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GAMs and general kriging
Linear GAMs with GPs on space and covariates:

ηi =
∑
k

vk(zik) + u(si),

each vk(·) and u(·) represented with basis expansions with jointly Gaussian coefficients x.

Linear observations with additive Gaussian observation noise: y = η + ϵ = Ax+ ϵ

Covariance kriging

Σy = AΣxA
⊤ +Σϵ

E(x|y) = µ+ΣxA
⊤Σ−1

y (y −Aµ)

Precision kriging

Qx|y = Qx +A⊤QϵA

E(x|y) = µ+Q−1
x|yA

⊤Qϵ(y −Aµ)

Non-Gaussian observations with link function: E(yi|θ,x) = h(ηi)
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Observation level covariance vs latent level precision

Covariance kriging: linear solve with a Σ, Σij = Cov(yi, yj)
Precision kriging: linear solve with a Q, Qij = Prec(xi, xj |y)
Q = LL⊤ for a given latent variable ordering, and sparse lower triangular L with the sparsity

from Q plus Cholesky infill.

The prior Qx for GRF/SPDE process components are obtained via a local Finite Element

construction, giving the model in a chosen finite function space closest to the full model.

Posterior/conditional sampling is as easy a prior sampling:

Lx|yL
⊤
x|y = Qx|y = Qx +A⊤QϵA

x∗ = E(x|y) +L−⊤
x|y z, z ∼ N(0, I)

For iterative methods:
LxL

⊤
x = Qx

LϵL
⊤
ϵ = Qϵ

Qx|y [x
∗ − E(x|y)] =

[
Lx A⊤Lϵ

]
z, z ∼ N(0, I)
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Finite element structure

Matérn-Whittle processes

Linear Gaussian process/field representations via SPDEs:

(κ2 −∆)αu(s) ds = dW(s)κα−d/2/τ

For constant parameters, u(s) has spatial Matérn covariance on Rd, and generalised Matérn-Whittle

covariance on general manifolds. The smoothness index is ν = α− d/2 and the variance is

proportional to 1/τ2. Whittle (1954, 1963), Lindgren et al (2011)

Discrete domain Gaussian Markov random fields (GMRFs)

u = (u1, . . . , un) ∼ N(µ,Q−1) is Markov with respect to a neighbourhood structure

{Ni, i = 1, . . . , n} if Qij = 0 whenever j ̸= Ni ∪ i.
Continuous domain basis representation with weights: u(s) =

∑n
k=1 ψk(s)uk

Project the SPDE solution space onto (local) basis functions:

random Markov (w.r.t. basis overlap) dependent basis weights (Lindgren et al, 2011).
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Non-stationarity

Non-stationary Matérn-Whittle processes

The Sampson & Guttorp (1992) deformation method motivates a non-stationary generalisation on Rd:

(κ(s)2 −∇ ·H(s)∇)α
u(s)

σ(s)
ds = dW(s)κ(s)α−d/2,

where κ(s) and H(s) are derived from the metric tensor of the deformation. For deformation not from

Rd onto Rd, this non-stationary model is distinct from the deformation method, but keeps much of the

intuition, as the variance will be approximativey independent of κ(s).

RKHS inner products of linear SPDEs

The spatial solutions u(s) to

Lu(s) ds = dW(s) where dW(s) is white noise on Ω
have RKHS inner product

QΩ(f, g) = ⟨Lf,Lg⟩Ω
plus potential boundary terms.
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Non-separable space-time: Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:[
ϕ
∂

∂t
+ (κ2 −∆)αs/2

]αt

u(s, t) dt = dE(κ2−∆)αe (s, t)/τ

For constant parameters, u(s, t) has spatial Matérn covariance (for each t) on R2 and a generalised

Matérn-Whittle sense on S2.

Smoothness properties: With β∗(νs, d) = νs/(νs + d/2),

νt = min

[
αt −

1

2
,
νs
αs

]
, αt = νtmax

(
1,

βs
β∗(νs, d)

)
+

1

2
,

νs = αe + αs(αt −
1

2
)− d

2
, αs =

νs
νt

min

(
βs

β∗(νs, d)
, 1

)
=

1

νt
min [(νs + d/2)βs, νs] ,

βs = 1− αe

αe + αs(αt − 1
2)
, αe =

1− βs
β∗(νs, d)

νs = (νs + d/2)(1− βs).
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Latent Gaussian models

Hierarchical model with latent jointly Gaussian variables

θ ∼ p(θ) (covariance parameters)

(u | θ) ∼ N(µu,Q
−1
u ) (latent Gaussian variables)

(y | u,θ) ∼ p(y | u,θ) (observation model)

We are interested in the posterior densities p(θ | y), p(u | y) and p(ui | y).

