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Intro Spatial Climate

Spatial statistics on the globe

Input: Spatially and temporally irregular temperature measurements
Output: Weather and climate reconstruction, with proper uncertainty estimates
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Intro Spatial Climate

Stochastic non-stationary spatio-temporal models

Stationary models are likely inadequate, and non-stationary
covariances typically lead to intractable computations

Solution: Use stochastic PDE models inspired by physics
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Intro Spatial Climate Classical SPDE GMRF Simulations INLA

Hierarchical spatial models

Hierarchical models
θ Model parameters

x |θ Latent processes, spatial or spatio-temporal fields

y |θ,x Measured data

Classical spatial models

Spatial field: x (u), u ∈ Rd , {x (u i)} ∼ N (0,Σ)

Spatial covariance: Σi ,j = Cov(x (u i), x (u j ))

Measurements: yi = B iβ + x (u i) + εi , ε|x ∼ N (0,Σε)

Covariance Σ: Explicit global dependence

Precision Q = Σ−1: Explicit local, implicit global dependence
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Describing spatial dependence

The Matérn covariance family on Rd

Cov(x (0), x (u)) = σ2 21−ν

Γ(ν)
(κ‖u‖)νKν(κ‖u‖)

Scale κ > 0, smoothness ν > 0, variance σ2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are stationary solutions to the SPDE(

κ2 −∆
)α/2

x (u) =W(u), α = ν + d/2

σ2 = Γ(ν)

Γ(α)κ2ν(4π)d/2
, Laplacian ∆ =

∑d
i=1

∂2

∂u2
i
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Piecewise linear Markov models

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: x (u) =
∑

kψk (u)xk

Basis weights: x ∼ N (0,Q−1
x ), sparse Q

Measurements: y = Bβ + Ax + ε, ε|x ∼ N (0,Q−1
y|x )

Posterior: Local observations =⇒ Markovian posterior for x
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The best piecewise linear approximation
∑

k ψk(u) xk

Projection of the SPDE: Linear systems of equations (α = 2)

∑
j

(κ2 〈ψi , ψj 〉︸ ︷︷ ︸
C ij

+ 〈ψi , −∆ψj 〉︸ ︷︷ ︸
Gij

)xj
D
= 〈ψi , W〉 jointly for all i .

C and G are as sparse as the triangulation neighbourhood

Constructing the precision matrices

K = κ2C + G α = 1 α = 2 α = 3, 4, . . .

Kx N (0,K ) N (0,C ) N
(
0,CQ−1

x ,α−2C
)

Qx ,α K K TC−1K K TC−1Qx ,α−2C
−1K
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Simulations with precisions via finite element calculations

The approach can in a straightforward way be extended to oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and mul-
tivariate fields on manifolds.

(κ2 −∆)(τ x (u)) =W(u), u ∈ Rd
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Simulations with precisions via finite element calculations

The approach can in a straightforward way be extended to oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and mul-
tivariate fields on manifolds.

(κ2 −∆)(τ x (u)) =W(u), u ∈ Ω
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Intro Spatial Climate Classical SPDE GMRF Simulations INLA

Simulations with precisions via finite element calculations

The approach can in a straightforward way be extended to oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and mul-
tivariate fields on manifolds.

(κ2 e iπθ −∆)(τ x (u)) =W(u), u ∈ Ω
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Simulations with precisions via finite element calculations

The approach can in a straightforward way be extended to oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and mul-
tivariate fields on manifolds.

(κ2
u +∇ ·mu −∇ ·M u∇)(τux (u)) =W(u), u ∈ Ω
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Simulations with precisions via finite element calculations

The approach can in a straightforward way be extended to oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and mul-
tivariate fields on manifolds.(

∂
∂t + κ2

u ,t +∇ ·mu ,t −∇ ·M u ,t∇
)

(τu ,tx (u , t)) = E(u , t), (u , t) ∈ Ω× R
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Bayesian inference with sparse precisions

Conditional distribution in a Gaussian model

x ∼ N (µx ,Q
−1
x ), y |x ∼ N (Ax ,Q−1

y|x )

x |y ∼ N (µx |y ,Q
−1
x |y)

Qx |y = Qx + ATQy|xA

µx |y = µx + Q−1
x |yA

TQy|x (y −Aµx )

Direct Bayesian inference with INLA (r-inla.org)

p(θ|y) ∝ p(θ)p(x |θ)p(y |x ,θ)

pG(x |y ,θ)

∣∣∣∣
x=x∗

p(x i |y) ∝
∫

pG(x i |y ,θ)p(θ|y)dθ
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Triangulation partly adapted to the data density

Aim: A framework for using a spatio-temporal stochastic model in
combination with different data sources.
Current input modules are GHCNv2, ICOADS (gridded) and
Antarctica.
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Intro Spatial Climate Model Non-stationary Results

Linear model for weather observations

Weather = Climate + Anomaly

z ∼ N(0,Q−1
z ) (climate: space-time model)

z (t , s) =
∑
k

Bk (t)zk (s) (basis function representation)

a ∼ N(0, I⊗Q−1
a ) (anomaly: spatial model, indep. in time)

w(t , s) = a(t , s) + z (t , s) (weather)

yi = altitude effect + w(ti , si) + εi (observations)

ε ∼ N(0,Q−1
ε )

y = hβh + A(a + (B⊗ I)z) + ε
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Intro Spatial Climate Model Non-stationary Results

Stochastic weather anomaly and climate model

Non-stationary spatial SPDE

(κ(s)2 −∆)(τ(s)a(s)) =W(s)

log κ(s) =
∑

Bκ
k (s)θk

log τ(s) =
∑

Bτ
k (s)θk

Simplified heat equation with spatially correlated noise

γt ż (s, t)−∆z (s, t) = γ−1/2
s E(s, t)

E(s, δt)− γE∆E(s, δt) =WE(s, δt)
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Intro Spatial Climate Model Non-stationary Results

Preliminary estimate of correlations for the anomaly model
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Preliminary estimate of standard deviations for the anomaly model
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Intro Spatial Climate Model Non-stationary Results

Empirical Mean for Climate 1970−1989 (C)
−30 −20 −10 0 10 20 30

Older results without temporal climate model
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Intro Spatial Climate Model Non-stationary Results

Std dev for Anomaly 1980 (C)
0 1 2 3 4 5 6

Older results without temporal climate model
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Intro Spatial Climate Model Non-stationary Results
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Older results without temporal climate model
The lack of temporal climate leads to sensitity to coverage dropout
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Intro Spatial Climate Model Non-stationary Results

Challenges

Data and uncertainties
I Pre-homogenization and between-data-source calibration is

assumed.

I Homogenization uncertainties could be used if available.

I ICOADS: Better (=any) model for the grid-box uncertainties is
needed.

Computations
I The combined climate and anomaly model needs an iterative

method based on the model structure, for the spatio-temporal
reconstruction.

I Parameter estimation is done stepwise for climate and anomalies.

I Analysis done in blocks of 31 years, each shifted by 5 years so
that inconsistencies can be detected.
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Conclusion

Spatio-temporal stochastic modelling and estimation for historical
climate and weather reconstruction is challenging but possible.
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Point process on a complex domain
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