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PM10 in Piemonte: Where is PM10 > 50?
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PM10 in Piemonte: Where is PM10 > 50? Uncertainty?
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Contours and excursions

I Lindgren, Rychlik (1995): How reliable are contour curves?
Confidence sets for level contours, Bernoulli
Regions with a single expected crossing

I Polfeldt (1999) On the quality of contour maps, Environmetrics
How many contour curves should one use?

I A countour curve of a reconstructed field can (almost) be found
from the pointwise marginal distributions.

I The uncertainty depends on the full joint distribution.

I A credible contour region is a region where the field transitions
from being clearly below, to being clearly above.

I Solving the problem for excursions solves it for contours.
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Definitions for functions

Excursion sets for functions

Given a function f(s), s ∈ Ω, the positive and negative excursion sets
for a level u are

A+
u (f)= {s ∈ Ω; f(s) > u} and A−u (f)= {s ∈ Ω; f(s) < u}.

Contour sets for functions

Given a function f(s), s ∈ Ω, the contour set Acu for a level u is

Acu(f) =
(
A+
u (f)o ∪A−u (f)o

)c
where Ao is the interior and Ac the complement of the set A.
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Excursion sets for random fields

Excursion sets

Let x(s), s ∈ Ω be a random process. The positive and negative level
u excursion sets with probability 1− α are

E+
u,α(x) = arg max

D
{|D| : P(D ⊆ A+

u (x)) ≥ 1− α}.

E−u,α(x)= arg max
D

{|D| : P(D ⊆ A−u (x)) ≥ 1− α}.

I E+
u,α(x) is the largest set so that the level u is exceeded at all

locations in the set with probability 1− α.

I Another possible definition of an excursion set would be a set that
contains all excursions with probability 1− α. This set is given by
E−u,α(x)c.
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Example 1: Gaussian process with exponential covariance

I Gaussian process with exponential covariance function.

I E+
0,0.05(x) is shown in red.

I The grey area contains {s : P(x(s) > 0) > 0.95}.
I The dark red set is the Bonferroni lower bound.

I The black curve is the kriging estimate of x(s).
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Contour sets

Level avoiding sets

Let x(s), s ∈ Ω be a random process. The pair of level u avoiding sets
with probability 1− α, (M+

u,α(x),M−u,α(x)), is equal to

arg max
(D+,D−)

{|D− ∪D+| : P(D− ⊆ A−u (x), D+ ⊆ A+
u (x)) ≥ 1− α}.

Uncertainty region for contour sets

Let (M+
u,α(x),M−u,α(x)) be the pair of level avoiding sets. The

uncertainty region for the contour set of level u is then

Ecu,α(x)=
(
M+
u,α(x)o ∪M−u,α(x)o

)c
.

I Ecu,α is the smallest set such that with probability 1− α
all level u crossings of x are in the set.
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Example 2: Gaussian Matérn field

I Gaussian Matérn field measured under Gaussian noise.
I Left panel shows the kriging estimate, in the right panel
Ec0,0.05(x) is superimposed in grey.

I The complement of Ecu,α is the union of the pair of level avoiding
sets.
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Excursion functions

I The set E+
u,α(x) does not provide any information about the

locations not contained in the set.
I It would instead be good to have is something similar to p-values,

but which can be interpreted simultaneously.

Excursion functions

The positive and negative u excursion functions are given by

F+
u (s)= sup{1− α; s ∈ E+

u,α},
F−u (s)= sup{1− α; s ∈ E−u,α}.

Similarly, the level avoidance and contour functions are given by

Fu(s)= sup{1− α; s ∈ (Ecu,α)c},
F cu(s)= 1− Fu(s).
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Example 1 (cont): Excursion functions

I E+
u,α is retrieved as the 1− α excursion set of F+

u (s).

I If the function takes a value close to one, the process likely
exceeds the level at that location.

I If the value of the function is close to zero, it is more unlikely that
the process exceeds the level at that location.
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Outline of the method

I There are, in principle, two main problems that have to be solved
in order to find the excursion sets.

1 Probability calculation: e.g. calculate the probability
P(D ⊆ A+

u (x)) for a given set D.
2 Shape optimization: find the largest region D satisfying the

required probability constraint.

I In practice it may not be computationally feasible to solve the
problems separately.

I Instead we propose a slightly different strategy that will minimize
the number of calls to the integration method.

I The method is based on using an increasing parametric family for
the excursion sets in combination with a sequential integration
routine.
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Outline of the method

Calculating excursion sets using a one-parameter family

Assume that π(x) is Gaussian and that D(ρ) is a parametric family,
such that D(ρ1) ⊆ D(ρ2) if ρ1 < ρ2. The following strategy is then

used to calculate E+
u,α.