Approximate conditional posterior distribution

Let û(θ) be the mode of the posterior density p(u | y,θ) ∝ p(u | θ)p(y | u,θ). Construct an

approximate conditional posterior distribution, via Newton optimisation for u given θ:

pG(u | y,θ) ∼ N(µ̂, Q̂−1)

0 = ∇u {ln p(u | θ) + ln p(y | u,θ)}|u=µ̂(θ)

Q̂ = Qu − ∇2
u ln p(y | u,θ)

∣∣
u=µ̂θ
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Classic and compact INLA methods (∼ description)

Laplace approximation at the conditional posterior mode x∗, and uncertainty integration:

p(θ|y) ∝ p(θ)p(x|θ)p(y|θ,x)
p(x|θ,y)

∣∣∣∣
x=x∗

≈ p(θ)p(x|θ)p(y|θ,x)
pG(x|θ,y)

∣∣∣∣
x=x∗

= p̂(θ|y)

p(xi|y) =
∫
p(xi|θ,y)p(θ|y) dθ ≈

∑
k

p̂(xi|θ(k),y)p̂(θ(k)|y)wk = p̂(xi|y)

Let µ̂ = E(x|θ,y) and Qϵ = −∇x∇⊤
x log p(y|θ,x∗)

Classic method: Laplace approximation of each p̂(xi|θ,y), and{[
Ax
x

]
|θ,y

}
∼ N

([
Aµ̂
µ̂

]
,

[
Qϵ + δI −δA
−δA⊤ Qx + δA⊤A

]−1
)

, with δ ≫ 0

Compact method (R-INLA from January 2023): Gaussian variational approximation of p̂(x|θ,y)
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inlabru software interface concepts
Model components are declared similarly to R-INLA:

# INLA:
~ covar + f(name, model = ...)
# inlabru
~ covar + name(input, model = ...)
~ covar # is translated into...
~ covar(covar, model = "linear")
~ name(1) # Used for intercept-like components

In R-INLA, η = Au = A0
∑K

k=1Akuk, where the rows of Ak only extract individual

elements from each uk, and the overall A0 is user defined (via inla.stack()).

In inlabru, η = h(u1, . . . ,uK ,A1u1, . . . ,AKuK), where h(·) is a general R expression

of named latent components uk and intermediate "effects" Akuk

Ak by default acts either as in R-INLA, or is determined by a mapper method. Predefined default

mappers include e.g. spatial evaluation of SPDE/GRMF models that map between coordinates

and meshes, and mappers that combine other mappers (used to combine main/group/replicate

for all components)
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Input mappers

Each named component has main/group/replicate inputs, that are given to the mappers to
evaluate Ak. For a given latent state, the resulting effect values are made available to the
predictor expression.

bru_mapper() # generic
bru_mapper_index(n) # Basic index mapping
bru_mapper_linear() # Basic linear mapping
bru_mapper_matrix(labels) # Basic linear multivariable mapping
bru_mapper_factor(values, factor_mapping) # Factor variable mapping
bru_mapper_multi(mappers) # kronecker product components
bru_mapper_collect(mappers, hidden) # For concatenated components, like bym
bru_mapper_const() # Constants
bru_mapper.inla.mesh(mesh) # 2D and spherical mesh mappings
bru_mapper.inla.mesh.1d(mesh) # Interval and cyclic interval mappings

Common methods that return essential characteristics

ibm_n(mapper) # The size of the latent component
ibm_values(mapper) # The covariate/index "values" given to INLA
ibm_jacobian(mapper, input) # The "A-matrix" for given input values
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Model component definition example:

comp <- ~ 0 + field(cbind(easting, northing), model = spde) + param(1)

Predictor formula examples, including naming of the response variable:

form1 <- my_counts ~ param + field
form2 <- response ~ exp(param) + exp(field)

