−ν

Γ(ν)
(κ‖s‖)νKν(κ‖s‖)

Scale κ > 0, smoothness ν > 0, variance σ2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE(

κ2 −∇ · ∇
)α/2

x(s) =W(s), α = ν + d/2

W(·) white noise,∇ · ∇ =
∑d
i=1

∂2

∂s2i
, σ2 = Γ(ν)

Γ(α)κ2ν(4π)d/2

White noise has K(s, s′) = δ(s− s′). Do not confuse with independent noise,
K(s, s′) = I(s = s′), which has non-integrable realisations.



GMRFs: Gaussian Markov random fields

Continuous domain GMRFs

If x(s) is a (stationary) Gaussian random field on Ω with covariance

kernel K(s, s′), it fulfills the global Markov property

{x(A) ⊥ x(B)|x(S), for allAB-separating sets S ⊂ Ω}

if the power spectrum can be written as 1/Sx(ω) = polynomial
in ω, for some polynomial order p. (Rozanov, 1977)

A

S

B

Generally: Markov iff the precision operatorQ = R−1 is local.

Discrete domain Gaussian Markov random fields (GMRFs)

x = (x1, . . . , xn) ∼ N (µ,Q−1) is Markov with respect to a neighbourhood
structure {Ni, i = 1, . . . , n} if Qij = 0 whenever j 6= Ni ∪ i.

I Continuous domain basis representation with weights:
x(s) =

∑n
k=1 ψk(s)xk

I Project the SPDE solution space onto local basis functions:
random Markov weights (Lindgren et al, 2011).



GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(κ2 −∆)(τ x(s)) =W(s), s ∈ Rd



GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(κ2 −∆)(τ x(s)) =W(s), s ∈ Ω



GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.(
∂
∂t + κ2

s,t +∇ ·ms,t −∇ ·M s,t∇
)

(τs,tx(s, t)) = E(s, t), (s, t) ∈ Ω× R



Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

(κ2 −∆)γ/2
[
φ
∂

∂t
+ (κ2 −∆)α/2

]β
x(s, t) =W(s, t)/τ

Fourier spectra are based on eigenfunctions eω(s) of−∆.
On R2,−∆eω(s) = ‖ω‖2eω(s), and eω are harmonic functions.
On S2,−∆ek(s) = λkek(s) = k(k + 1)ek(s), and ek are spherical harmonics.
The isotropic spectrum on S2 × R is

R̂(k, ω) ∝ 2k + 1

τ2(κ2 + λk)γ [φ2ω2 + (κ2 + λk)α]
β

The finite element approximation has precision matrix structure

Q =

α+β+γ∑
i=0

M
[t]
i ⊗M

[s]
i

even, e.g., if κ is spatially varying.



Partial hierarchical representation

Observations of mean, max, min. Model mean and range.
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Basic latent multiscale structure
Let Ukm(s, t), Ukr (s, t), k = 0, 1, 2, S be random fields operating on (multi)daily,
multimonthly, multidecadal, and cyclic seasonal timescales, respectively, represented
by finite element approximations of stochastic heat equations.

Daily mean temperatures

The daily means Tm(s, t) are defined through

Tm(s, t) = U0
m(s, t) + U1

m(s, t) + U2
m(s, t) + USm(s, t) +

NX∑
i=1

Xi(s, t)β
(i)
m︸ ︷︷ ︸

T 2
m︸ ︷︷ ︸

T 1
m︸ ︷︷ ︸

T 0
m

The βm coefficients are weights for covariates Xi(s, t) (e.g. elevation, topographical
gradients, and land use indicator functions).



Basic latent multiscale structure
Daily temperature range (diurnal range)

The diurnal ranges Tr(s, t) are defined through

g−1[µr(s, t)] = U1
r (s, t) + U2

r (s, t) + USr (s, t) +

NX∑
i=1

Xi(s, t)β
(i)
r︸ ︷︷ ︸

T 2
r︸ ︷︷ ︸

T 1
r

,

Tr(s, t) = µr(s, t) G
−1
[
U0
r (s, t)

]
= g(T 1

r ) G−1
[
U0
r (s, t)

]︸ ︷︷ ︸
T 0
r

,

where the slowly varying median process µr(s, t) is a transformed multiscale model,
and G−1 is a spatially and seasonally varying transformation model. The βr
coefficients are weights for covariates Xi(s, t) (e.g. elevation, topographical
gradients, and land use indicator functions).