I Choose a suitable (sequential) integration method.

I Reorder the nodes to the order they will be added to the
excursion set when the parameter ρ is increased.

I sequentially add nodes to the set D and in each step update the
probability P(D ⊆ A+

u (x)). Stop as soon as this probability falls
below 1− α.

I E+
u,α is given by the last set D for which

P(D ⊆ A+
u (x)) ≥ 1− α.
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Gaussian integrals

I For a Gaussian vector x, the probabilities P(D ⊆ A+
u (x)),

P(D ⊆ A−u (x)), and P(D+ ⊆ A+
u (x), D− ⊆ A−u (x)) can all be

written on the form

I(a,b,Σ) =
1

(2π)d/2|Σ|1/2

∫
a≤x≤b

exp(−1

2
x>Σ−1x) dx,

I a and b are vectors depending on the mean value of x, the
domain D, and on u.

I There have been considerable research efforts devoted to
approximating integrals of this form in recent years1.

I For GMRFs, we want to use the sparsity of Q.

I We use a method based on sequential importance sampling.

1A good introduction given in Genz and Bretz (2009), Computation of Multivariate
Normal and t Probabilities, Lecture Notes in Statistics, Springer
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Parametric families for excursion sets

I The parametric families are based on the marginal quantiles of
x(s), P(x(s) ≤ qρ(s)) = ρ, which are easy to calculate.

One-parameter family

Let qρ(s) be the marginal quantiles for x(s), then a one-parameter
family for the positive and negative u excursion sets is given by

D+
1 (ρ)= {s;P(x(s) > u) ≥ 1− ρ} = A+

u (qρ),

D−1 (ρ)= {s;P(x(s) < u) ≥ 1− ρ} = A−u (q1−ρ).

I Using this parametric family is equivalent to finding a threshold
value for the marginal excursion probabilities to get the correct
simultaneous significance level.

I This simple one-parameter family can be extended in a number of
ways, e.g. by smoothing the marginal quantiles.

Finn Lindgren - f.lindgren@bath.ac.uk Contour and excursion uncertainty estimation



Intro Definitions Calculations Application Intro Integration Parametric families Latent Gaussian

Parametric families for excursion sets

I The parametric families are based on the marginal quantiles of
x(s), P(x(s) ≤ qρ(s)) = ρ, which are easy to calculate.

One-parameter family

Let qρ(s) be the marginal quantiles for x(s), then a one-parameter
family for the positive and negative u excursion sets is given by

D+
1 (ρ)= {s;P(x(s) > u) ≥ 1− ρ} = A+

u (qρ),

D−1 (ρ)= {s;P(x(s) < u) ≥ 1− ρ} = A−u (q1−ρ).

I Using this parametric family is equivalent to finding a threshold
value for the marginal excursion probabilities to get the correct
simultaneous significance level.

I This simple one-parameter family can be extended in a number of
ways, e.g. by smoothing the marginal quantiles.

Finn Lindgren - f.lindgren@bath.ac.uk Contour and excursion uncertainty estimation



Intro Definitions Calculations Application Intro Integration Parametric families Latent Gaussian

Extension to a latent Gaussian setting

I In practice, we cannot use the previous computations unless we
are in a purely Gaussian setting with known hyper parameters.

I A more general model is a latent Gaussian setting, where the
posterior distribution can be written as

π(x|y) =

∫
π(x|y,θ)π(θ|y) dθ,

where y is data and θ a parameter vector.
I Integrated Nested Laplace Approximations (INLA) are used to

estimate the posterior distributions.
I The method is extended by numerically approximating the

posterior integral as a weighted sum of Gaussian probabilities,

P(a < x < b|y) ≈
k∑
i=1

π(θi|y)P(a < x < b|y,θi).

Finn Lindgren - f.lindgren@bath.ac.uk Contour and excursion uncertainty estimation



Intro Definitions Calculations Application Intro Integration Parametric families Latent Gaussian

Extension to a latent Gaussian setting

I In practice, we cannot use the previous computations unless we
are in a purely Gaussian setting with known hyper parameters.

I A more general model is a latent Gaussian setting, where the
posterior distribution can be written as

π(x|y) =

∫
π(x|y,θ)π(θ|y) dθ,

where y is data and θ a parameter vector.
I Integrated Nested Laplace Approximations (INLA) are used to

estimate the posterior distributions.
I The method is extended by numerically approximating the

posterior integral as a weighted sum of Gaussian probabilities,

P(a < x < b|y) ≈
k∑
i=1

π(θi|y)P(a < x < b|y,θi).

