Maximum entropy, uniform measure

Emily Roff The University of Edinburgh

ML@CL Seminar Cambridge Computer Laboratory 13th November 2020

Turner

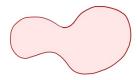
Turner

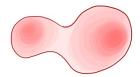
Mondrian

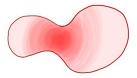
Plan

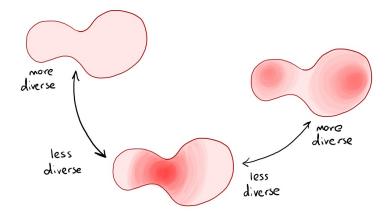
- I. Quantifying diversity
- II. Diversity and entropy
- III. Maximizing entropy
- IV. Uniform measure
- V. Categorical connections

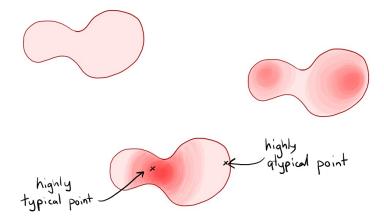
Part I Quantifying Diversity

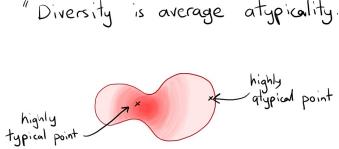












Spaces with similarities

Definition

Let X be a compact Hausdorff topological space.

A similarity kernel on X is a continuous function $K : X \times X \to [0, \infty)$ satisfying K(x, x) > 0 for all $x \in X$.

The pair (X, K) is called a space with similarities.

It's symmetric if K(x, y) = K(y, x) for all $x, y \in X$.

Spaces with similarities

Definition

Let X be a compact Hausdorff topological space.

A similarity kernel on X is a continuous function $K : X \times X \to [0, \infty)$ satisfying K(x, x) > 0 for all $x \in X$.

The pair (X, K) is called a space with similarities.

It's symmetric if
$$K(x, y) = K(y, x)$$
 for all $x, y \in X$.

Example

A compact metric space with metric d has similarity kernel

$$K(x,y)=e^{-d(x,y)}.$$

When $X = \mathbb{R}^d$ this is the Laplace kernel.

Typicality functions

Definition

Let (X, K) be a space with similarities.

For each probability distribution μ on X, and each $x \in X$, define

$$(\kappa\mu)(x) = \int \kappa(x,-) \,\mathrm{d}\mu \in [0,\infty).$$

The function $K\mu: X \to [0, \infty)$ is the typicality function of μ . The atypicality function of μ is $1/K\mu$.

Typicality functions

Definition

Let (X, K) be a space with similarities.

For each probability distribution μ on X, and each $x \in X$, define

$$(\kappa\mu)(x) = \int \kappa(x,-) \,\mathrm{d}\mu \in [0,\infty).$$

The function $K\mu: X \to [0,\infty)$ is the **typicality function** of μ .

The **atypicality function** of μ is $1/K\mu$.

Example

If X is a compact metric space, the typicality function of μ is given by

$$(K\mu)(x) = \int e^{-d(x,y)} \,\mathrm{d}\mu(y).$$

Diversity

Definition

Let (X, K) be a space with similarities, and μ a probability distribution on X. For $q \in [0, \infty)$ not equal to 1, the **diversity of order** q of μ is

$$\mathcal{D}_{q}^{\mathcal{K}}(\mu) = \left(\int \left(rac{1}{\mathcal{K}\mu}
ight)^{1-q} \mathsf{d}\mu
ight)^{1/(1-q)}$$

.

At $q = 1, \infty$ this expression takes its limiting values.

Diversity

Definition

Let (X, K) be a space with similarities, and μ a probability distribution on X. For $q \in [0, \infty)$ not equal to 1, the **diversity of order** q of μ is

$$\mathcal{D}_q^K(\mu) = \left(\int \left(rac{1}{K\mu}
ight)^{1-q} \mathsf{d}\mu
ight)^{1/(1-q)}$$

At $q = 1, \infty$ this expression takes its limiting values.

Example

If X is a compact metric space, then

$$D_q(\mu) = \left(\int \left(\int e^{-d(x,y)} d\mu(x)\right)^{q-1} d\mu(y)\right)^{1/(1-q)}$$

٠

Part II Diversity and Entropy

Diversity on finite sets

Equip the set $X = \{x_1, \ldots, x_n\}$ with the similarity kernel K (a matrix). Let $\mu = (\mu_1, \ldots, \mu_n)$ be a probability distribution on X.

The diversity of order q of μ is

$$D_q^{\mathcal{K}}(\mu) = \left(\sum_{\text{supp}\mu} (\mathcal{K}\mu)_i^{q-1} \mu_i\right)^{1/(1-q)}$$

Diversity on finite sets

Equip the set $X = \{x_1, ..., x_n\}$ with the similarity kernel K = I. Let $\mu = (\mu_1, ..., \mu_n)$ be a probability distribution on X.

The diversity of order q of μ is

$$D_q^{\prime}(\mu) = \left(\sum_{\text{supp}\mu} \mu_i^q\right)^{1/(1-q)} = \exp\left(H_q(\mu)\right)$$

where H_q is the **Rényi entropy** of order q.

