Embedding stochastic PDEs in Bayesian spatial statistics software

Finn Lindgren finn.lindgren@ed.ac.uk

Spatial Statistics, Boulder, 20 July 2023

GAMs and general kriging

Linear GAMs with GPs on space and covariates:

$$\boldsymbol{\eta}_i = \sum_k v_k(z_{ik}) + u(\mathbf{s}_i),$$

each $v_k(\cdot)$ and $u(\cdot)$ represented with basis expansions with jointly Gaussian coefficients x.

- Linear observations with additive Gaussian observation noise: $y = \eta + \epsilon = Ax + \epsilon$
- Covariance kriging

$$egin{aligned} \Sigma_{m{y}} &= A \Sigma_{m{x}} A^ op + \Sigma_{m{\epsilon}} \ \mathbb{E}(m{x}|m{y}) &= m{\mu} + \Sigma_{m{x}} A^ op \Sigma_{m{y}}^{-1}(m{y} - Am{\mu}) \end{aligned}$$

Precision kriging

$$egin{aligned} & oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}} = oldsymbol{Q}_{oldsymbol{x}} + oldsymbol{A}^ op oldsymbol{Q}_{oldsymbol{\epsilon}}oldsymbol{A} \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{\mu} + oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}^ op oldsymbol{Q}_{oldsymbol{\epsilon}}(oldsymbol{y} - oldsymbol{A}oldsymbol{\mu}) \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{\mu} + oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}^ op oldsymbol{Q}_{oldsymbol{\epsilon}}(oldsymbol{y} - oldsymbol{A}oldsymbol{\mu}) \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{\mu} + oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}^ op oldsymbol{Q}_{oldsymbol{\epsilon}}(oldsymbol{y} - oldsymbol{A}oldsymbol{\mu}) \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{\mu} + oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}^ op oldsymbol{A}_{oldsymbol{\epsilon}}(oldsymbol{y} - oldsymbol{A}oldsymbol{\mu}) \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{\mu} + oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}_{oldsymbol{x}|oldsymbol{y}} \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{\mu} + oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{x} \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{\mu} + oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{A}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{Y} \ & \mathsf{A}_{oldsymbol{x}|oldsymbol{x}}^{-1}oldsymbol{x} \ & \mathsf{E}(oldsymbol{x}|oldsymbol{y}) = oldsymbol{A}_{oldsymbol{x}|oldsymbol{y}}^{-1}oldsymbol{X}^{-1}oldsymbol{x} \ & \mathsf{A}_{oldsymbol{x}|oldsymbol{x}}^{-1}oldsymbol{x} \ & \mathsf{E}(oldsymbol{x}|oldsymbol{x}) = oldsymbol{A}_{oldsymbol{x}|oldsymbol{x}}^{-1}oldsymbol{X}^{-1}oldsymbol{x} \ & \mathsf{A}_{oldsymbol{x}|oldsymbol{x}}^{-1}oldsymbol{x} \ & \mathsf{A}_{oldsymbol{x}|oldsymbol{x}}^{-1}oldsymbol{x} \ & \mathsf{A}_{oldsymbol{x}|oldsymbol{x}}^{-1}oldsymbol{x} \ &$$

Non-Gaussian observations with link function: $\mathsf{E}(y_i|\boldsymbol{\theta}, \boldsymbol{x}) = h(\eta_i)$

Observation level covariance vs latent level precision

- Covariance kriging: linear solve with a Σ , $\Sigma_{ij} = \text{Cov}(y_i, y_j)$
- Precision kriging: linear solve with a $Q, Q_{ij} = \operatorname{Prec}(x_i, x_j | y)$

 $Q = LL^{\top}$ for a given latent variable ordering, and sparse lower triangular L with the sparsity from Q plus Cholesky infill.

The prior Q_x for GRF/SPDE process components are obtained via a local Finite Element construction, giving the model in a chosen finite function space closest to the full model.

Posterior/conditional sampling is as easy a prior sampling:

$$egin{aligned} & oldsymbol{L}_{x|y}oldsymbol{L}_{x|y}^{ op} &= oldsymbol{Q}_{x} + oldsymbol{A}^{ op}oldsymbol{Q}_{\epsilon}oldsymbol{A} \ & oldsymbol{x}^* = \mathsf{E}(oldsymbol{x}|oldsymbol{y}) + oldsymbol{L}_{x|y}^{- op}oldsymbol{z}, \quad oldsymbol{z} \sim \mathsf{N}(oldsymbol{0},oldsymbol{I}) \end{aligned}$$

For iterative methods:

$$egin{aligned} oldsymbol{L}_xoldsymbol{L}_x^ op & oldsymbol{Q}_x \ oldsymbol{L}_\epsilonoldsymbol{L}_\epsilon^ op & oldsymbol{Q}_\epsilon \ oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}\left[oldsymbol{x}^* - \mathsf{E}(oldsymbol{x}|oldsymbol{y})
ight] &= egin{bmatrix} oldsymbol{L}_x & oldsymbol{A}^ op oldsymbol{L}_\epsilon \ oldsymbol{Q}_\epsilon \ oldsymbol{Q}_{oldsymbol{x}|oldsymbol{y}}\left[oldsymbol{x}^* - \mathsf{E}(oldsymbol{x}|oldsymbol{y})
ight] &= egin{bmatrix} oldsymbol{L}_x & oldsymbol{A}^ op oldsymbol{L}_\epsilon \ oldsymbol{D}_\epsilon \ oldsymbol{Z}_\epsilon \ oldsymbol{Z}_{oldsymbol{x}|oldsymbol{y}}\left[oldsymbol{x}^* - \mathsf{E}(oldsymbol{x}|oldsymbol{y})
ight] &= egin{bmatrix} oldsymbol{L}_x & oldsymbol{A}^ op oldsymbol{L}_\epsilon \ oldsymbol{D}_\epsilon \ oldsymbol{Z}_{oldsymbol{x}|oldsymbol{y}}\left[oldsymbol{z}, & oldsymbol{z} \sim \mathsf{N}(oldsymbol{0},oldsymbol{I}) \ oldsymbol{L}_\epsilon \ oldsymbol{L}_\epsilon \ oldsymbol{Z}_\epsilon \ o$$

Finite element structure

Matérn-Whittle processes

Linear Gaussian process/field representations via SPDEs:

$$(\kappa^2 - \Delta)^{\alpha} u(\mathbf{s}) \,\mathrm{d}\mathbf{s} = \mathrm{d}\mathcal{W}(\mathbf{s})\kappa^{\alpha - d/2}/\tau$$

For constant parameters, $u(\mathbf{s})$ has spatial Matérn covariance on \mathbb{R}^d , and generalised Matérn-Whittle covariance on general manifolds. The smoothness index is $\nu = \alpha - d/2$ and the variance is proportional to $1/\tau^2$. Whittle (1954, 1963), Lindgren et al (2011)

Discrete domain Gaussian Markov random fields (GMRFs)

 $u = (u_1, \ldots, u_n) \sim \mathsf{N}(\mu, Q^{-1})$ is Markov with respect to a neighbourhood structure $\{\mathcal{N}_i, i = 1, \ldots, n\}$ if $Q_{ij} = 0$ whenever $j \neq \mathcal{N}_i \cup i$.

