# Parameterization of Nonstationarity in Stochastic PDE Models

# Finn Lindgren

Joint work with Geir-Arne Fuglstad, Rikke Ingebrigtsen, Daniel Simpson, Håvard Rue, Ingelin Stainsland



# JSM2013

#### Introduction

Stochastic PDEs Markov model computations Deformations Manifolds

#### **Building intuition**

Deformation to SPDE SPDE to deformation Displacement Interpretation

#### Examples

Semiparametric inference Example 1 Example 2

#### End

## Describing spatial dependence

The Matérn covariance family on  $\mathbb{R}^d$ 

$$\operatorname{Cov}(u(\mathbf{0}), u(\mathbf{s})) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} (\kappa \|\mathbf{s}\|)^{\nu} K_{\nu}(\kappa \|\mathbf{s}\|)$$

Scale  $\kappa > 0$ , smoothness  $\nu > 0$ , variance  $\sigma^2 > 0$ 

#### Whittle (1954, 1963): Matérn as SPDE solution

Matérn fields are stationary solutions to the SPDE

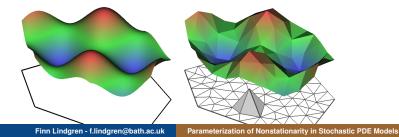
$$\left(\kappa^2 - \nabla \cdot \nabla\right)^{lpha/2} u(s) = \mathcal{W}(s), \quad lpha = 
u + d/2$$

 $\mathcal{W}(\cdot)$  white noise,  $\nabla \cdot \nabla = \sum_{i=1}^{d} \frac{\partial^2}{\partial u_i^2}$ ,  $\sigma^2 = \frac{\Gamma(\nu)}{\Gamma(\alpha) \kappa^{2\nu} (4\pi)^{d/2}}$ 

## Computations via piecewise linear Markov models

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis:  $u(s) = \sum_k \psi_k(s) u_k$ Basis weights:  $u \sim \mathcal{N}(0, Q^{-1})$ , sparse QMeasurements:  $y = B\beta + Au + \epsilon$ ,  $\epsilon | u \sim \mathcal{N}(0, Q_{y|u}^{-1})$ Posterior: Local observations  $\Longrightarrow$  Markovian posterior for uQ chosen to give best approximation to an SPDE



## Non-stationary models via deformations

#### Deformations (Sampson & Guttorp, 1992)

- Random field  $\{u(s); s \in \mathbb{R}^n\}$
- Deformation function  $\widetilde{s} = f(s) : \mathbb{R}^n \mapsto \mathbb{R}^m, m \ge n$
- Stationary covariance  $\{\widetilde{r}(\widetilde{s},\widetilde{t}); \ \widetilde{s}, \widetilde{t} \in \mathbb{R}^m\}$
- ► Resulting covariance  $Cov(u(s), u(t)) = \tilde{r}(f(s), f(t))$
- Allows separation between modelling variances and correlations:  $v(s) := \sigma(s)u(s)$
- Euclidean distances in the deformation space, which may be of higher dimension than the model domain.
- Inference: Find a suitable deformation f and correlation  $\tilde{r}$ .

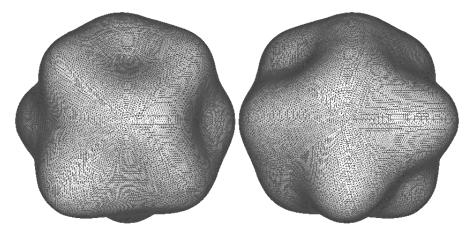
### Non-stationary SPDE models via deformations

#### Deformation of manifolds

- Let Ω ⊆ ℝ<sup>n</sup> and Ω ⊆ ℝ<sup>m</sup> be *d*-manifolds, *d* ≤ *n*, *m*, with metrics induced by the embedding Euclidean spaces.
- Deformation function  $\widetilde{s} = f(s) : \Omega \mapsto \widetilde{\Omega}$
- "Stationary" SPDE on  $\widetilde{\Omega}$ :  $(1 \widetilde{\nabla} \cdot \widetilde{\nabla})^{\alpha/2} \widetilde{u}(\widetilde{s}) = \widetilde{\mathcal{W}}(\widetilde{s})$
- Define random field by mapping back to  $\Omega$ :  $u(s) := \widetilde{u}(f(s))$
- Distances are measured within the deformed manifold.
- When Ω̃ = ℝ<sup>d</sup> or S<sup>d</sup>, ũ̃(š̃) is a stationary (Matérn) field, and we have a special case of the classical deformation method.
- What happens when  $\widetilde{\Omega}$  has non-constant curvature?
- Can we rewrite the model using a non-stationary SPDE operator on Ω itself?