Observed data
Observed daily Tmean and Trange for station FRW00034051
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Power tail quantile (POQ) model

The quantile function F−1
θ (p), p ∈ [0, 1], is defined through a quantile blend of left-

and right-tailed generalised Pareto distributions.
The parameters θ = (θ0, θ1 = log τ, θ2 = logit[(γ + 1)/2], θ3, θ4) control the
median, spread/scale, skewness, and the left and right tail shape.
This model is also known as the five parameter lambda model.

A POQ copula model

A spatio-temporally dependent Gaussian field u(s, t) with expectation 0 and variance
1 can be transformed into a POQ field by

ũ(s, t) = G−1[u(s, t)] = F−1
θ(s,t)(Φ(u(s, t)),

where the parameters can vary with space and time.

Due to the large size of the problem, we estimate parameters in a two-step procedure:

1. Estimate seasonal POQ and temporal covariance parameters for separate time
series

2. With a basic spatial-seasonal random field prior, find the posterior mean
parameter field



Multiscale model component samples
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Combined model samples for Tm and Tr
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Estimates of median & scale for Tm and Tr
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Linearised inference
All Spatio-temporal latent random processes combined into x = (u,β, b), with joint
expectation µx and precisionQx:

(x | θ) ∼ N (µx,Q
−1
x ) (Prior; Only used in pre-estimation in EUSTACE)

(y | x,θ) ∼ N (Ax,Q−1
y|x) (Observations)

p(x | y,θ) ∝ p(x | θ) p(y | x,θ) (Conditional posterior)

Linear Gaussian observations
The conditional posterior distribution is

(x | y,θ) ∼ N (µ̃, Q̃
−1

) (Posterior)

Q̃ = Qx +A>Qy|xA

µ̃ = µx + Q̃
−1
A>Qy|x (y −Aµx)



Linearised inference
All Spatio-temporal latent random processes combined into x = (u,β, b), with joint
expectation µx and precisionQx:

(x | θ) ∼ N (µx,Q
−1
x ) (Prior; Only used in pre-estimation in EUSTACE)

(y | x,θ) ∼ N (h(Ax),Q−1
y|x) (Observations)

p(x | y,θ) ∝ p(x | θ) p(y | x,θ) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear h(Ax) with Jacobian J at x = µ̃, iterate:

(x | y,θ)
approx∼ N (µ̃, Q̃

−1
) (Approximate conditional posterior)

Q̃ = Qx + J>Qy|xJ

µ̃′ = µ̃+ aQ̃
−1
{
J>Qy|x [y − h(Aµ̃)]−Qx(µ̃− µx)

}
for some a > 0 chosen by line-search.



Triangulations for all corners of Earth



Overlapping blocks and multigrid

Overlapping block preconditioning

LetD>k be a restriction matrix to subdomain Ωk , and letW k be a diagonal weight
matrix. Then an additive Schwartz preconditioner is

M−1x =

K∑
k=1

W kDk(D>kQDk)−1D>kW kx

Multigrid
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The hierarchy of scales and preconditioning (x0 = Bx1 + fine scale variability):

Multiscale Schur complement approximation

SolvingQx|yx = b can be formulated using two solves with the upper (fine) block

Q0 +A>QεA, and one solve with the Schur complement

Q1 +B>Q0B −B>Q0

(
Q0 +A>QεA

)−1

Q0

By mapping the fine scale model onto the coarse basis used for the coarse model, we
get an approximate (and sparse) Schur solve via[

Q̃B +B>A>QεAB −Q̃B

−Q̃B Q1 + Q̃B

] [
ignored
x1

]
=

[
0

b̃

]

where Q̃B = B>Q0B.
The block matrix can be interpreted as the precision of a bivariate field on a common,
coarse spatio-temporal scale, and the same technique applied to this system, with
x1,1 = B1|2x1,2 + finer scale variability.

Also applies to the station data bias homogenisation coefficients.



Summary and further developments

I Hierarchical timescale combination of space-time random fields

I Translation between GRF/SPDE/GMRF; they are all the same Gaussian process

I Know how to solve smaller problems; overlapping domains for preconditioning

I Multiscale model structure used for effective preconditioning

I Direct Monte Carlo sampling: add suitable randomness to the RHS of the system

I Improve posterior variance estimates with Rao-Blackwellisation

Current status and future developments:

I Implementation for smaller region than global is in progress

I Full global solve will likely require multigrid

I The full approximate Schur complement method would require multiple data read
for the preconditioner; Is there a better alternative than separate
block-preconditioning?

I Spatial covariance parameter estimation should take advantage of the
non-stationarity; a global, joint Bayesian parameter estimate would be overkill;
estimate locally, and blend to a coherent global model.