- Continuous domain basis representation with weights: $u(s) = \sum_{k=1}^{n} \psi_k(s) u_k$
- Project the SPDE solution space onto (local) basis functions: random Markov (w.r.t. basis overlap) dependent basis weights (Lindgren et al, 2011).

Non-stationarity

Non-stationary Matérn-Whittle processes

The Sampson & Guttorp (1992) deformation method motivates a non-stationary generalisation on \mathbb{R}^d :

$$(\kappa(\mathbf{s})^2 - \nabla \cdot \boldsymbol{H}(\mathbf{s}) \nabla)^{\alpha} \frac{u(\mathbf{s})}{\sigma(\mathbf{s})} d\mathbf{s} = d\mathcal{W}(\mathbf{s}) \kappa(\mathbf{s})^{\alpha - d/2},$$

where $\kappa(\mathbf{s})$ and $\mathbf{H}(\mathbf{s})$ are derived from the metric tensor of the deformation. For deformation *not* from \mathbb{R}^d onto \mathbb{R}^d , this non-stationary model is distinct from the deformation method, but keeps much of the intuition, as the variance will be approximatively independent of $\kappa(\mathbf{s})$.

RKHS inner products of linear SPDEs

The spatial solutions u(s) to

 $\mathcal{L}u(\mathbf{s}) \, \mathrm{d}\mathbf{s} = \mathrm{d}\mathcal{W}(\mathbf{s}) \quad \text{where } \mathrm{d}\mathcal{W}(\mathbf{s}) \text{ is white noise on } \Omega$

have RKHS inner product

$$\mathcal{Q}_{\Omega}(f,g) = \left\langle \mathcal{L}f, \mathcal{L}g \right\rangle_{\Omega}$$

plus potential boundary terms.

Non-separable space-time: Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

$$\left[\phi \frac{\partial}{\partial t} + (\kappa^2 - \Delta)^{\alpha_s/2}\right]^{\alpha_t} u(\mathbf{s}, t) \,\mathrm{d}t = \mathrm{d}\mathcal{E}_{(\kappa^2 - \Delta)^{\alpha_e}}(\mathbf{s}, t)/\tau$$

For constant parameters, $u(\mathbf{s}, t)$ has spatial Matérn covariance (for each t) on \mathbb{R}^2 and a generalised Matérn-Whittle sense on \mathbb{S}^2 .

Smoothness properties: With $\beta_*(\nu_s,d)=\nu_s/(\nu_s+d/2),$

$$\nu_t = \min\left[\alpha_t - \frac{1}{2}, \frac{\nu_s}{\alpha_s}\right], \qquad \alpha_t = \nu_t \max\left(1, \frac{\beta_s}{\beta_*(\nu_s, d)}\right) + \frac{1}{2},$$

$$\nu_s = \alpha_e + \alpha_s(\alpha_t - \frac{1}{2}) - \frac{d}{2}, \quad \alpha_s = \frac{\nu_s}{\nu_t} \min\left(\frac{\beta_s}{\beta_*(\nu_s, d)}, 1\right) = \frac{1}{\nu_t} \min\left[(\nu_s + d/2)\beta_s, \nu_s\right],$$

$$\beta_s = 1 - \frac{\alpha_e}{\alpha_e + \alpha_s(\alpha_t - \frac{1}{2})}, \quad \alpha_e = \frac{1 - \beta_s}{\beta_*(\nu_s, d)}\nu_s = (\nu_s + d/2)(1 - \beta_s).$$

Latent Gaussian models

Hierarchical model with latent jointly Gaussian variables

 $oldsymbol{ heta} \sim p(oldsymbol{ heta})$ (covariance parameters) $(oldsymbol{u} \mid oldsymbol{ heta}) \sim {\sf N}(oldsymbol{\mu}_u, oldsymbol{Q}_u^{-1})$ (latent Gaussian variables) $(oldsymbol{y} \mid oldsymbol{u}, oldsymbol{ heta}) \sim p(oldsymbol{y} \mid oldsymbol{u}, oldsymbol{ heta})$ (observation model)

We are interested in the posterior densities $p(\theta \mid y), p(u \mid y)$ and $p(u_i \mid y)$.

Approximate conditional posterior distribution

Let $\hat{\boldsymbol{u}}(\boldsymbol{\theta})$ be the mode of the posterior density $p(\boldsymbol{u} \mid \boldsymbol{y}, \boldsymbol{\theta}) \propto p(\boldsymbol{u} \mid \boldsymbol{\theta})p(\boldsymbol{y} \mid \boldsymbol{u}, \boldsymbol{\theta})$. Construct an approximate conditional posterior distribution, via Newton optimisation for \boldsymbol{u} given $\boldsymbol{\theta}$:

 $p_G(\boldsymbol{u} \mid \boldsymbol{y}, \boldsymbol{\theta}) \sim \mathsf{N}(\widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{Q}}^{-1})$ $\boldsymbol{0} = \nabla_{\boldsymbol{u}} \left\{ \ln p(\boldsymbol{u} \mid \boldsymbol{\theta}) + \ln p(\boldsymbol{y} \mid \boldsymbol{u}, \boldsymbol{\theta}) \right\} |_{\boldsymbol{u} = \widehat{\boldsymbol{\mu}}(\boldsymbol{\theta})}$ $\widehat{\boldsymbol{Q}} = \boldsymbol{Q}_{\boldsymbol{u}} - \nabla_{\boldsymbol{u}}^2 \ln p(\boldsymbol{y} \mid \boldsymbol{u}, \boldsymbol{\theta}) |_{\boldsymbol{u} = \widehat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}}$

Latent Gaussian models

Hierarchical model with latent jointly Gaussian variables

 $oldsymbol{ heta} \sim p(oldsymbol{ heta})$ (covariance parameters) $(oldsymbol{u} \mid oldsymbol{ heta}) \sim {\sf N}(oldsymbol{\mu}_u, oldsymbol{Q}_u^{-1})$ (latent Gaussian variables) $(oldsymbol{y} \mid oldsymbol{u}, oldsymbol{ heta}) \sim p(oldsymbol{y} \mid oldsymbol{u}, oldsymbol{ heta})$ (observation model)

We are interested in the posterior densities $p(\theta \mid y)$, $p(u \mid y)$ and $p(u_i \mid y)$.

