Quantifying the uncertainty of contour maps

Finn Lindgren
Chair of Statistics
finn.lindgren@ed.ac.uk
Joint work with David Bolin

THE UNIVERSITY of EDINBURGH
 School of Mathematics

20th April 2017

Contour map for US summer mean temperaine

- Can we trust the apparent details af the level crossings?
- How many levels should we sensibly use?
- Can we put a number on the statistical quality of the contour map?
- Fundamental question:

What is the statistical interpretation of a contour map?

- To answer these questions we need methods for efficient calculations for random fields.

GMRFs: Gaussian Markov random fields

Continuous domain GMRFs

If $x(s)$ is a (stationary) Gaussian random field on Ω with covariance function $R_{x}\left(s, s^{\prime}\right)$, it fulfills the global Markov property $\{x(\mathcal{A}) \perp x(\mathcal{B}) \mid x(\mathcal{S})$, for all $\mathcal{A B}$-separating sets $\mathcal{S} \subset \Omega\}$ if the power spectrum can be written as $1 / S_{x}(\boldsymbol{\omega})=$ polynomial in ω, for some polynomial order p. (Rozanov, 1977)

Discrete domain GMRFs

$\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \sim \mathrm{N}\left(\boldsymbol{\mu}, \boldsymbol{Q}^{-1}\right)$ is Markov with respect to a neighbourhood structure $\left\{\mathcal{N}_{i}, i=1, \ldots, n\right\}$ if $Q_{i j}=0$ whenever $j \neq \mathcal{N}_{i} \cup i$.

- Continuous domain basis representation with Markov weights:

$$
x(\boldsymbol{s})=\sum_{k=1}^{n} \Psi_{k}(\boldsymbol{s}) x_{k}
$$

- Many stochastic PDE solutions are Markov in continuous space, and can be approximated by Markov weights on local basis functions.

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscilldatinguring anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$
\left(\kappa^{2}-\Delta\right)(\tau x(\boldsymbol{s}))=\mathcal{W}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{R}^{d}
$$

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscildatingurrch anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$
\left(\kappa^{2}-\Delta\right)(\tau x(s))=\mathcal{W}(s), \quad s \in \Omega
$$

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscildeating iry anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$
\left(\kappa^{2} e^{i \pi \theta}-\Delta\right)(\tau x(\boldsymbol{s}))=\mathcal{W}(\boldsymbol{s}), \quad \boldsymbol{s} \in \Omega
$$

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscildeatingurgh anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$
\left(\kappa_{\boldsymbol{s}}^{2}+\nabla \cdot \boldsymbol{m}_{\boldsymbol{s}}-\nabla \cdot \boldsymbol{M}_{\boldsymbol{s}} \nabla\right)\left(\tau_{\boldsymbol{s}} x(\boldsymbol{s})\right)=\mathcal{W}(\boldsymbol{s}), \quad \boldsymbol{s} \in \Omega
$$

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscildatingurrch anisotropic, non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

$$
\left(\frac{\partial}{\partial t}+\kappa_{\boldsymbol{s}, t}^{2}+\nabla \cdot \boldsymbol{m}_{\boldsymbol{s}, t}-\nabla \cdot \boldsymbol{M}_{\boldsymbol{s}, t} \nabla\right)\left(\tau_{\boldsymbol{s}, t} x(\boldsymbol{s}, t)\right)=\mathcal{E}(\boldsymbol{s}, t), \quad(\boldsymbol{s}, t) \in \Omega \times \mathbb{R}
$$

Spatial latent Gaussian models

Consider a simple hierarchical spatial generalised linear model

$$
\begin{aligned}
\boldsymbol{\beta} & \sim \mathrm{N}\left(\mathbf{0}, \boldsymbol{I} \sigma_{\beta}^{2}\right), \\
\xi(\boldsymbol{s}) & \sim \text { Gaussian (Markov) random field, } \\
x(\boldsymbol{s}) & =\boldsymbol{z}(\boldsymbol{s}) \boldsymbol{\beta}+\xi(\boldsymbol{s}), \\
\left(y_{i} \mid x\right) & \sim \pi\left(y_{i} \mid x(\cdot), \boldsymbol{\theta}\right), \quad \text { e.g. } \mathrm{N}\left(x\left(s_{i}\right), \sigma_{e}^{2}\right),
\end{aligned}
$$

where $\boldsymbol{z}(\cdot)$ are spatially indexed explanatory variables, and y_{i} are conditionally independent observations.