## Manifold example: Radially deformed sphere

#### Deformation generated by an oscillating SPDE model

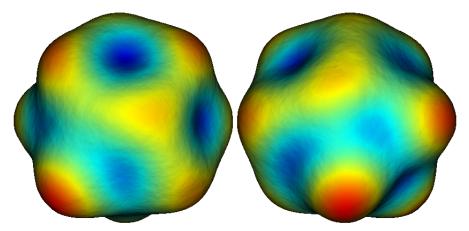


#### (25002 mesh nodes, sample generated in 1.75 seconds)

Finn Lindgren - f.lindgren@bath.ac.uk Parameterization of Nonstationarity in Stochastic PDE Models

## Manifold example: Radially deformed sphere

#### Deformation generated by an oscillating SPDE model



#### (25002 mesh nodes, sample generated in 1.75 seconds)

## Deformation

For simplicity, only consider  $\alpha = 2$  and notation for  $\Omega = \mathbb{R}^d$ .

# Manifold deformation Deformation function $(f : \Omega \mapsto \widetilde{\Omega} \subseteq \mathbb{R}^m)$ , Jacobian, metric tensor: $f(s) = [f(s)_i], \quad Df(s) = \left[\frac{\partial f(s)_i}{\partial s_i}\right], \quad g(s) = Df(s)^\top \cdot Df(s)$

Change of variables in an SPDE

$$(1 - \widetilde{\nabla} \cdot \widetilde{\nabla})\widetilde{u}(\widetilde{s}) = \widetilde{\mathcal{W}}(\widetilde{s}), \quad \widetilde{s} \in \widetilde{\Omega}$$
$$u(s) = \widetilde{u}(f(s)), \quad s \in \Omega$$

is equivalent to

$$H(\mathbf{s}) \equiv g^{-1/2}(\mathbf{s}) \det(g)^{1/2}$$
  
 $(\det(g)^{1/2} - \nabla \cdot H\nabla)u(\mathbf{s}) = \det(g)^{1/4}\mathcal{W}(\mathbf{s})$ 

 $H(z) = z^{-1}(z) + (z)^{1/2}$ 

## Stationary deformation

#### Simple scaling

Deformation, Jacobian, metric tensor, assume det A = 1:

$$f(s) = \kappa \mathbf{A}s, \qquad Df(s) = \kappa \mathbf{A}, \qquad g(s) = \kappa^2 \mathbf{A}^\top \mathbf{A},$$

**Resulting SPDE:** 

$$\det(g)^{1/2} = \kappa^d$$
$$H(s) = \kappa^{d-2} (\boldsymbol{A}^\top \boldsymbol{A})^{-1}$$
$$(\kappa^d - \nabla \cdot \kappa^{d-2} (\boldsymbol{A}^\top \boldsymbol{A})^{-1} \nabla) u(s) = \kappa^{d/2} \mathcal{W}(s)$$
$$(\kappa^2 - \nabla \cdot (\boldsymbol{A}^\top \boldsymbol{A})^{-1} \nabla) u(s) = \kappa^{2-d/2} \mathcal{W}(s)$$

or

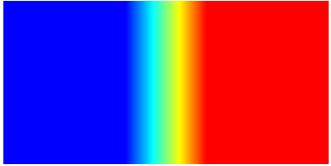
Note: Because 
$$det(H) = det(g)^{d/2} / det(g) = det(g)^{d/2-1}$$
, the determinant of  $H$  is 1 when  $d = 2$ , for all  $g!$ 

#### Deformation from non-stationary SPDE

Given a non-stationary SPDE

$$(\kappa(s)^2 - \nabla \cdot \nabla)u(s) = \kappa(s)\mathcal{W}(s),$$

can we find a corresponding deformation representation? Domain  $\Omega = [0, 4] \times [-1, 1]$ ,  $\kappa$  varying between  $2\sqrt{8}$  and  $4\sqrt{8}$ :