Main method call structure:

bru(components = comp,
like(formula = form1, family = "poisson", data = data1),
like(formula = form2, family = "normal", data = data2))

Simplified notations for common special cases;

formula = response ~ .
gives the full additive model of all the available components, or

components = response ~ Intercept(1) + field(...
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Plain INLA code for separable space-time model

matern <- inla.spde2.pcmatern(mesh, ...)

field_A <- inla.spde.make.A(mesh,
coordinates(data),
group = data$year - min(data$year) + 1,
n.group = 10)

stk <- inla.stack(data = list(response = data$response),
A = list(field_A, 1),
effects = list(field_index, list(covar = data$covar)))

formula <- response ~ 1 + covar +
f(field, model = matern, group = field_group, control.group = ...)

fit <- inla(formula = formula,
data = inla.stack.data(stk, matern = matern),
family = "normal",
control.predictor = list(A = inla.stack.A(stk)))
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inlabru code for separable space-time model

matern <- inla.spde2.pcmatern(mesh, ...)

year_mapper <- bru_mapper(inla.mesh.1d(sort(unique(data$year))), indexed = TRUE)

comp <- response ~ Intercept(1) + covar +
field(geometry, model = matern, group = year, group_mapper = year_mapper,

control.group = ...)

fit <- bru(components = comp,
data = data,
family = "normal")

Implied:

coordinates−→ sp::coordinates(.data.)

formula = response ~ .

data and family passed on to a like() call
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Approximate INLA for non-linear predictors

Linearised predictor

Let η̃(u) be the non-linear predictor, and let η(u) be the 1st order Taylor approximation at some u0,

η(u) = η̃(u0) +B(u− u0) = [η̃(u0)−Bu0] +Bu,

where B is the derivative matrix for the non-linear predictor, evaluated at u0.

The non-linear observation model p̃(y|u,θ) is approximated by

p(y|u,θ) = p(y|η(u),θ) ≈ p(y|η̃(u),θ) = p̃(y|u,θ)

The inlabru method finds a linearisation point u0 such that it is matched by the resulting linearised

conditional posterior mode, argmaxu p
(
u
∣∣∣y, θ̂ = argmaxθ p̂(θ|y)

)
.
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Example: Thinned Poisson point processes

We want to model the presence of groups of dolphins using a Log-Gaussian Cox Process (LGCP)

However, when surveying dolphins from a ship travelling along lines (transects), the probability of

detecting a group of animals depends their distance distance from the ship.
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Example: Thinned Poisson point processes

We want to model the presence of groups of dolphins using a Log-Gaussian Cox Process (LGCP)

However, when surveying dolphins from a ship travelling along lines (transects), the probability of

detecting a group of animals depends their distance distance from the ship, e.g. via

P(detection) = 1− exp
(
− σ

distance

)
(hazard rate model)

This results in a thinned Poisson process model on (space, distance) along the transects:

log(λ(s, distance)) = Intercept + field(s) + log [P(detection at s | distance, σ)] + log(2)

inlabru knows how to construct the Poisson process likelihood along lines and on polygons, and

kronecker spaces (line × distance)

We can define log(σ) as a latent Gaussian variable and iteratively linearise. The non-linearity is mild,

and the iterative INLA method converges.
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log_det_prob <- function(distance, log_sig) {
log1p(-exp(-exp(log_sig) / distance))

}

comp <- ~ field(coordinates, model = matern) + log_sig(1) + Intercept(1)
form <- coordinates + distance ~

Intercept + field + log_det_prob(distance, log_sig) + log(2)

fit <- bru(
components = comp,
like(

family = "cp", formula = form,
data = mexdolphin$points, # sp::SpatialPointsDataFrame
samplers = mexdolphin$samplers, # sp::SpatialLinesDataFrame
domain = list(

coordinates = mexdolphin$mesh,
distance = INLA::inla.mesh.1d(seq(0, 8, length.out = 30))

)
)

)
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Posterior prediction method

pred_points <- fm_pixels(mexdolphin$mesh, nx = 200, ny = 100, mask = mexdolphin$ppoly, format = "sp")
pred <- predict(fit, pred_points, ~ exp(field + Intercept))

det_prob <- function(distance, log_sig) { 1 - exp(-exp(log_sig) / distance) }
pred_dist <- data.frame(distance = seq(0, 8, length = 100))
det_prob <- predict(fit, pred_dist, ~ det_prob(distance, log_sig), include = "log_sig")

ggplot() + gg(pred) + gg(mexdolphin$samplers) + gg(mexdolphin$ppoly) + ...
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Data level prediction

