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GAMs and general kriging
Linear GAMs with GPs on space and covariates:

ηi =
∑
k

vk(zik) + u(si),

each vk(·) and u(·) represented with basis expansions with jointly Gaussian coefficients x.

Linear observations with additive Gaussian observation noise: y = η + ϵ = Ax+ ϵ

Covariance kriging

Σy = AΣxA
⊤ +Σϵ

E(x|y) = µ+ΣxA
⊤Σ−1

y (y −Aµ)

Precision kriging

Qx|y = Qx +A⊤QϵA

E(x|y) = µ+Q−1
x|yA

⊤Qϵ(y −Aµ)

Non-Gaussian observations with link function: E(yi|θ,x) = h(ηi)
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Observation level covariance vs latent level precision

Covariance kriging: linear solve with a Σ, Σij = Cov(yi, yj)

Precision kriging: linear solve with a Q, Qij = Prec(xi, xj |y)
Q = LL⊤ for a given latent variable ordering, and sparse lower triangular L with the sparsity

from Q plus Cholesky infill.

The prior Qx for GRF/SPDE process components are obtained via a local Finite Element

construction, giving the model in a chosen finite function space closest to the full model.
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Finite element structure

Matérn-Whittle processes

Linear Gaussian process/field representations via SPDEs:

(κ2 −∆)αu(s) ds = dW(s)κα−d/2/τ

For constant parameters, u(s) has spatial Matérn covariance on Rd, and generalised Matérn-Whittle

covariance on general manifolds. The smoothness index is ν = α− d/2 and the variance is

proportional to 1/τ2. Whittle (1954, 1963), Lindgren et al (2011)

Discrete domain Gaussian Markov random fields (GMRFs)

x = (x1, . . . , xn) ∼ N(µ,Q−1) is Markov with respect to a neighbourhood structure

{Ni, i = 1, . . . , n} if Qij = 0 whenever j ̸= Ni ∪ i.
Continuous domain basis representation with weights: x(s) =

∑n
k=1 ψk(s)uk

Project the SPDE solution space onto local basis functions:

random Markov dependent basis weights (Lindgren et al, 2011).
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Non-stationarity

Non-stationary Matérn-Whittle processes

The Sampson & Guttorp (1992) deformation method motivates a non-stationary generalisation on R2:

(κ(s)2 −∇ ·H(s)∇)α
u(s)

σ(s)
ds = dW(s)κ(s)α−d/2,

where κ(s) and H(s) are derived from the metric tensor of the deformation. For deformation not from

Rd onto Rd, this non-stationary model is distinct from the deformation method, but keeps much of the

intuition, as the variance will be approximativey independent of κ(s).

RKHS inner products of linear SPDEs

The spatial solutions u(s) to

Lu(s) ds = dW(s) where dW(s) is white noise on Ω
have RKHS inner product

QΩ(f, g) = ⟨Lf,Lg⟩Ω
plus potential boundary terms.
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Non-separable space-time: Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:[
ϕ
∂

∂t
+ (κ2 −∆)αs/2

]αt

u(s, t) dt = dE(κ2−∆)αe (s, t)/τ

For constant parameters, u(s, t) has spatial Matérn covariance (for each t) on R2 and a generalised

Matérn-Whittle sense on S2.

Smoothness properties:

νt = min

[
αt −

1

2
,
νs
αs

]
, αt = νtmax

(
1,

βs
β∗(νs, d)

)
+

1

2
,

νs = αe + αs(αt −
1

2
)− d

2
, αs =

νs
νt

min

(
βs

β∗(νs, d)
, 1

)
=

1

νt
min [(νs + d/2)βs, νs] ,

β∗(νs, d) =
νs

νs + d/2
, αe =

1− βs
β∗(νs, d)

νs = (νs + d/2)(1− βs).
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Spectra and finite element structure
Fourier spectra are based on eigenfunctions eω(s) of −∆.

On Rd, −∆eλ(s) = ∥λ∥2eλ(s), and eλ(s) are harmonic functions.

The stationary spectrum on Rd × R is

R̂(λ, ω) =
1

(2π)d+1τ2(κ2 + λλ)αe [ϕ2ω2 + (κ2 + λλ)αs ]αt

On S2, −∆ek(s) = λkek(s) = k(k + 1)ek(s), and ek are spherical harmonics.

