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Part I

Magnitude homology



Enriched categories

Yesterday, in Tom’s talk:

Today

The category of categories
and functors is Cat.

The category of posets and
monotone maps is Poset.

The category of metric spaces
and 1-Lipschitz maps is Met.

Each of these is itself a
monoidal category.
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Categorifying magnitude

Magnitude

Given. . .

‚ a monoidal category pV,bq
‚ a ring pR,`, ¨q

‚ a ‘size homomorphism’
| ´ | : pV,bq Ñ pR, ¨q
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linear algebra
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‚ a strong symmetric monoidal ‘size
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Magnitude homology

VCat r∆op,As ChpAq ANMBΣMBΣMBΣ

MCΣMCΣ

MHΣ

C H‚

Definition (Leinster & Shulman, 2017, after Hepworth & Willerton, 2015)

Let Σ : V Ñ A be a strong symmetric monoidal functor. The magnitude nerve of a
V-category X is given for n P N by

MBΣ
n pXq “

à

x0,...,xnPX

ΣXpx0, x1q b ¨ ¨ ¨ b ΣXpxn´1, xnq

with face maps δi induced by composition in X and terminal maps in V.
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Magnitude homology for categories, posets and groups

Small categories are categories enriched in Set. We take the size of a set to be its
cardinality and the size functor Σ : SetÑ Ab to be the free abelian group functor.

The magnitude complex of a category X is then given in degree n ě 0 by

MCΣ
n pXq “ Z ¨ tpx0

f1
ÝÑ x1

f2
ÝÑ ¨ ¨ ¨

fn
ÝÑ xnq | xi , fi in Xu.

The differential is Bn “
řn´1

i“1 p´1qiδi where δi is induced by composing fi with fi`1.

So, by standard facts:

‚ If C is a category then MHΣ
‚ pCq is the homology of its classifying space.

‚ If P is a poset then MHΣ
‚ pPq is the homology of its order complex.

‚ If G is a group then MHΣ
‚ pGq is is ordinary group homology.
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Magnitude homology for metric spaces

For a metric space X the magnitude complex is an r0,8s-graded chain complex:

MC `npX q “ Z ¨

#

px0, . . . , xnq | xi P X and xi ‰ xi`1, and
n´1
ÿ

i“0

dpxi , xi`1q “ `

+

for n P N and ` P r0,8s, with Bn “
řn´1

i“1 p´1qiδi where

δi px0, . . . , xnq “

#

px0, . . . , pxi , . . . xnq if dpxi´1, xi q ` dpxi , xi`1q “ dpxi´1, xi`1q

0 otherwise.

Met r∆op,Abr0,8ss ChpAbr0,8sq Abr0,8sˆNMB˚

MH˚
‚

MC˚

C H‚
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Basic theorem (Leinster & Shulman) Call px , yq P X ˆ X an adjacent pair if x ‰ y
and there is no point z ‰ x , y such that dpx , zq ` dpz , yq “ dpx , yq. Then

MH`
1pX q “ Z ¨ tadjacent pairs px , yq | dpx , yq “ `.u



Part II

Enriched groups



Groups with structure

Often a group comes equipped with interesting additional structure. For instance. . .

‚ A partially ordered group is a group G equipped with a partial order ď such
that if g ď h then gk ď hk and kg ď kh for all k P G .

Example Every Coxeter group is partially ordered by the Bruhat order.

‚ A norm on a group G is a function | ´ | : G Ñ R satisfying
‚ |g | ě 0 for all g P G and |e| “ 0
‚ |gh| ď |g | ` |h| for all g , h P G .

Every group norm induces a metric: dpg , hq “ |h´1g |.

Examples Any generating set S Ď G determines a word-length norm on G .

Asao (2023) uses a normed fundamental group to classify metric fibrations.
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Enriched groups

Definition
Let pV,b, I q be a symmetric monoidal category. A group enriched in V, or V-group,
is a one-object V-category whose underlying ordinary category is a group.

If V “ Cat, Poset or Met, a V-group is an object G of
V equipped with V-morphisms

‚ m : G b G Ñ G (multiplication)

‚ e : I Ñ G (selecting the identity element e P G )

G b G b G G b G

G b G G

Idbm

mbId m

m

making these diagrams commute in V è

Example Every group object in a Cartesian category V is a group enriched in pV,ˆq.
But enriched groups are more general.
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Poset-groups and Met-groups

Example Every partially ordered group pG ,ďq is a group enriched in pPoset,ˆq.

Exercise The map p´q´1 : G Ñ G is monotone if and only if g ď h implies g “ h.
So only the trivial partial order makes G a group object in pPoset,ˆq.

Example Every normed group pG , | ´ |q carries a metric specified by

dpg , hq “ |h´1g |.

This gives an enrichment in pMet,ˆ`1q if and only if | ´ | is conjugation-invariant.

Exercise The map pId, p´q´1q : G Ñ G ˆ`1 G is 1-Lipschitz if and only if dpg , hq “ 0
for all g , h. So only the ‘indiscrete’ metric makes G a group object in pMet,ˆ`1q.
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Strict 2-groups

Definition A strict 2-group is a group object in pCat,ˆq.

Theorem (Mac Lane & Whitehead, 1950) Strict 2-groups classify homotopy 2-types.

Strict 2-groups
Spaces X such that
πnpX q “ 0 for n ą 2

Bp´q

»

Example From a normal subgroup N C G we can construct a strict 2-group GN with

‚ objects the elements of the group G

‚ arrows the elements of N ˆ G , with pk , gq : g Ñ kg

‚ the functor m : G ˆ G Ñ G defined on objects by multiplication in G and on
arrows by multiplication in N ˙ G .