47 groups were seen. How many would be seen along the transects under perfect detection?

predpts_transect <- fm_int(mexdolphin$mesh, mexdolphin$samplers)
Lambda_transect <- predict(fit, predpts_transect,

~ 16 * sum(weight * exp(field + Intercept)))

mean sd q0.025 q0.5 q0.975 median mean.mc_std_err sd.mc_std_err

88.71351 28.76161 42.54349 86.90198 138.8088 86.90198 2.876161 2.592242

How many would be seen under perfect detection across the whole study area?

predpts <- fm_int(mexdolphin$mesh, mexdolphin$ppoly)
Lambda <- predict(fit, predpts, ~ sum(weight * exp(field + Intercept)))

mean sd q0.025 q0.5 q0.975 median mean.mc_std_err sd.mc_std_err

294.2898 85.52716 162.6911 286.5457 464.2258 286.5457 8.552716 7.178063
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Integration points

−1500

−1300

−1100

0 500 1000
Easting

N
or

th
in

g

16 * weight

100

200

300

400

500

Line integration

−1500

−1300

−1100

0 500 1000
Easting

N
or

th
in

g

weight

500

1000

1500

2000

2500

Area integration

−1500

−1000

0 500 1000 1500
Easting

N
or

th
in

g

Computational mesh

Finn Lindgren - finn.lindgren@ed.ac.uk Embedding stochastic PDEs in Bayesian spatial statistics software



LGMs Numerical Bayesian inference Examples Animal movement References Distance sampling

Complex prediction expressions

What’s the predictive distribution of group counts?

Ns <- seq(50, 650, by = 1)
Nest <- predict(

fit,
predpts,
~ data.frame(

N = Ns,
density = dpois(Ns, lambda = sum(weight * exp(field + Intercept)))

),
n.samples = 2500

)

Nest$plugin_estimate <- dpois(Nest$N, lambda = Lambda$mean)
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Full posterior prediction uncertainty vs plugin prediction
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Animal movement (with Rafael Guillen, Ulrike Schlägel, Stephanie Muff)
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Step selection analysis with telemetry data

Goal: Understand sequential movement decisions

The general movement capacity of an animal. Expressed by a movement kernel:

K(yt|yt−1,yt−2,θ) = Klength(yt|yt−1,θ)Kangle(yt|yt−1,yt−2,θ), y· ∈ D ⊂ R2

Selection behaviour of the animal. Modelled by a resource selection function (RSF):

ξ(s) = exp[η(s)] = exp[β1X1(s) + ...+ βpXp(s) + u(s)], s ∈ D

Spatially (or spatio-temporally) varying covariates X· and a residual random field u(s).

Combined normalised conditional observation density function:

ft|<t(yt|θ, η) =
K(yt|y<t,θ) exp[η(yt)]∫
DK(s|y<t,θ) exp[η(s)] ds
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Movement kernel

Movement capacity of an animal:
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Resource selection function

Spatial features in the study area:
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Combined effect

Intensity function Movement decision!
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From movement kernel to discretised point process likelihood

Density ft|<t(yt|θ, η) NHPP λt(yt|θ, η, at)

Multinom I(yt ∈ Bk) Discretised

λt(yt|θ, η, at)

Disc&Linear

Poisson trick

Poisson trick

Linearisation

Linearisation

ft|<t(yt|θ, η) =
K(yt|y<t,θ) exp[η(yt)]∫
DK(s|y<t,θ) exp[η(s)] ds

Problem: Inconvenient normalisation integral.
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From movement kernel to discretised point process likelihood

Density ft|<t(yt|θ, η) NHPP λt(yt|θ, η, at)

Multinom I(yt ∈ Bk) Discretised

λt(yt|θ, η, at)

Disc&Linear

Poisson trick

Poisson trick

Linearisation

Linearisation

ft|<t(yt|θ, η) =
K(yt|y<t,θ) exp[η(yt)]∫
DK(s|y<t,θ) exp[η(s)] ds

Previous approach: Subdivide space into disjoint sets Bk, with D = ∪N
k=1Bk.