Approximate conditional posterior distribution

Let $\hat{u}(\theta)$ be the mode of the posterior density $p(\boldsymbol{u} \mid \boldsymbol{y}, \boldsymbol{\theta}) \propto p(\boldsymbol{u} \mid \boldsymbol{\theta})p(\boldsymbol{y} \mid \boldsymbol{u}, \boldsymbol{\theta})$. Construct an approximate conditional posterior distribution, via Newton optimisation for \boldsymbol{u} given $\boldsymbol{\theta}$:

$$p_{G}(\boldsymbol{u} \mid \boldsymbol{y}, \boldsymbol{\theta}) \sim \mathsf{N}(\widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{Q}}^{-1})$$

$$\boldsymbol{0} = \nabla_{\boldsymbol{u}} \left\{ \ln p(\boldsymbol{u} \mid \boldsymbol{\theta}) + \ln p(\boldsymbol{y} \mid \boldsymbol{u}, \boldsymbol{\theta}) \right\}|_{\boldsymbol{u} = \widehat{\boldsymbol{\mu}}(\boldsymbol{\theta})}$$

$$\widehat{\boldsymbol{Q}} = \boldsymbol{Q}_{u} - \nabla_{\boldsymbol{u}}^{2} \ln p(\boldsymbol{y} \mid \boldsymbol{u}, \boldsymbol{\theta}) \big|_{\boldsymbol{u} = \widehat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}}$$

Classic and compact INLA methods (\sim description)

Laplace approximation at the conditional posterior mode x^* , and uncertainty integration:

$$p(\boldsymbol{\theta}|\boldsymbol{y}) \propto \frac{p(\boldsymbol{\theta})p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{\theta},\boldsymbol{x})}{p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})} \bigg|_{\boldsymbol{x}=\boldsymbol{x}^*} \approx \frac{p(\boldsymbol{\theta})p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{\theta},\boldsymbol{x})}{p_G(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})} \bigg|_{\boldsymbol{x}=\boldsymbol{x}^*} = \widehat{p}(\boldsymbol{\theta}|\boldsymbol{y})$$
$$p(x_i|\boldsymbol{y}) = \int p(x_i|\boldsymbol{\theta},\boldsymbol{y})p(\boldsymbol{\theta}|\boldsymbol{y}) \,\mathrm{d}\boldsymbol{\theta} \approx \sum_k \widehat{p}(x_i|\boldsymbol{\theta}^{(k)},\boldsymbol{y})\widehat{p}(\boldsymbol{\theta}^{(k)}|\boldsymbol{y})w_k = \widehat{p}(x_i|\boldsymbol{y})$$

- Let $\widehat{\mu} = \mathsf{E}(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})$ and $\boldsymbol{Q}_{\epsilon} = -\nabla_x \nabla_x^\top \log p(\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{x}^*)$
- $\begin{array}{l} \blacksquare \quad \text{Classic method: Laplace approximation of each } \widehat{p}(x_i | \boldsymbol{\theta}, \boldsymbol{y}) \text{, and} \\ \left\{ \begin{bmatrix} \boldsymbol{A} \boldsymbol{x} \\ \boldsymbol{x} \end{bmatrix} | \boldsymbol{\theta}, \boldsymbol{y} \right\} \sim \mathsf{N} \left(\begin{bmatrix} \boldsymbol{A} \widehat{\boldsymbol{\mu}} \\ \widehat{\boldsymbol{\mu}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{Q}_{\epsilon} + \delta \boldsymbol{I} & -\delta \boldsymbol{A} \\ -\delta \boldsymbol{A}^{\top} & \boldsymbol{Q}_x + \delta \boldsymbol{A}^{\top} \boldsymbol{A} \end{bmatrix}^{-1} \right) \text{, with } \delta \gg 0 \end{array}$
- Compact method (R-INLA from January 2023): Gaussian variational approximation of $\widehat{p}(m{x}|m{ heta},m{y})$

inlabru software interface concepts

Model components are declared similarly to R-INLA:

```
# INLA:
~ covar + f(name, model = ...)
# inlabru
~ covar + name(input, model = ...)
~ covar # is translated into...
~ covar(covar, model = "linear")
~ name(1) # Used for intercept-like components
```

- In R-INLA, $\eta = Au = A_0 \sum_{k=1}^{K} A_k u_k$, where the rows of A_k only extract individual elements from each u_k , and the overall A_0 is user defined (via inla.stack()).
- In inlabru, $\eta = h(u_1, \dots, u_K, A_1u_1, \dots, A_Ku_K)$, where $h(\cdot)$ is a general R expression of named latent components u_k and intermediate "effects" $A_k u_k$
- A_k by default acts either as in R-INLA, or is determined by a *mapper* method. Predefined default mappers include e.g. spatial evaluation of SPDE/GRMF models that map between coordinates and meshes, and mappers that combine other mappers (used to combine main/group/replicate for all components)

Input mappers

Each named component has main/group/replicate *inputs*, that are given to the mappers to evaluate A_k . For a given latent *state*, the resulting *effect* values are made available to the predictor expression.

```
bru_mapper() # generic
bru_mapper_index(n) # Basic index mapping
bru_mapper_linear() # Basic linear mapping
bru_mapper_matrix(labels) # Basic linear multivariable mapping
bru_mapper_factor(values, factor_mapping) # Factor variable mapping
bru_mapper_multi(mappers) # kronecker product components
bru_mapper_collect(mappers, hidden) # For concatenated components, like bym
bru_mapper_const() # Constants
bru_mapper.inla.mesh(mesh) # 2D and spherical mesh mappings
bru_mapper.inla.mesh.1d(mesh) # Interval and cyclic interval mappings
```

Common methods that return essential characteristics

ibm_n(mapper) # The size of the latent component ibm_values(mapper) # The covariate/index "values" given to INLA ibm_jacobian(mapper, input) # The "A-matrix" for given input values

```
Model component definition example:
```

comp <- ~ 0 + field(cbind(easting, northing), model = spde) + param(1)</pre>

Predictor formula examples, including naming of the response variable:

```
form1 <- my_counts ~ param + field
form2 <- response ~ exp(param) + exp(field)</pre>
```

Main method call structure:

Simplified notations for common special cases;

```
formula = response \sim .
```

gives the full additive model of all the available components, or

```
components = response ~ Intercept(1) + field(...
```