Finn Lindgren - f.lindgren@bath.ac.uk Contour and excursion uncertainty estimation



Intro Definitions Calculations Application Piemonte

Air pollution (PM10) data

I The limit value fixed by the European directive 2008/50/EC for
PM10 is 50µg/m3. The daily mean concentration cannot exceed
this value more than 35 days in a year.

I A region where this value is periodically exceeded is the
Piemonte region in northern Italy.

I Cameletti et al (2012/13)2 investigated an SPDE/GMRF model for
PM10 concentration in the region.

I The goal is to analyse exceedance probabilities of the limit value.

I Daily PM10 data measured at 24 monitoring stations during 182
days in the period October 2005 - March 2006.

2Cameletti, Lindgren, Simpson, and Rue (2012), Spatio-temporal modeling of
particulate matter concentration through the SPDE approach, AStA
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Model

I The following measurement equation is assumed,

y(si, t) = x(si, t) + E(si, t),

where E(si, t) ∼ N(0, σ2E) is Gaussian measurement noise, both
spatially and temporally uncorrelated.

I x(si, t) is the latent field assumed to be on the form

x(si, t) =

p∑
k=1

zk(si, t)βk + ξ(si, t),

where the p = 9 covariates zk are used.
I ξ is assumed to follow first order AR-dynamics in time

ξ(si, t) = aξ(si, t− 1) + ω(si, t),

where |a| < 1 and ω(si, t) is a zero-mean temporally
independent Gaussian process with spatial Matérn covariances.
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for to oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and mul-
tivariate fields on manifolds.

(κ2 −∆)(τ x(u)) =W(u), u ∈ Rd
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for to oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and mul-
tivariate fields on manifolds.(

∂
∂t + κ2u,t +∇ ·mu,t −∇ ·Mu,t∇

)
(τu,tx(u, t)) = E(u, t), (u, t) ∈ Ω× R
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Results for January 30, 2006

Spatial reconstruction
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Results for January 30, 2006
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Results for January 30, 2006

Contour function F c50(s)
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The signed avoidance function
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Further work

I Investigate if/when the more complicated parametric families are
needed.

I For excursion sets, compare results with other thresholding
methods.

I For contour uncertainty sets, compare with the method by
Lindgren and Rychlik (1995).

I Combine method with the work by Polfeldt (1999) to make
statements about the quality of contour maps.

I R package (beta version available).
excursions(alpha=0.05, u=0, type=">",

mu=field.expectation, Q=precision.matrix)
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A sequential Monte-Carlo algorithm

I a GMRF can be viewed as a non-homogeneous AR-process
defined backwards in the indices of x.

I Let L be the Cholesky factor of Q, then

xi|xi+1, . . . , xn ∼ N

µi − 1

Lii

n∑
j=i+1

Lji(xj − µj), L−2ii

,
I Denote the integral of the last d− i components as Ii,

Ii =

∫ bi

ai

π(xi|xi+1:d) · · ·
∫ bd−1

ad−1

π(xd−1|xd)
∫ bd

ad

π(xd) dx,

I xi|xi+1:d only depends on the elements in xNi∩{i+1:d}.
I Estimate the integrals using sequential importance sampling.
I in each step xj is sampled from the truncated Gaussian

distribution 1(aj < xj < bj)π(xj |xj+1:d).
I The importance weights can be updated recursively.
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Parametric families for excursion sets

Parametric family for level avoiding sets

Let D+
1 (ρ1) and D−1 (ρ2) be given by the one-parameter family.

I A two-parameter family for the pair of level avoiding sets is
obtained as (D+

1 (ρ1), D
−
1 (ρ2)).

I A one-parameter family is obtained by requiring that ρ1 = ρ2 = ρ.

I The one-parameter family can be used in the method without
modifications to estimate level avoiding sets and contour
uncertainty regions.

I The two-parameter family requires a modified method where one
of the parameters is optimized using e.g. golden section search.
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Extension to a latent Gaussian setting

I Assuming that π(x|y,θ) is,or can be approximated as,
Gaussian, there are several ways to calculate the excursion
probabilities. One of which is

Numerical integration

Numerically approximate the excursion probability by approximating
the posterior integral as

P(a < x < b) = E(P(a < x < b|θ)) ≈
k∑
i=1

wiP(a < x < b|θi),

where the configuration {θi} is taken from INLA and the weights wi
are chosen proportional to π(θi|y).

I Often only a few configurations {θi} are needed.
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