The isotropic spectrum on S2 × R is

R̂(k, ω) ∝ 2k + 1

τ2(κ2 + λk)αe [ϕ2ω2 + (κ2 + λk)αs ]αt

The finite element approximation has structure

u(s, t) =
∑
i,j

ψ
[s]
i (s)ψ

[t]
j (t)xij , x ∼ N(0,Q−1), Q =

αt+αs+αe∑
k=0

M
[t]
k ⊗M

[s]
k

even, e.g., if the spatial scale parameter κ is spatially varying.
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Latent Gaussian models

Hierarchical model with latent jointly Gaussian variables

θ ∼ p(θ) (covariance parameters)

(u | θ) ∼ N(µu,Q
−1
u ) (latent Gaussian variables)

(y | u,θ) ∼ p(y | u,θ) (observation model)

We are interested in the posterior densities p(θ | y), p(u | y) and p(ui | y).

Approximate conditional posterior distribution

Let û(θ) be the mode of the posterior density p(u | y,θ) ∝ p(u | θ)p(y | u,θ). Construct an

approximate conditional posterior distribution, via Newton optimisation for u given θ:

pG(u | y,θ) ∼ N(µ̂, Q̂−1)

0 = ∇u {ln p(u | θ) + ln p(y | u,θ)}|u=µ̂(θ)

Q̂ = Qu − ∇2
u ln p(y | u,θ)

∣∣
u=µ̂θ
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Classic and compact INLA methods (∼ description)

Laplace approximation at the conditional posterior mode x∗, and uncertainty integration:

p(θ|y) ∝ p(θ)p(x|θ)p(y|θ,x)
p(x|θ,y)

∣∣∣∣
x=x∗

≈ p(θ)p(x|θ)p(y|θ,x)
pG(x|θ,y)

∣∣∣∣
x=x∗

= p̂(θ|y)

p(xi|y) =
∫
p(xi|θ,y)p(θ|y) dθ ≈

∑
k

p̂(xi|θ(k),y)p̂(θ(k)|y)wk = p̂(xi|y)

Let µ̂ = E(x|θ,y) and Qϵ = −∇x∇⊤
x log p(y|θ,x∗)

Classic method: Laplace approximation of each p̂(xi|θ,y), and{[
Ax
x

]
|θ,y

}
∼ N

([
Aµ̂
µ̂

]
,

[
Qϵ + δI −δA
−δA⊤ Qx + δA⊤A

]−1
)

, with δ ≫ 0

Compact method: Variational approximation of p̂(x|θ,y), and

{x|θ,y} ∼ N
(
µ̂, [Qx +A⊤QϵA]−1

)
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inlabru software interface concepts
Model components are declared similarly to R-INLA:

# INLA:
~ covar + f(name, model = ...)
# inlabru
~ covar + name(input, model = ...)
~ covar # is translated into...
~ covar(covar, model = "linear")
~ name(1) # Used for intercept-like components

In R-INLA, η = Au = A0
∑K

k=1Akuk, where the rows of Ak only extract individual

elements from each uk, and the overall A0 is user defined (via inla.stack()).

In inlabru, η = h(u1, . . . ,uK ,A1u1, . . . ,AKuK), where h(·) is a general R expression

of named latent components uk and intermediate "effects" Akuk

Ak by default acts either as in R-INLA, or is determined by a mapper method. Predefined default

mappers include e.g. spatial evaluation of SPDE/GRMF models that map between coordinates

and meshes, and mappers that combine other mappers (used to combine main/group/replicate

for all components)
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Input mappers

Each named component has main/group/replicate inputs, that are given to the mappers to
evaluate Ak. For a given latent state, the resulting effect values are made available to the
predictor expression.

bru_mapper() # generic
bru_mapper_index(n) # Basic index mapping
bru_mapper_linear() # Basic linear mapping
bru_mapper_matrix(labels) # Basic linear multivariable mapping
bru_mapper_factor(values, factor_mapping) # Factor variable mapping
bru_mapper_multi(mappers) # kronecker product components
bru_mapper_collect(mappers, hidden) # For concatenated components, like bym
bru_mapper_const() # Constants
bru_mapper.inla.mesh(mesh) # 2D and spherical mesh mappings
bru_mapper.inla.mesh.1d(mesh) # Interval and cyclic interval mappings

Common methods that return essential characteristics

ibm_n(mapper) # The size of the latent component
ibm_values(mapper) # The covariate/index "values" given to INLA
ibm_jacobian(mapper, input) # The "A-matrix" for given input values
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Model component definition example:

comp <- ~ -1 + field(cbind(easting, northing), model = spde) + param(1)

Predictor formula examples, including naming of the response variable:

form1 <- my_counts ~ param + field
form2 <- response ~ exp(param) + exp(field)