Plain INLA code for separable space-time model

```
matern <- inla.spde2.pcmatern(mesh, ...)</pre>
field_A <- inla.spde.make.A(mesh,</pre>
                              coordinates(data).
                              group = data$year - min(data$year) + 1,
                             n.group = 10)
stk <- inla.stack(data = list(response = data$response),</pre>
                   A = list(field A, 1).
                   effects = list(field_index, list(covar = data$covar)))
formula <- response ~ 1 + covar +
  f(field, model = matern, group = field_group, control.group = ...)
fit <- inla(formula = formula,</pre>
            data = inla.stack.data(stk, matern = matern),
            familv = "normal".
            control.predictor = list(A = inla.stack.A(stk)))
```

inlabru code for separable space-time model

```
matern <- inla.spde2.pcmatern(mesh, ...)
year_mapper <- bru_mapper(inla.mesh.1d(sort(unique(data$year))), indexed = TRUE)
comp <- response ~ Intercept(1) + covar +
   field(geometry, model = matern, group = year, group_mapper = year_mapper,
        control.group = ...)
fit <- bru(components = comp,
        data = data,
        family = "normal")</pre>
```

Implied:

- formula = response ~ .

```
data and family passed on to a like() call
```

Approximate INLA for non-linear predictors

Linearised predictor

Let $\widetilde{\eta}(u)$ be the non-linear predictor, and let $\overline{\eta}(u)$ be the 1st order Taylor approximation at some u_0 ,

$$\overline{\eta}(\boldsymbol{u}) = \widetilde{\eta}(\boldsymbol{u}_0) + \boldsymbol{B}(\boldsymbol{u} - \boldsymbol{u}_0) = [\widetilde{\eta}(\boldsymbol{u}_0) - \boldsymbol{B}\boldsymbol{u}_0] + \boldsymbol{B}\boldsymbol{u},$$

where B is the derivative matrix for the non-linear predictor, evaluated at u_0 .

The non-linear observation model $\widetilde{p}(oldsymbol{y}|oldsymbol{u},oldsymbol{ heta})$ is approximated by

 $\overline{p}(\boldsymbol{y}|\boldsymbol{u},\boldsymbol{\theta}) = p(\boldsymbol{y}|\overline{\boldsymbol{\eta}}(\boldsymbol{u}),\boldsymbol{\theta}) \approx p(\boldsymbol{y}|\widetilde{\boldsymbol{\eta}}(\boldsymbol{u}),\boldsymbol{\theta}) = \widetilde{p}(\boldsymbol{y}|\boldsymbol{u},\boldsymbol{\theta})$

The inlabru method finds a linearisation point \boldsymbol{u}_0 such that it is matched by the resulting linearised conditional posterior mode, $\operatorname{argmax}_{\boldsymbol{u}} \overline{p}\left(\boldsymbol{u} \mid \boldsymbol{y}, \hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \hat{\overline{p}}(\boldsymbol{\theta} \mid \boldsymbol{y})\right)$.

Approximate INLA for non-linear predictors

Linearised predictor

Let $\widetilde{\eta}(u)$ be the non-linear predictor, and let $\overline{\eta}(u)$ be the 1st order Taylor approximation at some u_0 ,

$$\overline{\eta}(\boldsymbol{u}) = \widetilde{\eta}(\boldsymbol{u}_0) + \boldsymbol{B}(\boldsymbol{u} - \boldsymbol{u}_0) = [\widetilde{\eta}(\boldsymbol{u}_0) - \boldsymbol{B}\boldsymbol{u}_0] + \boldsymbol{B}\boldsymbol{u},$$

where B is the derivative matrix for the non-linear predictor, evaluated at u_0 .

The non-linear observation model $\widetilde{p}(m{y}|m{u},m{ heta})$ is approximated by

$$\overline{p}(\boldsymbol{y}|\boldsymbol{u},\boldsymbol{\theta}) = p(\boldsymbol{y}|\overline{\boldsymbol{\eta}}(\boldsymbol{u}),\boldsymbol{\theta}) \approx p(\boldsymbol{y}|\widetilde{\boldsymbol{\eta}}(\boldsymbol{u}),\boldsymbol{\theta}) = \widetilde{p}(\boldsymbol{y}|\boldsymbol{u},\boldsymbol{\theta})$$

The inlabru method finds a linearisation point \boldsymbol{u}_0 such that it is matched by the resulting linearised conditional posterior mode, $\operatorname{argmax}_{\boldsymbol{u}} \overline{p}\left(\boldsymbol{u} \mid \boldsymbol{y}, \hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \hat{\overline{p}}(\boldsymbol{\theta} \mid \boldsymbol{y})\right)$.

Distance sampling

Example: Thinned Poisson point processes

We want to model the presence of groups of dolphins using a Log-Gaussian Cox Process (LGCP) However, when surveying dolphins from a ship travelling along lines (*transects*), the probability of detecting a group of animals depends their distance distance from the ship.

Finn Lindgren - finn.lindgren@ed.ac.uk Embedding stochastic PDEs in Bayesian spatial statistics software

Distance sampling

Example: Thinned Poisson point processes

We want to model the presence of groups of dolphins using a Log-Gaussian Cox Process (LGCP) However, when surveying dolphins from a ship travelling along lines (*transects*), the probability of detecting a group of animals depends their distance distance from the ship, e.g. via

$$\mathsf{P}(\mathsf{detection}) = 1 - \exp\left(-rac{\sigma}{\mathsf{distance}}
ight)$$
 (hazard rate model)

This results in a *thinned* Poisson process model on (space, distance) along the transects:

 $\log(\lambda(s, \text{distance})) = \text{Intercept} + \text{field}(s) + \log\left[\mathsf{P}(\text{detection at } s \mid \text{distance}, \sigma)\right] + \log(2)$

inlabru knows how to construct the Poisson process likelihood along lines and on polygons, and kronecker spaces (line \times distance) We can define $\log(\sigma)$ as a latent Gaussian variable and iteratively linearise. The non-linearity is mild, and the iterative INLA method converges.