# Deformation from non-stationary SPDE

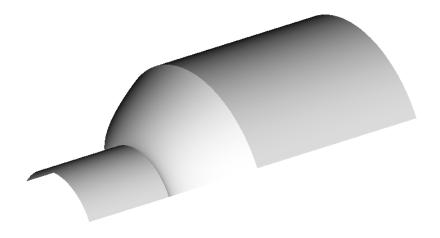
#### Deformation structure

$$f(\boldsymbol{s}) = \begin{bmatrix} h(x) \\ \kappa(x)\sin(y) \\ \kappa(x)\cos(y) \end{bmatrix}, \quad Df(\boldsymbol{s}) = \begin{bmatrix} h'(x) & 0 \\ \kappa'(x)\sin(y) & \kappa(x)\cos(y) \\ \kappa'(x)\cos(y) & -\kappa(x)\sin(y) \end{bmatrix}$$
$$g(\boldsymbol{s}) = Df^{\top} \cdot Df = \begin{bmatrix} h'(x)^2 + \kappa'(x)^2 & 0 \\ 0 & \kappa(x)^2 \end{bmatrix}$$

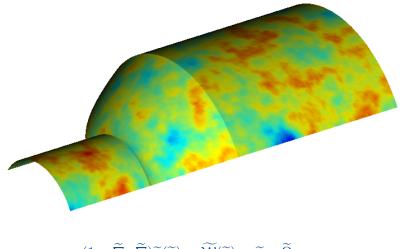
We need  $det(g)^{1/2} = \kappa(x)^2$  and  $H = I_2$ . Solution:

$$h(x) = \int_0^x \sqrt{\kappa(t)^2 - \kappa'(t)^2} \mathrm{d}t$$

## **Deformed manifold**

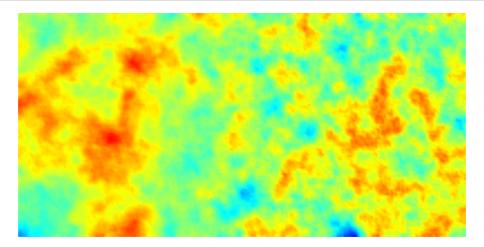


# "Stationary" field on deformed manifold



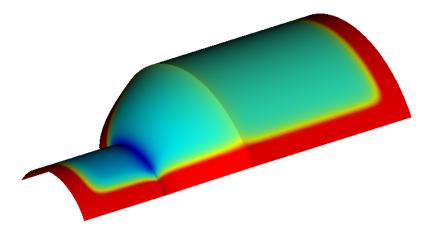
# $(1 - \widetilde{\nabla} \cdot \widetilde{\nabla})\widetilde{u}(\widetilde{s}) = \widetilde{\mathcal{W}}(\widetilde{s}), \quad \widetilde{s} \in \widetilde{\Omega}$

# Non-stationary field on original manifold



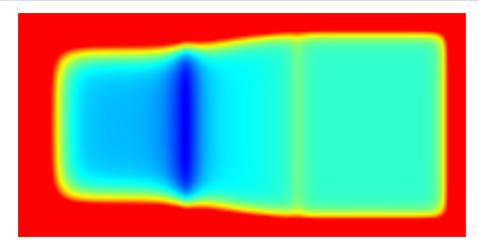
$$(\kappa(s)^2 - \nabla \cdot \nabla)u(s) = \kappa(s)\mathcal{W}(s), \quad s \in \Omega$$

# Standard deviations on deformed manifold



# $(1-\widetilde{\nabla}\cdot\widetilde{\nabla})\widetilde{u}(\widetilde{\boldsymbol{s}})=\widetilde{\mathcal{W}}(\widetilde{\boldsymbol{s}}),\quad \widetilde{\boldsymbol{s}}\in\widetilde{\Omega}$

# Standard deviations on original manifold



$$(\kappa(s)^2 - \nabla \cdot \nabla)u(s) = \kappa(s)\mathcal{W}(s), \quad s \in \Omega$$

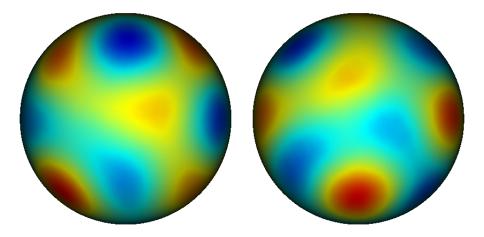
# Vertical displacement deformations

#### Deformation structure

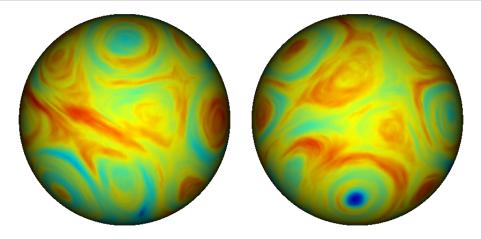
$$f(\boldsymbol{s}) = \kappa_0 \begin{bmatrix} x \\ y \\ h(x, y) \end{bmatrix}, \quad Df(\boldsymbol{s}) = \kappa_0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ v_x & v_y \end{bmatrix}, \quad \boldsymbol{v} = \nabla h$$
$$g(\boldsymbol{s}) = Df^{\top} \cdot Df = \kappa_0^2 \begin{bmatrix} 1 + v_x^2 & v_x v_y \\ v_x v_y & 1 + v_y^2 \end{bmatrix} = \kappa_0^2 (\boldsymbol{I} + \boldsymbol{v} \boldsymbol{v}^{\top})$$