Theorem (Mac Lane & Whitehead) For any N C G we have π1pBpGNqq – G{N.
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Iterated magnitude homology



Taking enrichment into account

Observation In each of these examples, G has a ‘second-order’ enrichment.

Strict 2-group Partial ordering Conjugation-invariant norm

Enrichment in
the category of
Set-categories

Enrichment in
the category of
p0 Ñ 1q-categories

Enrichment in
the category of
r0,8s-categories

For these, Mac Lane and Whitehead provide a notion of classifying space.
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The classifying space of a 2-category X

The Duskin or Street approach

Define a simplicial set 4X by

4Xn “ BiCatNLaxprns,Xq.

rns “ p0 Ñ 1 Ñ ¨ ¨ ¨ Ñ nq

bicategories and
normal lax 2-functors

Call the topological space |4X|
the classifying space of X.

The Segal approach

2Cat

TopCat

r∆op,Tops

Top

B˚

BN

|´|

take the classifying space

of each hom-category in X

take the internal nerve

of the Top-category B˚X

geometrically realize

Call BX the classifying space of X.

Theorem (Bullejos & Cegarra, 2003) There’s a natural equivalence BX » |4X|.
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The Segal approach

2Cat

TopCat

r∆op,Tops

Top

B˚

BN

|´|

take the classifying space

of each hom-category in X

take the internal nerve

of the Top-category B˚X

geometrically realize

Call BX the classifying space of X.

Proof Compares both constructions to the diagonal of the bisimplicial ‘double nerve’.



The double magnitude nerve

Let pV,b, I q be semicartesian and Σ : V Ñ A a strong symmetric monoidal functor.

Proposition The magnitude nerve defines a strong symmetric monoidal functor

MBΣ : pVCat,bVq Ñ pr∆op,As ,bpw q

so we can employ it as a size functor.

Definition The double magnitude nerve of a VCat-category X is

MBMBΣ
pXq P r∆op, r∆op,Ass “ r∆op ˆ∆op,As.
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Part IV

Iterated magnitude homology

of enriched groups



The iterated magnitude homology of a Cat-group

A Cat-group G has a category of elements with objects g , h, . . . and morphisms
g

h

α .

Definition The connected components of G are the elements of π0pGq “ obpGq{ „
where „ is the equivalence relation generated by “g „ h if there’s a morphism g ñ h”.

Lemma The set tg | g „ eu is a normal subgroup, so π0pGq is a group.

Theorem We have IMH1pGq “ pπ0pGqqab, the abelianization of π0pGq.

Sketch proof IMH‚pG q is isomorphic to the total homology of this double complex

é

Facts about spectral sequences imply that

IMH1pGq – HhHv pC01q.

Vertical homology imposes the quotient by „.
Horizontal homology abelianizes.
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Normal subgroups and partial orders

Corollary I Let G be a group and N a normal subgroup of G . Then

IMH1pGNq – pG{Nqab .

We can also deduce this from the fact that π1pGNq – G{N via the Hurewicz theorem.

Definition The positive cone of a preordered group pG ,ďq is Pď “ tg P G | e ď gu.
This is a normal subgroup if and only if ď is symmetric.

Corollary II Let G “ pG ,ďq be a partially ordered group. Let „ be the equivalence
relation generated by ď. Then P„ “ tg P G | e „ gu is a normal subgroup of G , and

IMH1pGq – pG{P„qab.
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The iterated magnitude complex of a Met-group

Let G “ pG , dq be a Met-group. Its iterated magnitude complex is r0,8s-graded, with

IMC `npGq “ Z ¨
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g10 ¨ ¨ ¨ gn0

...
...

g1n ¨ ¨ ¨ gnn

fi

ffi
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| gij P G and
n
ÿ

i“1

n´1
ÿ

j“0

dpgij , gi ,j`1q “ `

,

/

.

/

-

.

The boundary map is Bn “
řn´1

k“1p´1qkδk , where

δk
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g1n ¨ ¨ ¨ gkngk`1,n ¨ ¨ ¨ gnn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

if this preserves the sum of the column-lengths, and 0 otherwise.
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The iterated magnitude homology of a Met-group G “ pG , dq

Definition An element g P G is primitive if for all h P G we have

dpg , eq ă dpg , hq ` dph, eq.

Example
For a word metric with respect to S Ď G , the primitive elements are the elements of S .

Theorem
In real grading 0, the magnitude homology of G is the ordinary group homology of G :

IMH0
‚ pGq – H‚pG q.

In real gradings ` ą 0 we have IMH`
0pGq “ IMH`

1pGq “ 0 and

IMH`
2pGq “ Z ¨ tconjugacy classes of primitive elements of norm `u.
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Sketch of the proof for ` ą 0

In each grading ` ą 0, we have IMH`
‚pGq – H‚pTotpC `‚‚qq where C `‚‚ looks like this

é

Since C `02 “ C `20 “ 0, we have

IMH`
2pGq – HhHv pC `11q.

Column 1 is MC `‚pG q for the metric space G , so

Hv pC `11q –

"

adjacent pairs pg , hq
such that dpg , hq “ `

*

.

Exercise Elements g and h are adjacent if and
only if gh´1 is primitive.
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Finally, taking horizontal homology Hh identifies conjugate elements.
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Summary

Various valuable structures on groups are instances of second-order enrichment.

Strict 2-group Partial ordering Conjugation-invariant norm

Enrichment in
the category of
Set-categories

Enrichment in
the category of
p0 Ñ 1q-categories

Enrichment in
the category of
r0,8s-categories

For these, Mac Lane and Whitehead provide a classifying space.

For a group G with a conjugation-invariant norm, IMH‚pG q is sensitive to the topology
of the ordinary classifying space and the geometry of the group under the norm.
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Thank you.
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