Main method call structure:

bru(components = comp,
like(formula = form1, family = "poisson", data = data1),
like(formula = form2, family = "normal", data = data2))

Simplified notations for common special cases;

formula = response ~ .
gives the full additive model of all the available components, or

components = response ~ Intercept(1) + field(...
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Plain INLA code for space-time model

matern <- inla.spde2.pcmatern(mesh, ...)

field_A <- inla.spde.make.A(mesh,
coordinates(data),
group = data$year - min(data$year) + 1,
n.group = 10)

stk <- inla.stack(data = list(response = data$response),
A = list(field_A, 1),
effects = list(field_index, list(covar = data$covar)))

formula <- response ~ 1 + covar +
f(field, model = matern, group = field_group, control.group = ...)

fit <- inla(formula = formula,
data = inla.stack.data(stk, matern = matern),
family = "normal",
control.predictor = list(A = inla.stack.A(stk)))
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inlabru code for space-time model

matern <- inla.spde2.pcmatern(mesh, ...)

year_mapper <- bru_mapper(inla.mesh.1d(sort(unique(data$year))), indexed = TRUE)

comp <- response ~ Intercept(1) + covar +
field(coordinates, model = matern, group = year, group_mapper = year_mapper,

control.group = ...)

fit <- bru(components = comp,
data = data,
family = "normal")

Implied:

coordinates−→ sp::coordinates(.data.)

formula = response ~ .

data and family passed on to a like() call
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Latent Gaussian models of R-INLA type and inlabru extension

LGM of R-INLA type

θ ∼ p(θ), (hyper-)parameters

u|θ ∼ N
(
µu,Q(θ)−1

)
, complex structured latent Gaussian field

η(u) = Au, linear predictor, linear combination of the latent variables

yi|u,θ ∼ p(yi|ηi(u),θ), response variables yi, conditionally independent

Extended LGM of inlabru type

θ ∼ p(θ), (hyper-)parameters

u|θ ∼ N
(
µu,Q(θ)−1

)
, complex structured latent Gaussian field

η(u) = h(u), non-linear predictor, general function of the latent variables

yi|u,θ ∼ p(yi|ηi(u),θ), response variables yi, conditionally independent
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Approximate INLA for non-linear predictors

Linearised predictor

Let η̃(u) be the non-linear predictor, and let η(u) be the 1st order Taylor approximation at some u0,

η(u) = η̃(u0) +B(u− u0) = [η̃(u0)−Bu0] +Bu,

where B is the derivative matrix for the non-linear predictor, evaluated at u0.

The non-linear observation model p̃(y|u,θ) is approximated by

p(y|u,θ) = p(y|η(u),θ) ≈ p(y|η̃(u),θ) = p̃(y|u,θ)
The non-linear model posterior is factorised as

p̃(θ,u|y) = p̃(θ|y)p̃(u|y,θ),
and the linear model approximation is factorised as

p(θ,u|y) = p(θ|y)p(u|y,θ).
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Iterated INLA in inlabru

The observation model is linked to u only through the non-linear predictor η̃(u).
Iterative INLA algorithm:

1 Let u0 be an initial linearisation point for the latent variables.

2 Compute the predictor linearisation at u0

3 Compute the linearised INLA posterior p(θ|y) and let θ̂ = argmaxθ p(θ|y)
4 Let u1 = argmaxu p(u|y, θ̂) be the initial candidate for new linearisation point.

5 Let uα = (1− α)u0 + αu1, and find the value α that minimises ∥η̃(uα)− η(u1)∥.

6 Set the linearisation point u0 to uα and repeat from step 2, unless the iteration has converged to

a given tolerance.

7 Compute p(u|y)
In step 4, only the conditional posterior mode for u is needed, so the costly nested integration step of

the R-INLA algorithm only needs to be run in a final iteration of the algorithm, in step 7.

Step 5 can use an approximate line search method.
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Example: Thinned Poisson point processes

We want to model the presence of groups of dolphins using a Log-Gaussian Cox Process (LGCP)

However, when surveying dolphins from a ship travelling along lines (transects), the probability of

detecting a group of animals depends their distance distance from the ship.
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Example: Thinned Poisson point processes

We want to model the presence of groups of dolphins using a Log-Gaussian Cox Process (LGCP)

However, when surveying dolphins from a ship travelling along lines (transects), the probability of

detecting a group of animals depends their distance distance from the ship, e.g. via

P(detection) = 1− exp
(
− σ

distance

)
(hazard rate model)