With  $\boldsymbol{v}_{\perp} \cdot \boldsymbol{v} = 0$ ,  $\|\boldsymbol{v}_{\perp}\| = \|\boldsymbol{v}\|$ , we get  $\kappa(\boldsymbol{s})^2 = \kappa_0^2 \sqrt{1 + \|\boldsymbol{v}_{\perp}\|^2},$   $\boldsymbol{H}(\boldsymbol{s}) = (\boldsymbol{I} + \boldsymbol{v}_{\perp} \boldsymbol{v}_{\perp}^{\top})/\sqrt{1 + \|\boldsymbol{v}_{\perp}\|^2}$  $(\kappa(\boldsymbol{s})^2 - \nabla \cdot \boldsymbol{H}(\boldsymbol{s})\nabla)u(\boldsymbol{s}) = \kappa(\boldsymbol{s})\mathcal{W}(\boldsymbol{s})$ 

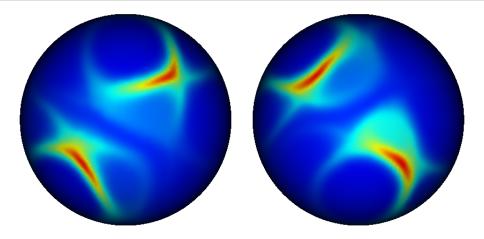
## **Displacement field**



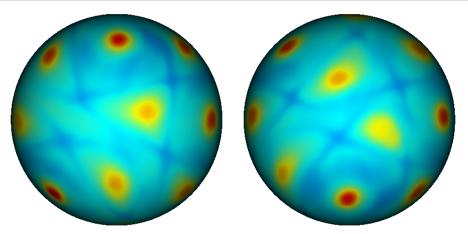
# Simulated non-stationary field



## Four covariance functions



# Standard deviations



The variance varies by almost a factor 4, so it is now clearly not constant. We've partially lost the separation between correlation and variance allowed by the classical deformation method.

# Interpretation and direct metric parameterisation

Subtractive parameterisation (like displacement model)

Baseline range  $\sqrt{8}/\kappa_0$ , the model *removes* dependence orthogonal to the vector field.

$$\kappa(\boldsymbol{s})^2 = \kappa_0^2 \sqrt{1 + \|\boldsymbol{v}\|^2}$$

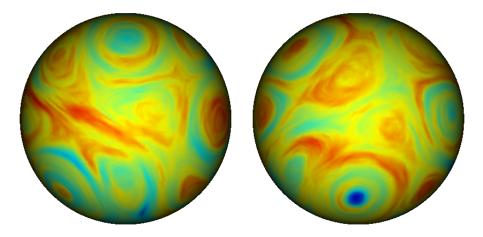
#### Additive parameterisation

Baseline range  $\sqrt{8}/\kappa_0$ , the model *adds* dependence along the vector field.

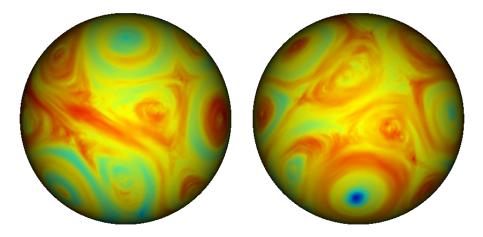
$$\kappa(\boldsymbol{s})^2 = \kappa_0^2 / \sqrt{1 + \|\boldsymbol{v}\|^2}$$

$$oldsymbol{H}(oldsymbol{s}) = (oldsymbol{I} + oldsymbol{v}oldsymbol{v}^{ op})/\sqrt{1 + \|oldsymbol{v}\|^2}$$
 $(\kappa(oldsymbol{s})^2 - 
abla \cdot oldsymbol{H}(oldsymbol{s}) 
abla) u(oldsymbol{s}) = \kappa(oldsymbol{s}) \mathcal{W}(oldsymbol{s})$ 

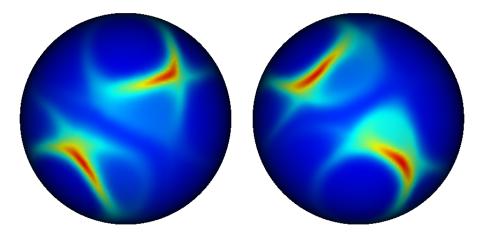
# Simulated non-stationary field (subtractive)