- A contour curve for a level u crossing is typically calculated as the level u crossing of $\widehat{x}=\mathrm{E}[x(s) \mid \boldsymbol{y}]$.
- In practice, we want to interpret it as being informative about the potential level crossings of the random field $x(s)$ itself.
- We need access to high dimensional joint probabilities in the posterior density $\pi(\boldsymbol{x} \mid \boldsymbol{y})$.

Posterior probabilities

- Assuming that $\pi(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{\theta})$ is, or can be approximated as, Gaussian, there are several ways to calculate probabilities, one of which is

Numerical integration

Numerically approximate the excursion probability by approximating the posterior integral as

$$
\mathrm{P}(\boldsymbol{a}<\boldsymbol{x}<\boldsymbol{b} \mid \boldsymbol{y})=\mathrm{E}[\mathrm{P}(\boldsymbol{a}<\boldsymbol{x}<\boldsymbol{b} \mid \boldsymbol{y}, \boldsymbol{\theta})] \approx \sum_{k} w_{k} \mathrm{P}\left(\boldsymbol{a}<\boldsymbol{x}<\boldsymbol{b} \mid \boldsymbol{y}, \boldsymbol{\theta}_{k}\right),
$$

where each parameter configuration θ_{k} is provided by R-INLA and the weights w_{k} are chosen proportional to $\pi\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{y}\right)$.

- Often only a few configurations θ_{k} are needed.
- Quantile corrections and other techniques from INLA can be added

A sequential Monte-Carlo algorithm

- A GMRF can be viewed as a non-homogeneous AR-process deffigedzurgh backwards in the indices of $x \sim \mathrm{~N}\left(\mu, Q^{-1}\right)$.
- Let L be the Cholesky factor in $\boldsymbol{Q}=\boldsymbol{L} \boldsymbol{L}^{\top}$. Then

$$
x_{i} \mid x_{i+1}, \ldots, x_{n} \sim \mathrm{~N}\left(\mu_{i}-\frac{1}{L_{i i}} \sum_{j=i+1}^{n} L_{j i}\left(x_{j}-\mu_{j}\right), L_{i i}^{-2}\right)
$$

- Denote the integral of the last $n-i$ components as I_{i},

$$
I_{i}=\int_{a_{i}}^{b_{i}} \pi\left(x_{i} \mid x_{i+1: n}\right) \cdots \int_{a_{n-1}}^{b_{n-1}} \pi\left(x_{n-1} \mid x_{n}\right) \int_{a_{n}}^{b_{n}} \pi\left(x_{n}\right) \mathrm{d} x,
$$

- $x_{i} \mid x_{i+1: n}$ only depends on the elements in $x_{\mathcal{N}_{i} \cap\{i+1: n\}}$.
- Estimate the integrals using sequential importance sampling.
- In each step x_{j} is sampled from the truncated Gaussian density $\propto \mathbb{I}_{\left\{a_{j}<x_{j}<b_{j}\right\}} \pi\left(x_{j} \mid x_{j+1: n}\right)$.
- The importance weights can be updated recursively.

Contours and excursions

- Lindgren, Rychlik (1995): How reliable are contour curves? Confidence sets for level contours, Bernoulli Regions with a single expected crossing
- Polfeldt (1999) On the quality of contour maps, Environmetrics How many contour curves should one use?
- Neither paper considered joint probabilities
- A credible contour region is a region where the field transitions from being clearly below, to being clearly above.
- Solving the problem for excursions solves it for contours.
(a)

(b)

(a)

(b)

Level sets

Level sets

Given a function $f(s), s \in \Omega$ and levels $u_{1}<u_{2}<\cdots<u_{K}$, the level sets are $G_{k}(f)=\left\{s ; u_{k}<f(s)<u_{k+1}\right\}$.

Joint and marginal probabilities

Now, consider a contour map based on a point estimate $\widehat{x}(\cdot)$.
Intuitively, we might consider the joint probability

$$
\mathrm{P}\left(u_{k}<x(s)<u_{k+1}, \text { for all } s \in G_{k}(\widehat{x}) \text { and all } k\right)
$$

Unfortunately, this will nearly always be close to or equal to zero!
Polfeldt (1999) instead considered the marginal probability field

$$
p(\boldsymbol{s})=\mathrm{P}\left(u_{k}<x(\boldsymbol{s})<u_{k+1} \text { for } k \text { such that } s \in G_{k}(\widehat{x})\right)
$$

The argument is then that if $p(s)$ is close to 1 in a large proportion of space, the contour map is not overconfident.