Distance sampling

Example: Thinned Poisson point processes

We want to model the presence of groups of dolphins using a Log-Gaussian Cox Process (LGCP) However, when surveying dolphins from a ship travelling along lines (*transects*), the probability of detecting a group of animals depends their distance distance from the ship, e.g. via

$$\mathsf{P}(\mathsf{detection}) = 1 - \exp\left(-rac{\sigma}{\mathsf{distance}}
ight)$$
 (hazard rate model)

This results in a *thinned* Poisson process model on (space, distance) along the transects:

$$\log(\lambda(s, \text{distance})) = \text{Intercept} + \text{field}(s) + \log[\mathsf{P}(\text{detection at } s \mid \text{distance}, \sigma)] + \log(2)$$

inlabru knows how to construct the Poisson process likelihood along lines and on polygons, and kronecker spaces (line \times distance) We can define $\log(\sigma)$ as a latent Gaussian variable and iteratively linearise. The non-linearity is mild, and the iterative INLA method converges.

```
log_det_prob <- function(distance, log_sig) {</pre>
 log1p(-exp(-exp(log_sig) / distance))
}
comp <- ~ field(coordinates, model = matern) + log_sig(1) + Intercept(1)</pre>
form <- coordinates + distance ~
  Intercept + field + log_det_prob(distance, log_sig) + log(2)
fit <- bru(
  components = comp,
  like(
    family = "cp", formula = form,
    data = mexdolphin$points, # sp::SpatialPointsDataFrame
    samplers = mexdolphin$samplers, # sp::SpatialLinesDataFrame
    domain = list(
      coordinates = mexdolphin$mesh.
      distance = INLA::inla.mesh.1d(seq(0, 8, length.out = 30))
```

Distance sampling

Posterior prediction method

pred_points <- fm_pixels(mexdolphin\$mesh, nx = 200, ny = 100, mask = mexdolphin\$ppoly, form pred <- predict(fit, pred_points, ~ exp(field + Intercept))</pre>

```
det_prob <- function(distance, log_sig) { 1 - exp(-exp(log_sig) / distance) }</pre>
pred_dist <- data.frame(distance = seq(0, 8, length = 100))</pre>
det_prob <- predict(fit, pred_dist, ~ det_prob(distance, log_sig), include = "log_sig")</pre>
```

ggplot() + gg(pred) + gg(mexdolphin\$samplers) + gg(mexdolphin\$ppoly) + ...

Data level prediction

47 groups were seen. How many would be seen along the transects under perfect detection?

mean	sd	q0.025	q0.5	q0.975	median	mean.mc_std_err	sd.mc_std_err
88.71351	28.76161	42.54349	86.90198	138.8088	86.90198	2.876161	2.592242

How many would be seen under perfect detection across the whole study area?

```
predpts <- fm_int(mexdolphin$mesh, mexdolphin$ppoly)
Lambda <- predict(fit, predpts, ~ sum(weight * exp(field + Intercept)))</pre>
```

mean	sd	q0.025	q0.5	q0.975	median	mean.mc_std_err	sd.mc_std_err
294.2898	85.52716	162.6911	286.5457	464.2258	286.5457	8.552716	7.178063

Integration points

Computational mesh

Complex prediction expressions

What's the predictive distribution of group counts?

```
Ns \le seq(50, 650, by = 1)
Nest <- predict(</pre>
 fit,
  predpts,
  ~ data.frame(
   N = Ns.
    density = dpois(Ns, lambda = sum(weight * exp(field + Intercept)))
  ),
  n.samples = 2500
Nest$plugin_estimate <- dpois(Nest$N, lambda = Lambda$mean)</pre>
```

Distance sampling

Full posterior prediction uncertainty vs plugin prediction

Animal movement (with Rafael Guillen, Ulrike Schlägel, Stephanie Muff)

Step selection analysis with telemetry data

Goal: Understand sequential movement decisions

The general movement capacity of an animal. Expressed by a movement kernel:

 $K(\mathbf{y}_t | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \boldsymbol{\theta}) = K_{\text{length}}(\mathbf{y}_t | \mathbf{y}_{t-1}, \boldsymbol{\theta}) K_{\text{angle}}(\mathbf{y}_t | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \boldsymbol{\theta}), \quad \mathbf{y}_{\cdot} \in \mathcal{D} \subset \mathbb{R}^2$

Selection behaviour of the animal. Modelled by a resource selection function (RSF):

 $\xi(\mathbf{s}) = \exp[\eta(\mathbf{s})] = \exp[\beta_1 X_1(\mathbf{s}) + \dots + \beta_p X_p(\mathbf{s}) + u(\mathbf{s})], \quad \mathbf{s} \in \mathcal{D}$

Spatially (or spatio-temporally) varying covariates X. and a residual random field $u(\mathbf{s})$.

Combined normalised conditional observation density function:

$$f_{t|$$

Step selection analysis with telemetry data

Goal: Understand sequential movement decisions

The general movement capacity of an animal. Expressed by a movement kernel:

 $K(\mathbf{y}_t | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \boldsymbol{\theta}) = K_{\text{length}}(\mathbf{y}_t | \mathbf{y}_{t-1}, \boldsymbol{\theta}) K_{\text{angle}}(\mathbf{y}_t | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \boldsymbol{\theta}), \quad \mathbf{y}_{\cdot} \in \mathcal{D} \subset \mathbb{R}^2$

Selection behaviour of the animal. Modelled by a resource selection function (RSF):

$$\xi(\mathbf{s}) = \exp[\eta(\mathbf{s})] = \exp[\beta_1 X_1(\mathbf{s}) + \dots + \beta_p X_p(\mathbf{s}) + u(\mathbf{s})], \quad \mathbf{s} \in \mathcal{D}$$

Spatially (or spatio-temporally) varying covariates X and a residual random field u(s).

Combined normalised conditional observation density function:

$$f_{t|$$

Step selection analysis with telemetry data

Goal: Understand sequential movement decisions

The general movement capacity of an animal. Expressed by a movement kernel:

 $K(\mathbf{y}_t | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \boldsymbol{\theta}) = K_{\text{length}}(\mathbf{y}_t | \mathbf{y}_{t-1}, \boldsymbol{\theta}) K_{\text{angle}}(\mathbf{y}_t | \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \boldsymbol{\theta}), \quad \mathbf{y}_{\cdot} \in \mathcal{D} \subset \mathbb{R}^2$

Selection behaviour of the animal. Modelled by a resource selection function (RSF):

$$\xi(\mathbf{s}) = \exp[\eta(\mathbf{s})] = \exp[\beta_1 X_1(\mathbf{s}) + \dots + \beta_p X_p(\mathbf{s}) + u(\mathbf{s})], \quad \mathbf{s} \in \mathcal{D}$$

Spatially (or spatio-temporally) varying covariates X and a residual random field u(s).

Combined normalised conditional observation density function:

$$f_{t|$$

Movement kernel

Movement capacity of an animal:

Resource selection function

Spatial features in the study area:

Finn Lindgren - finn.lindgren@ed.ac.uk

Embedding stochastic PDEs in Bayesian spatial statistics software

Combined effect

Intensity function

Movement decision!