zt = [I(yt ∈ B1), . . . , I(yt ∈ BN )] ∼ Multinomial (1, {pk, k = 1, . . . , N})

pk = P(yt ∈ Bk|y<t,θ, η) =

∫
Bk

ft|<t(s|θ, η) ds (No improvement: multiple integrals)
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From movement kernel to discretised point process likelihood

Density ft|<t(yt|θ, η) NHPP λt(yt|θ, η, at)

Multinom I(yt ∈ Bk) Discretised

λt(yt|θ, η, at)

Disc&Linear

Poisson trick

Poisson trick

Linearisation

Linearisation

λt(yt|θ, η, at) = K(yt|y<t,θ) exp[η(yt) + at], at ∼ Unif(R)

l({yt}|θ, η, {at}) = −
∑
t

∫
D
λt(s|θ, η, at) ds+

∑
t

log λt(yt|θ, η, at)

Non-homogeneous Poisson point process with a single point observation for each t.
at replaces the explicit density normalisation by estimating it.

The posterior distribution for θ, β·, and u(·) is unchanged!
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From movement kernel to discretised point process likelihood

Density ft|<t(yt|θ, η) NHPP λt(yt|θ, η, at)

Multinom I(yt ∈ Bk) Discretised

λt(yt|θ, η, at)

Disc&Linear

Poisson trick

Poisson trick

Linearisation

Linearisation

λt(yt|θ, η, at) = K(yt|y<t,θ) exp[η(yt) + at], at ∼ Unif(R)

l({yt}|θ, η, {at}) ≈ −
∑
t

∑
k

λt(sk|θ, η, at)wk +
∑
t

log λt(yt|θ, η, at)

Integration points and weigths (sk, wk), adapted to the spatial model resolution.
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From movement kernel to discretised point process likelihood

Density ft|<t(yt|θ, η) NHPP λt(yt|θ, η, at)

Multinom I(yt ∈ Bk) Discretised

λt(yt|θ, η, at)

Disc&Linear

Poisson trick

Poisson trick

Linearisation

Linearisation

log λ(yt|θ, η, at) = logK(yt|y<t,θ0) +
d logK(yt|y<t,θ)

dθ
(θ − θ0) + η(yt) + at

l({yt}|θ, η, {at}) = −
∑
t

∫
D
λt(s|θ, η, at) ds+

∑
t

log λt(yt|θ, η, at)

(Iterative) linearisation to a log-linear point process intensity allows more general movement kernel

parameterisation.

(Preliminary theory: posterior approximation related to Fischer scoring)
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From movement kernel to discretised point process likelihood

Density ft|<t(yt|θ, η) NHPP λt(yt|θ, η, at)

Multinom I(yt ∈ Bk) Discretised

λt(yt|θ, η, at)

Disc&Linear

Poisson trick

Poisson trick

Linearisation

Linearisation

log λ(yt|θ, η, at) = logK(yt|y<t,θ0) +
d logK(yt|y<t,θ)

dθ
(θ − θ0) + η(yt) + at

l({yt}|θ, η, {at}) ≈ −
∑
t

∑
k

λt(sk|θ, η, at)wk +
∑
t

log λt(yt|θ, η, at)

This is almost a log-linear Poisson count log-likelihood;

In −Eλ+ y log(Eλ), R-INLA allows us to specify the two terms separately, without pairing them up

with equal E and λ values.
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Mesh, integration points and weights

Restricted domain of availability at

each time point: Disk with radius

(at least) equal to the maximum

observed step length

Integration points: At mesh nodes

to ensure stability

Deterministic integration: Previous

Monte Carlo strategies are

inefficient and unstable
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Estimated log-intensity function

The Gaussian random field (GF) contribution improves the estimated animal density.
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Estimated Gaussian random field (GF)

Posterior samples can be used to quantify uncertainty of the fields and linear/nonlinear functionals of

the fields.