We extend this notion to alternative joint probability statements.

Contour avoiding sets and the contour map function

Contour avoiding sets

The contour avoiding sets $M_{u, \alpha}=\left(M_{u, \alpha}^{1}, \ldots, M_{u, \alpha}^{K}\right)$ are given by

$$
M_{u, \alpha}=\underset{\left(D_{1}, \ldots, D_{K}\right)}{\operatorname{argmax}}\left\{\sum_{k=1}\left|D_{k}\right|: \mathrm{P}\left(\bigcap_{k=1}^{K}\left\{D_{k} \subseteq G_{k}(x)\right\}\right) \geq 1-\alpha\right\}
$$

where D_{k} are disjoint and open sets. The joint contour avoiding set is then $C_{u, \alpha}(x)=\bigcup_{k=1}^{K} M_{u, \alpha}^{k}$.

Note: $C_{u, \alpha}(x)$ is the largest set so that with probability at least $1-\alpha$, the intuitive contour map interpretation is fulfilled for $s \in C_{u, \alpha}(x)$.

The contour map function $F_{u}(s)=\sup \left\{1-\alpha ; s \in C_{\boldsymbol{u}, \alpha}\right\}$ is a joint probability extension of the Polfeldt idea.

Quality measures

Let $C_{u}(\widehat{x})$ denote a contour map based on a point estimate of x.

Three quality measures

P_{0} : The proportion of space where the intuitive contour map interpretation holds jointly: $P_{0}\left(x, C_{\boldsymbol{u}}(\widehat{x})\right)=\frac{1}{|\Omega|} \int_{\Omega} F_{\boldsymbol{u}}(s) \mathrm{d} \boldsymbol{s}$
P_{1} : Joint credible regions for u_{k} crossings:

$$
\begin{array}{r}
P_{1}\left(x, C_{\boldsymbol{u}}(\widehat{x})\right)=\mathrm{P}\left(\cap_{k}\left\{x(\boldsymbol{s})<u_{k} \text { where } \widehat{x}(\boldsymbol{s})<u_{k-1}\right\} \cap\right. \\
\left.\left\{x(\boldsymbol{s})>u_{k} \text { where } \widehat{x}(\boldsymbol{s})>u_{k+1}\right\}\right)
\end{array}
$$

P_{2} : Joint credible regions for $u_{k}^{e}=\frac{u_{k}+u_{k+1}}{2}$ crossings:

$$
\begin{aligned}
& P_{2}\left(x, C_{u}(\widehat{x})\right)=\mathrm{P}\left(\cap_{k}\left\{x(s)<u_{k}^{e} \text { where } \widehat{x}(\boldsymbol{s})<u_{k}\right\} \cap\right. \\
&\left.\left\{x(\boldsymbol{s})>u_{k}^{e} \text { where } \widehat{x}(\boldsymbol{s})>u_{k+1}\right\}\right)
\end{aligned}
$$

Interpretation of P_{1} and P_{2}

Five realisations of contour curves from the posterior distribution for x are shown.

Note the fundamental difference in smoothness between the contours of \widehat{x} and x !

Mean summer temperature measurements for 1997

Contour map quality for different K and different models

THE UNIVERSITY

The spatial predictions are more uncertain in a model without spatial explanatory variables (left) than in a model using elevation (right).
P_{1} consistently admits about double the number of contour levels in comparison with P_{2}, as expected from the probabilistic interpretations.

Posterior mean, s.d., contour map, and F_{u}, for $K=8$

THE UNIVERSITY
of EDINBURGH

Contour map quality measure: $P_{2}=0.958$

References

- David Bolin and Finn Lindgren (2015): Excursion and contour uncertainty regions for latent Gaussian models, JRRS Series B, 77(1):85-106
- David Bolin and Finn Lindgren (2016): Quantifying the uncertainty of contour maps, J of Computational and Graphical Statistics. http://dx.doi.org/10.1080/10618600.2016.1228537
- David Bolin and Finn Lindgren (2013-2016): R CRAN package excursions
contourmap(mu=expectation, Q=precision) contourmap.inla(result.inla) continuous(..., geometry)
- Lindgren, F., Rue, H. and Lindström, J. (2011): An explicit link between Gaussian fields and Gaussian Markov eandom fields: the stochastic partial differential equation approach (with discussion); JRSS Series B, 73(4):423-498