Finn Lindgren - finn.lindgren@ed.ac.uk

Embedding stochastic PDEs in Bayesian spatial statistics software

From movement kernel to discretised point process likelihood

Problem: Inconvenient normalisation integral.

From movement kernel to discretised point process likelihood

$$f_{t|$$

Previous approach: Subdivide space into disjoint sets B_k , with $\mathcal{D} = \cup_{k=1}^N B_k$.

 $\mathbf{z}_t = [\mathbb{I}(\mathbf{y}_t \in B_1), \dots, \mathbb{I}(\mathbf{y}_t \in B_N)] \sim \mathsf{Multinomial}\left(1, \{p_k, k = 1, \dots, N\}\right)$

 $p_k = \mathsf{P}(\mathbf{y}_t \in B_k | \mathbf{y}_{< t}, \boldsymbol{\theta}, \eta) = \int_{B_k} f_{t|< t}(\mathbf{s} | \boldsymbol{\theta}, \eta) \, \mathrm{d}\mathbf{s} \quad \text{(No improvement: multiple integrals)}$

$$\lambda_t(\mathbf{y}_t|\boldsymbol{\theta}, \eta, a_t) = K(\mathbf{y}_t|\mathbf{y}_{< t}, \boldsymbol{\theta}) \exp[\eta(\mathbf{y}_t) + a_t], \quad a_t \sim \mathsf{Unif}(\mathbb{R})$$
$$l(\{\mathbf{y}_t\}|\boldsymbol{\theta}, \eta, \{a_t\}) = -\sum_t \int_{\mathcal{D}} \lambda_t(\mathbf{s}|\boldsymbol{\theta}, \eta, a_t) \,\mathrm{d}\mathbf{s} + \sum_t \log \lambda_t(\mathbf{y}_t|\boldsymbol{\theta}, \eta, a_t)$$

Non-homogeneous Poisson point process with a single point observation for each t. a_t replaces the explicit density normalisation by *estimating* it. The posterior distribution for θ , β ., and $u(\cdot)$ is unchanged!

$$\lambda_t(\mathbf{y}_t|\boldsymbol{\theta}, \eta, a_t) = K(\mathbf{y}_t|\mathbf{y}_{< t}, \boldsymbol{\theta}) \exp[\eta(\mathbf{y}_t) + a_t], \quad a_t \sim \mathsf{Unif}(\mathbb{R})$$
$$l(\{\mathbf{y}_t\}|\boldsymbol{\theta}, \eta, \{a_t\}) \approx -\sum_t \sum_k \lambda_t(\mathbf{s}_k|\boldsymbol{\theta}, \eta, a_t) w_k + \sum_t \log \lambda_t(\mathbf{y}_t|\boldsymbol{\theta}, \eta, a_t)$$

Integration points and weigths (s_k, w_k) , adapted to the spatial model resolution.

(Iterative) linearisation to a log-linear point process intensity allows more general movement kernel parameterisation.

(Preliminary theory: posterior approximation related to Fischer scoring)

$$\log \overline{\lambda}(\mathbf{y}_t | \boldsymbol{\theta}, \eta, a_t) = \log K(\mathbf{y}_t | \mathbf{y}_{< t}, \boldsymbol{\theta}_0) + \frac{\mathrm{d} \log K(\mathbf{y}_t | \mathbf{y}_{< t}, \boldsymbol{\theta})}{\mathrm{d} \boldsymbol{\theta}} (\boldsymbol{\theta} - \boldsymbol{\theta}_0) + \eta(\mathbf{y}_t) + a_t$$
$$l(\{\mathbf{y}_t\} | \boldsymbol{\theta}, \eta, \{a_t\}) \approx -\sum_t \sum_k \overline{\lambda}_t (\mathbf{s}_k | \boldsymbol{\theta}, \eta, a_t) w_k + \sum_t \log \overline{\lambda}_t (\mathbf{y}_t | \boldsymbol{\theta}, \eta, a_t)$$

This is *almost* a log-linear Poisson count log-likelihood;

In $-E\lambda + y \log(E\lambda)$, R-INLA allows us to specify the two terms separately, without pairing them up with equal E and λ values.

Mesh, integration points and weights

- Restricted domain of availability at each time point: Disk with radius (at least) equal to the maximum observed step length
- Integration points: At mesh nodes to ensure stability
- Deterministic integration: Previous Monte Carlo strategies are inefficient and unstable

Estimated log-intensity function

The Gaussian random field (GF) contribution improves the estimated animal density.

Estimated Gaussian random field (GF)

Posterior samples can be used to quantify uncertainty of the fields and linear/nonlinear functionals of the fields.

Note: Recall that conditional means are fundamentally smoother than conditional realisations!

Extensions and projects in progress

- Penalised complexity priors for non-stationary models (with Liam Llamazares Elias)
- Simplified support for aggregated data models, where the predictor expression may involve integration across space (with Man Ho Suen, Andy Seaton)
- ETAS.inlabru: Hawkes processes for earthquake forecasting; self-exciting Poisson processes with $\lambda(s,t) = \mu(s,t,u) + \sum_{i;t_i < t} h(s-s_i, t-t_i, u)$ which is not log-linear. (with Francesco Serafini, Mark Naylor)
- Related work (with Christopher Merchant and Xue Wang):
 Multi-band satellite data with nadir and oblique views, with non-rectangular "pixels".
 E(measured(pixel, band)) = $\left(\frac{1}{|D_{pixel}|} \int_{D_{pixel}} \text{conversion}[\text{SST}(s), \text{TCWV}(s), \text{band}]^b \, \mathrm{d}s\right)^{1/b}$
 - Both SST and TCWV are unknown spatial fields and *b* is an unknown parameter
 - The "conversion" function is a deterministic function evaluated on a grid of SST and TCWV for each frequency band
 - Can be implemented with numerical integration for each pixel, and spline interpolation of the conversion function

Extensions and projects in progress

- Penalised complexity priors for non-stationary models (with Liam Llamazares Elias)
- Simplified support for aggregated data models, where the predictor expression may involve integration across space (with Man Ho Suen, Andy Seaton)
- ETAS.inlabru: Hawkes processes for earthquake forecasting; self-exciting Poisson processes with $\lambda(s, t) = \mu(s, t, u) + \sum_{i;t_i < t} h(s s_i, t t_i, u)$ which is not log-linear. (with Francesco Serafini, Mark Naylor)
- Related work (with Christopher Merchant and Xue Wang):

Multi-band satellite data with nadir and oblique views, with non-rectangular "pixels".