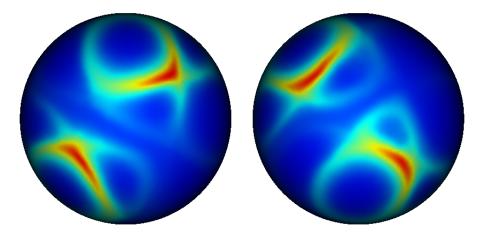
# Simulated non-stationary field (additive)



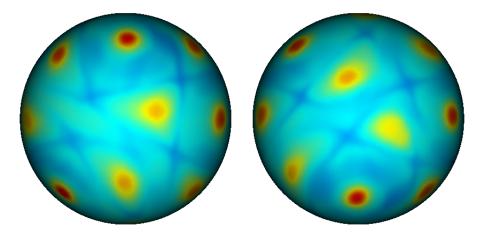
# Four covariance functions (subtractive)



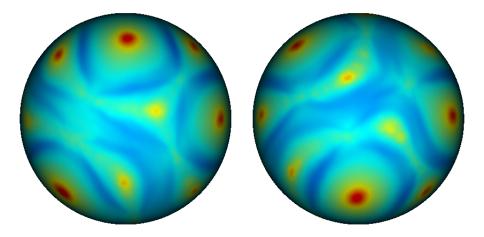
# Four covariance functions (additive)



## Standard deviations (subtractive)



# Standard deviations (additive)



## Semiparametric inference

True model, with a single realisation of u(s):

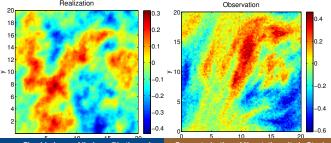
 $(1 - \nabla \cdot \boldsymbol{H}(\boldsymbol{s}) \nabla) u(\boldsymbol{s}) = \mathcal{W}(\boldsymbol{s}), \quad \boldsymbol{H}(\boldsymbol{s}) = \gamma \boldsymbol{I} + \boldsymbol{v}(\boldsymbol{s}) \boldsymbol{v}(\boldsymbol{s})^{\top}$ 

Model for inference, with low order harmonic vector basis functions,

$$oldsymbol{v}(oldsymbol{s}) = \sum_{ij} \psi_{ij}(oldsymbol{s})$$

with a vector-SPDE prior for regularisation.

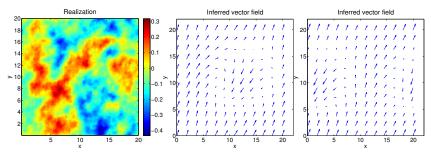
Constant and non-constant true vector fields:



Finn Lindgren - f.lindgren@bath.ac.uk

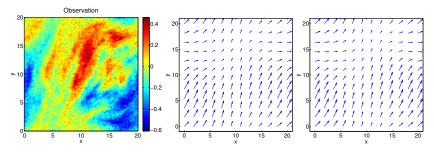
Parameterization of Nonstationarity in Stochastic PDE Models

## Sample and estimates



There are several local maxima, partly due to fundamental non-identifiability issues.

## Sample and estimates



The inference is more stable when there is more structure (that also matches the vector field model). Covariate information would be extremely valuable.

## **Closing remarks**

#### Remarks

- The connection between Matérn fields, stochastic PDEs, and Markov random fields can be extended to the classical deformation method for non-stationary models.
- Direct parameterization of the manifold metric appears more practical than parameterizing a deformation, while still keeping interpretability.
- The question should not be "Stationary or non-stationary?" but rather what kind of non-stationarity.
- The latter also applies to separable vs. non-separable in space-time models.

#### References

#### References

- R. Ingebrigtsen, F. Lindgren, I. Steinsland (2013), Spatial models with explanatory variables in the dependence structure, Spatial Statistics, In Press (available online).
- G-A. Fuglstad, F. Lindgren, D. Simpson, H. Rue (2013), Exploring a new class of non-stationary spatial Gaussian random fields with varying local anisotropy, arXiv:1304.6949
- G-A. Fuglstad, D. Simpson, F. Lindgren, H. Rue (2013), Non-stationary spatial modelling with applications to spatial prediction of precipitation, arXiv:1306.0408
- F. Lindgren, H. Rue and J. Lindström (2011), An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach (with discussion),

Journal of the Royal Statistical Society, Series B, 73(4), 423–498.