This results in a thinned Poisson process model on (space, distance) along the transects:

log(λ(s, distance)) = Intercept + field(s) + log [P(detection at s | distance, σ)] + log(2)

inlabru knows how to construct the Poisson process likelihood along lines and on polygons, and

kronecker spaces (line × distance)

We can define log(σ) as a latent Gaussian variable and iteratively linearise. The non-linearity is mild,

and the iterative INLA method converges.
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log_det_prob <- function(distance, log_sig) {
log1p(-exp(-exp(log_sig) / distance))

}

comp <- ~ field(coordinates, model = matern) + log_sig(1) + Intercept(1)
form <- coordinates + distance ~

Intercept + field + log_det_prob(distance, log_sig) + log(2)

fit <- bru(
components = comp,
like(

family = "cp", formula = form,
data = mexdolphin$points, # sp::SpatialPointsDataFrame
samplers = mexdolphin$samplers, # sp::SpatialLinesDataFrame
domain = list(

coordinates = mexdolphin$mesh,
distance = INLA::inla.mesh.1d(seq(0, 8, length.out = 30))

)
)

)
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Posterior prediction method

pred_points <- pixels(mexdolphin$mesh, nx = 200, ny = 100, mask = mexdolphin$ppoly)
pred <- predict(fit, pred_points, ~ exp(field + Intercept))

det_prob <- function(distance, log_sig) { 1 - exp(-exp(log_sig) / distance) }
pred_dist <- data.frame(distance = seq(0, 8, length = 100))
det_prob <- predict(fit, pred_dist, ~ det_prob(distance, log_sig), include = "log_sig")

ggplot() + gg(pred) + gg(mexdolphin$samplers) + gg(mexdolphin$ppoly) + ...
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Data level prediction

47 groups were seen. How many would be seen along the transects under perfect detection?

predpts_transect <- ipoints(mexdolphin$samplers, mexdolphin$mesh)
Lambda_transect <- predict(fit, predpts_transect,

~ 16 * sum(weight * exp(field + Intercept)))

mean sd q0.025 q0.5 q0.975 median mean.mc_std_err sd.mc_std_err

85.93922 24.93825 42.0879 82.61408 149.988 82.61408 2.493825 2.239346

How many would be seen under perfect detection across the whole study area?

predpts <- ipoints(mexdolphin$ppoly, mexdolphin$mesh)
Lambda <- predict(fit, predpts, ~ sum(weight * exp(field + Intercept)))

mean sd q0.025 q0.5 q0.975 median mean.mc_std_err sd.mc_std_err

319.752 81.54696 190.0406 313.1301 520.4723 313.1301 8.154696 8.796282
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Integration points
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Complex prediction expressions

What’s the predictive distribution of group counts?

Ns <- seq(50, 650, by = 1)
Nest <- predict(

fit,
predpts,
~ data.frame(

N = Ns,
density = dpois(Ns, lambda = sum(weight * exp(field + Intercept)))

),
n.samples = 2500

)

Nest$plugin_estimate <- dpois(Nest$N, lambda = Lambda$mean)
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Full posterior prediction uncertainty vs plugin prediction
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Combines in-situ and satellite data sources to derive daily air 
temperatures across the globe with quantified uncertainties.

• Daily mean air temperature (2 m) estimates from the mid-
late 19th century at ¼ degree resolution.

• Observational dataset for use in climate monitoring, services 
and research.

– Quantify bias and uncertainty arising from observational sampling 
(in space and time);

– Quantify uncertainty from instrumental effects/network changes.

• Higher resolution daily gridded analyses for regional climate:

– Combine in situ and remote sensing data to support high 
resolution analysis.

– Absolute temperature rather than anomaly product.

EUSTACE ANALYSIS



ENSEMBLE ANALYSIS

• Samples drawn from joint posterior distribution of 

temperature and bias variables.

• Temperature model samples projected onto analysis 
grid.

• Spatial/temporal correlation in analysis errors is encoded 

into the ensemble.

• Summary statistics can be derived from the ensemble.  

Expected value, total uncertainty and observation 

constraint information also available.
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into the ensemble.

• Summary statistics can be derived from the ensemble.  

Expected value, total uncertainty and observation 

constraint information also available.



Statistical model for temperature variations and 
different scales (space and time):

• Climatological variation: local seasonal cycle with 
effects of latitude, altitude and coastal influence.

• Large-scale variation: Slowly varying 
climatological mean temperature field.

• Daily Local: daily variability associated with 
weather.

Simultaneously estimates observational biases of 
known bias structures:

• e.g. satellite biases, station homogenisation.