 $\mathsf{E}(\mathsf{measured}(\mathsf{pixel},\mathsf{band})) = \left(\frac{1}{|D_{\mathsf{pixel}}|}\int_{D_{\mathsf{pixel}}}\mathsf{conversion}[\mathsf{SST}(s),\mathsf{TCWV}(s),\mathsf{band}]^b\,\mathrm{d}s\right)^{1/b}$

- Both SST and TCWV are unknown spatial fields and *b* is an unknown parameter
- The "conversion" function is a deterministic function evaluated on a grid of SST and TCWV for each frequency band
- Can be implemented with numerical integration for each pixel, and spline interpolation of the conversion function

Extensions and projects in progress

- Copulas and transformation models; can handle non-Gaussian parameter priors as latent variables, e.g. $\lambda \sim \text{Exp}(\gamma)$ is equivalent to $\lambda = -\log[1 \Phi(u)]/\gamma$, where $u \sim N(0, 1)$
- Extending the supported set of R-INLA models (survival models, etc)
- Direct support for non-separable space-time models (INLAspacetime, with Elias Krainski, David Bolin, Haakon Bakka, and Haavard Rue)
- Convergence diagnostics; bru_convergence_plot()
- Support added for sf and terra to prepare for the retirement of the rgdal package in 2023 (with Man Ho Suen, Andy Seaton)
- Converting the SPDE meshing code to a separate CRAN-friendly fmesher package (near completion)

Further work and take aways

- How accurate are the linearised posteriors? Need diagnostic metrics for all models. Options that are more or less computable in practice include
 - $\bullet \mathsf{E}_{\boldsymbol{u} \sim \overline{p}(\boldsymbol{u} | \boldsymbol{y})}(\| \overline{\boldsymbol{\eta}} \widetilde{\boldsymbol{\eta}} \|^2)$
 - $\sum_i \mathsf{E}_{\boldsymbol{u} \sim \overline{p}(\boldsymbol{u}|\boldsymbol{y})}(|\overline{\eta}_i \widetilde{\eta}_i|^2) / \mathsf{Var}_{\boldsymbol{u} \sim \overline{p}(\boldsymbol{u}|\boldsymbol{y})}(\overline{\eta}_i)$
 - $\blacksquare \mathsf{E}_{\boldsymbol{u} \sim \overline{p}(\boldsymbol{u}|\boldsymbol{y})} \left(\log \left(\frac{\overline{p}(\boldsymbol{u}|\boldsymbol{y}, \boldsymbol{\theta})}{\widetilde{p}(\boldsymbol{u}|\boldsymbol{y}, \boldsymbol{\theta})} \right) \right)$
- Interoperability with posterior analysis and plotting packages

- Stochastic PDEs work well as latent Gaussian fields in (shallow) hierarchical models
- Careful interface design can make both simple and complex models easy to specify
- Even more complex models can be handled using inlabru/INLA for local building blocks
- With great power comes great responsibility; statisticians in general need to get better at distinguishing between *model* problems and *method/implementation* problems.

References

 Finn Lindgren, David Bolin, Håvard Rue (2022) The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running, Spatial Statistics, Volume 50, August 2022, 100599. https://doi.org/10.1016/j.spasta.2022.100599 https://arxiv.org/abs/2111.01084

- Fabian E. Bachl, Finn Lindgren, David L. Borchers, and Janine B. Illian (2019) *inlabru: an R package for Bayesian spatial modelling from ecological survey data*, Methods in Ecology and Evolution, 10(6):760–766. https://doi.org/10.1111/2041-210X.13168
- CRAN package: inlabru https://inlabru.org/ https://inlabru-org.github.io/inlabru/ https://github.com/inlabru-org/inlabru/
- inlabru: The Scottish INLA interface

Spectra and finite element structure

- Fourier spectra are based on eigenfunctions $e_{\omega}(\mathbf{s})$ of $-\Delta$. On \mathbb{R}^d , $-\Delta e_{\lambda}(\mathbf{s}) = \|\boldsymbol{\lambda}\|^2 e_{\lambda}(\mathbf{s})$, and $e_{\lambda}(\mathbf{s})$ are harmonic functions.
- \blacksquare The stationary spectrum on $\mathbb{R}^d\times\mathbb{R}$ is

$$\widehat{\mathcal{R}}(\boldsymbol{\lambda},\omega) = \frac{1}{(2\pi)^{d+1}\tau^2(\kappa^2 + \lambda_{\boldsymbol{\lambda}})^{\alpha_e} \left[\phi^2 \omega^2 + (\kappa^2 + \lambda_{\boldsymbol{\lambda}})^{\alpha_s}\right]^{\alpha_t}}$$

• On \mathbb{S}^2 , $-\Delta e_k(\mathbf{s}) = \lambda_k e_k(\mathbf{s}) = k(k+1)e_k(\mathbf{s})$, and e_k are spherical harmonics.

 \blacksquare The isotropic spectrum on $\mathbb{S}^2\times\mathbb{R}$ is

$$\widehat{\mathcal{R}}(k,\omega) \propto rac{2k+1}{ au^2(\kappa^2+\lambda_k)^{lpha_e} \left[\phi^2 \omega^2 + (\kappa^2+\lambda_k)^{lpha_s}
ight]^{lpha_t}}$$

The finite element approximation has structure

$$u(s,t) = \sum_{i,j} \psi_i^{[s]}(s) \psi_j^{[t]}(t) x_{ij}, \quad x \sim \mathsf{N}(0, Q^{-1}), \quad Q = \sum_{k=0}^{\alpha_t + \alpha_s + \alpha_e} M_k^{[t]} \otimes M_k^{[s]}$$

even, e.g., if the spatial scale parameter κ is spatially varying.

The observation model is linked to u only through the non-linear predictor $\widetilde{\eta}(u)$. Iterative INLA algorithm:

- **1** Let \boldsymbol{u}_0 be an initial linearisation point for the latent variables.
- 2 Compute the predictor linearisation at $oldsymbol{u}_0$
- 3 Compute the linearised INLA posterior $\overline{p}(m{ heta}|m{y})$ and let $\widehat{m{ heta}}=\mathrm{argmax}_{m{ heta}}\,\overline{p}(m{ heta}|m{y})$
- 4 Let $u_1 = \operatorname{argmax}_u \overline{p}(u|y, \overline{\theta})$ be the initial candidate for new linearisation point.
- 5 Let $m{u}_{lpha}=(1-lpha)m{u}_0+lpham{u}_1$, and find the value lpha that minimises $\|\widetilde{\eta}(m{u}_{lpha})-\overline{\eta}(m{u}_1)\|$.
- **6** Set the linearisation point u_0 to u_α and repeat from step 2, unless the iteration has converged to a given tolerance.
- 7 Compute $\overline{p}(\boldsymbol{u}|\boldsymbol{y})$