Note: Recall that conditional means are fundamentally smoother than conditional realisations!
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Extensions and projects in progress

Penalised complexity priors for non-stationary models (with Liam Llamazares Elias)

Simplified support for aggregated data models, where the predictor expression may involve

integration across space (with Man Ho Suen, Andy Seaton)

ETAS.inlabru: Hawkes processes for earthquake forecasting; self-exciting Poisson processes

with λ(s, t) = µ(s, t,u) +
∑

i;ti<t h(s− si, , t− ti,u) which is not log-linear. (with

Francesco Serafini, Mark Naylor)

Related work (with Christopher Merchant and Xue Wang):

Multi-band satellite data with nadir and oblique views, with non-rectangular "pixels".

E(measured(pixel, band)) =

(
1

|Dpixel|

∫
Dpixel

conversion[SST(s), TCWV(s), band]b ds

)1/b

Both SST and TCWV are unknown spatial fields and b is an unknown parameter
The "conversion" function is a deterministic function evaluated on a grid of SST and TCWV for each
frequency band
Can be implemented with numerical integration for each pixel, and spline interpolation of the
conversion function
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Extensions and projects in progress

Copulas and transformation models; can handle non-Gaussian parameter priors as latent

variables, e.g. λ ∼ Exp(γ) is equivalent to λ = − log[1− Φ(u)]/γ, where u ∼ N(0, 1)

Extending the supported set of R-INLA models (survival models, etc)

Direct support for non-separable space-time models (INLAspacetime, with Elias Krainski,

David Bolin, Haakon Bakka, and Haavard Rue)

Convergence diagnostics; bru_convergence_plot()

Support added for sf and terra to prepare for the retirement of the rgdal package in 2023

(with Man Ho Suen, Andy Seaton)

Converting the SPDE meshing code to a separate CRAN-friendly fmesher package (near

completion)
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Further work and take aways

How accurate are the linearised posteriors? Need diagnostic metrics for all models.
Options that are more or less computable in practice include

Eu∼p(u|y)(∥η − η̃∥2)∑
i Eu∼p(u|y)(|ηi − η̃i|2)

/
Varu∼p(u|y)(ηi)

Eu∼p(u|y)

(
log
(

p(u|y,θ)
p̃(u|y,θ)

))
Interoperability with posterior analysis and plotting packages

Stochastic PDEs work well as latent Gaussian fields in (shallow) hierarchical models

Careful interface design can make both simple and complex models easy to specify

Even more complex models can be handled using inlabru/INLA for local building blocks

With great power comes great responsibility; statisticians in general need to get better at

distinguishing between model problems and method/implementation problems.
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Spectra and finite element structure
Fourier spectra are based on eigenfunctions eω(s) of −∆.

On Rd, −∆eλ(s) = ∥λ∥2eλ(s), and eλ(s) are harmonic functions.

The stationary spectrum on Rd × R is

R̂(λ, ω) =
1

(2π)d+1τ2(κ2 + λλ)αe [ϕ2ω2 + (κ2 + λλ)αs ]αt

On S2, −∆ek(s) = λkek(s) = k(k + 1)ek(s), and ek are spherical harmonics.

The isotropic spectrum on S2 × R is

R̂(k, ω) ∝ 2k + 1

τ2(κ2 + λk)αe [ϕ2ω2 + (κ2 + λk)αs ]αt

The finite element approximation has structure

u(s, t) =
∑
i,j

ψ
[s]
i (s)ψ

[t]
j (t)xij , x ∼ N(0,Q−1), Q =

αt+αs+αe∑
k=0

M
[t]
k ⊗M

[s]
k

even, e.g., if the spatial scale parameter κ is spatially varying.
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Iterated INLA in inlabru

The observation model is linked to u only through the non-linear predictor η̃(u).
Iterative INLA algorithm:

1 Let u0 be an initial linearisation point for the latent variables.

2 Compute the predictor linearisation at u0

3 Compute the linearised INLA posterior p(θ|y) and let θ̂ = argmaxθ p(θ|y)
4 Let u1 = argmaxu p(u|y, θ̂) be the initial candidate for new linearisation point.

5 Let uα = (1− α)u0 + αu1, and find the value α that minimises ∥η̃(uα)− η(u1)∥.

6 Set the linearisation point u0 to uα and repeat from step 2, unless the iteration has converged to

a given tolerance.

7 Compute p(u|y)
In step 4, only the conditional posterior mode for u is needed, so the costly nested integration step of

the R-INLA algorithm only needs to be run in a final iteration of the algorithm, in step 7.

Step 5 can use an approximate line search method.
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