MULTI-SCALE ANALYSIS 
MODEL

Central England Temperature Decomposition



SATELLITE BIAS MODELS
• Simplified model of known error structures 

in satellite air temperature retrievals:

– Global/hemispheric systematic bias covariates.

– Daily estimates of spatially varying bias as a 

spatial random field.

• Estimated jointly with daily temperature 

variability.

NH Ice

SH Ice

Land

Marine



COMPARING EUSTACE WITH CENTRAL ENGLAND TEMPERATURE
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Statistical model for temperature variations and different 
scales (space and time):

• Climatological variation: local seasonal cycle with effects 
of latitude, altitude and coastal influence.

• Large-scale variation: Slowly varying climatological mean 
temperature field. Station homogenisation.

• Daily Local: daily variability associated with weather. 
Satellite retrieval biases.

Simultaneously estimates observational biases of known 
bias structures:

• e.g. satellite biases, station homogenisation.

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:

• Largest solves processed on 20 core/256GB RAM node.

• Highly parallel observation pre-processing.

MULTI-SCALE ANALYSIS 
MODEL

Element Resolution N Variables

Seasonal Bimonthly x  1° SPDE 245,772

Slow-scale* 5 year x 5° SPDE 107,604

Latitude 0.5° latitude SPDE 721

Altitude (0.25° grid) 1

Coastal (0.25° grid) 1

Grand mean Analysis mean 1

Element Resolution N Variables

Large-scale 3 monthly x 5° SPDE 1,752,408

Station bias NA 82,072

Element Resolution N Variables per 
day

Daily local ~0.5 degree SPDE 162,842

Satellite bias 
(marine)

Global 1

Satellite bias 
(land)

Global + 2.5 degree 
SPDE

1 + 40,962

Satellite bias 
(ice)

Hemispheric + 2.5 
degree SPDE*

2 + 40,962
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Extensions and projects in progress

(w Liam Llamazares Elias) Penalised complexity priors for non-stationary models

Simplified support for aggregated data models, where the predictor expression may involve

integration across space (with Man Ho Suen, Andy Seaton)

Related work (with Christopher Merchant and Xue Wang):

Multi-band satellite data with nadir and oblique views, with non-rectangular "pixels".

E(measured(pixel, band)) =

(
1

|Dpixel|

∫
Dpixel

conversion[SST(s), TCWV(s), band]b ds

)1/b

Both SST and TCWV are unknown spatial fields and b is an unknown parameter

The "conversion" function is a deterministic function evaluated on a grid of SST and TCWV for

each frequency band

Can be implemented with numerical integration for each pixel, and spline interpolation of the

conversion function

Finn Lindgren - finn.lindgren@ed.ac.uk Embedding stochastic PDEs in Bayesian spatial statistics software



LGMs Numerical Bayesian inference Examples References Distance sampling Global temperature reconstruction

Extensions and projects in progress

(Victor Medina) Joint covariate&outcome models for longitudinal credit risk

(Francesco Serafini) Hawkes processes for earthquake forecasting; self-exciting Poisson

processes with λ(s, t) = µ(s, t,u) +
∑

i;ti<t h(s− si, , t− ti,u) which is not log-linear.

Copulas and transformation models; can handle non-Gaussian parameter priors as latent

variables, e.g. λ ∼ Exp(γ) is equivalent to λ = − log[1− Φ(u)]/γ, where u ∼ N(0, 1)

Extending the supported set of R-INLA models (survival models, etc)

(w Andy Seaton) Added sf and terra support to prepare for the retirement of the rgdal
package in 2023

Converting the SPDE meshing code to a separate fmesher package

Direct support for non-separable space-time models (INLAspacetime, with Elias Krainski,

David Bolin, Haakon Bakka, and Haavard Rue)

Improved support for factors and fixed effects interaction models

Finn Lindgren - finn.lindgren@ed.ac.uk Embedding stochastic PDEs in Bayesian spatial statistics software



LGMs Numerical Bayesian inference Examples References Distance sampling Global temperature reconstruction

Further work

How accurate are the linearised posteriors? Need diagnostic metrics for all models.
Options that are more or less computable in practice include

Eu∼p(u|y)(∥η − η̃∥2)∑
i Eu∼p(u|y)(|ηi − η̃i|2)

/
Varu∼p(u|y)(ηi)

Eu∼p(u|y)

(
log
(

p(u|y,θ)
p̃(u|y,θ)

))
Improved convergence diagnostics and detection of unintended incorrect user input

Interoperability with posterior analysis and plotting packages
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