The observation model is linked to u only through the non-linear predictor $\widetilde{\eta}(u)$. Iterative INLA algorithm:

- **1** Let \boldsymbol{u}_0 be an initial linearisation point for the latent variables.
- 2 Compute the predictor linearisation at \boldsymbol{u}_0
- 3 Compute the linearised INLA posterior $\overline{p}(m{ heta}|m{y})$ and let $\widehat{m{ heta}} = rgmax_{m{ heta}} \overline{p}(m{ heta}|m{y})$
- 4 Let $u_1 = \operatorname{argmax}_u \overline{p}(u|y, \overline{ heta})$ be the initial candidate for new linearisation point.
- 5 Let $u_{lpha} = (1 lpha)u_0 + lpha u_1$, and find the value lpha that minimises $\|\widetilde{\eta}(u_{lpha}) \overline{\eta}(u_1)\|$.
- **6** Set the linearisation point u_0 to u_α and repeat from step 2, unless the iteration has converged to a given tolerance.
- 7 Compute $\overline{p}(\boldsymbol{u}|\boldsymbol{y})$

The observation model is linked to u only through the non-linear predictor $\widetilde{\eta}(u)$. Iterative INLA algorithm:

- **1** Let \boldsymbol{u}_0 be an initial linearisation point for the latent variables.
- 2 Compute the predictor linearisation at \boldsymbol{u}_0
- 3 Compute the linearised INLA posterior $\overline{p}(\theta|y)$ and let $\widehat{\theta} = \operatorname{argmax}_{\theta} \overline{p}(\theta|y)$
- 4 Let $u_1 = \operatorname{argmax}_u \overline{p}(u|y, \theta)$ be the initial candidate for new linearisation point.
- 5 Let $m{u}_{lpha}=(1-lpha)m{u}_0+lpham{u}_1$, and find the value lpha that minimises $\|\widetilde{\eta}(m{u}_{lpha})-\overline{\eta}(m{u}_1)\|$.
- **6** Set the linearisation point u_0 to u_α and repeat from step 2, unless the iteration has converged to a given tolerance.
- 7 Compute $\overline{p}(\boldsymbol{u}|\boldsymbol{y})$

The observation model is linked to u only through the non-linear predictor $\widetilde{\eta}(u)$. Iterative INLA algorithm:

- **1** Let u_0 be an initial linearisation point for the latent variables.
- 2 Compute the predictor linearisation at $oldsymbol{u}_0$
- 3 Compute the linearised INLA posterior $\overline{p}(\theta|y)$ and let $\widehat{\theta} = \operatorname{argmax}_{\theta} \overline{p}(\theta|y)$
- 4 Let $u_1 = \operatorname{argmax}_{u} \overline{p}(u|y, \widehat{\theta})$ be the initial candidate for new linearisation point.
- **5** Let $u_{\alpha} = (1 \alpha)u_0 + \alpha u_1$, and find the value α that minimises $\|\widetilde{\eta}(u_{\alpha}) \overline{\eta}(u_1)\|$.
- **G** Set the linearisation point u_0 to u_{α} and repeat from step 2, unless the iteration has converged to a given tolerance.
- 7 Compute $\overline{p}(oldsymbol{u}|oldsymbol{y})$

In step 4, only the *conditional* posterior mode for u is needed, so the costly nested integration step of the R-INLA algorithm only needs to be run in a final iteration of the algorithm, in step 7.

Step 5 can use an approximate line search method.

The observation model is linked to u only through the non-linear predictor $\widetilde{\eta}(u)$. Iterative INLA algorithm:

- **1** Let \boldsymbol{u}_0 be an initial linearisation point for the latent variables.
- 2 Compute the predictor linearisation at $oldsymbol{u}_0$
- 3 Compute the linearised INLA posterior $\overline{p}(\theta|y)$ and let $\widehat{\theta} = \operatorname{argmax}_{\theta} \overline{p}(\theta|y)$
- 4 Let $u_1 = \operatorname{argmax}_{u} \overline{p}(u|y, \widehat{\theta})$ be the initial candidate for new linearisation point.
- 5 Let $u_{\alpha} = (1 \alpha)u_0 + \alpha u_1$, and find the value α that minimises $\|\widetilde{\eta}(u_{\alpha}) \overline{\eta}(u_1)\|$.
- **G** Set the linearisation point u_0 to u_{α} and repeat from step 2, unless the iteration has converged to a given tolerance.
- 7 Compute $\overline{p}(\boldsymbol{u}|\boldsymbol{y})$

The observation model is linked to u only through the non-linear predictor $\widetilde{\eta}(u)$. Iterative INLA algorithm:

- **1** Let u_0 be an initial linearisation point for the latent variables.
- 2 Compute the predictor linearisation at $oldsymbol{u}_0$
- 3 Compute the linearised INLA posterior $\overline{p}(\theta|y)$ and let $\widehat{\theta} = \operatorname{argmax}_{\theta} \overline{p}(\theta|y)$
- 4 Let $u_1 = \operatorname{argmax}_{u} \overline{p}(u|y, \widehat{\theta})$ be the initial candidate for new linearisation point.
- 5 Let $u_{\alpha} = (1 \alpha)u_0 + \alpha u_1$, and find the value α that minimises $\|\widetilde{\eta}(u_{\alpha}) \overline{\eta}(u_1)\|$.
- **6** Set the linearisation point u_0 to u_α and repeat from step 2, unless the iteration has converged to a given tolerance.

7 Compute $\overline{p}(\boldsymbol{u}|\boldsymbol{y})$

The observation model is linked to u only through the non-linear predictor $\widetilde{\eta}(u)$. Iterative INLA algorithm:

- **1** Let u_0 be an initial linearisation point for the latent variables.
- 2 Compute the predictor linearisation at $oldsymbol{u}_0$
- **3** Compute the linearised INLA posterior $\overline{p}(\theta|y)$ and let $\widehat{\theta} = \operatorname{argmax}_{\theta} \overline{p}(\theta|y)$
- 4 Let $u_1 = \operatorname{argmax}_{u} \overline{p}(u|y, \widehat{\theta})$ be the initial candidate for new linearisation point.
- 5 Let $u_{\alpha} = (1 \alpha)u_0 + \alpha u_1$, and find the value α that minimises $\|\widetilde{\eta}(u_{\alpha}) \overline{\eta}(u_1)\|$.
- **6** Set the linearisation point u_0 to u_{α} and repeat from step 2, unless the iteration has converged to a given tolerance.
- 7 Compute $\overline{p}(\boldsymbol{u}|\boldsymbol{y})$