Diversity on finite sets

Equip the set $X = \{x_1, ..., x_n\}$ with the similarity kernel K = I. Let $\mu = (\mu_1, ..., \mu_n)$ be a probability distribution on X.

The diversity of order q of μ is

$$D_q^{\prime}(\mu) = \left(\sum_{\text{supp}\mu} \mu_i^q\right)^{1/(1-q)} = \exp\left(H_q(\mu)\right)$$

where H_q is the **Rényi entropy** of order q.

In particular,

$$D_1^I(\mu) = \exp\left(-\sum \mu_i \log \mu_i\right) = \exp(\operatorname{Shannon}(\mu)).$$

Entropy in ecology

To ecologists, $\exp(H_q(\mu))$ is known as the **Hill number** of order q.

The Hill numbers are used as measures of ecological diversity.

Strategy Model an ecological community by a set of species X and a distribution μ on X, representing the relative abundances of species.

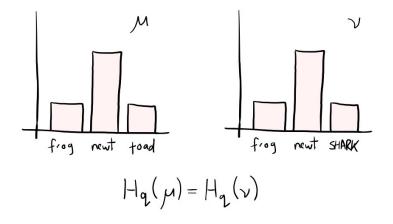
Then take the Hill number

$$\exp(H_q(\mu)) = D'_q(\mu)$$

to quantify the 'diversity' of the community.

Entropy in ecology

Problem The Hill numbers don't see similarities between species.



Similarity-sensitive diversity

Solution (Cobbold and Leinster, 2012)

Record pairwise similarities of the species in a matrix, K. Define the **similarity-sensitive diversity of order** q to be

$$D_q^{\mathcal{K}}(\mu) = \left(\sum_{\mathrm{supp}\mu} (\mathcal{K}\mu)_i^{q-1} \mu_i\right)^{1/(1-q)}$$

.

This is where our diversity measures originate.

Similarity-sensitive diversity

Solution (Cobbold and Leinster, 2012)

Record pairwise similarities of the species in a matrix, K. Define the **similarity-sensitive diversity of order** q to be

$$D_q^{\mathcal{K}}(\mu) = \left(\sum_{\mathrm{supp}\mu} (\mathcal{K}\mu)_i^{q-1} \mu_i\right)^{1/(1-q)}$$

.

This is where our diversity measures originate.

For example,

$$D_2^K = \frac{1}{\text{expected similarity of two individuals chosen at random}}$$

while
$$D_2^I = \frac{1}{\text{probability that they're of the same species}}.$$

Similarity-sensitive entropy

In the general setting of a space with similarities, we define

entropy := log(diversity).

Definition

Let (X, K) be a space with similarities, and μ a distribution on X. For $q \in [0, \infty]$, the entropy of order q of μ is $H_q^K(\mu) = \log D_q^K(\mu)$.

Similarity-sensitive entropy

In the general setting of a space with similarities, we define

entropy := log(diversity).

Definition

Let (X, K) be a space with similarities, and μ a distribution on X. For $q \in [0, \infty]$, the entropy of order q of μ is $H_q^K(\mu) = \log D_q^K(\mu)$.

Example

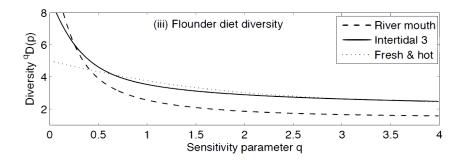
If X is a compact metric space, then

$$H_1(\mu) = -\int \log\left(\int e^{-d(x,y)} d\mu(x)\right) d\mu(y).$$

Part III

Maximizing Diversity and Entropy

The parameter q matters!

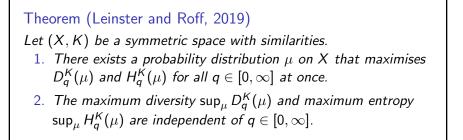


Leinster and Cobbold, Measuring Diversity..., Ecology 93 (2012)

A maximum entropy theorem

Theorem (Leinster and Roff, 2019) Let (X, K) be a symmetric space with similarities. 1. There exists a probability distribution μ on X that maximises D^K_q(μ) and H^K_q(μ) for all q ∈ [0,∞] at once. 2. The maximum diversity sup_μ D^K_q(μ) and maximum entropy sup_μ H^K_q(μ) are independent of q ∈ [0,∞].

A maximum entropy theorem



- If μ maximises H_q^K for one q, it maximises for all q.
- In general μ need not be unique, but if K is positive-definite, it is.
- So every compact subset of ℝⁿ has a unique distribution of maximum entropy. For almost all sets, we don't know what it is!

New invariants

Definition

Let (X, K) be a symmetric space with similarities. The **maximum diversity** of X is

$$D_{\mathsf{max}}(X) = \sup_{\mu} D_q(\mu)$$
 for any q .

The **maximum entropy** of X is

$$H_{\max}(X) = \log D_{\max}(X).$$

A distribution attaining the supremum is called maximising.

Part IV

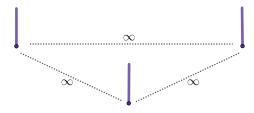
Uniform Distributions

A maximising measure

Take a finite set X, and K = I. Then

$$D_{\max}(X) = \sup D'_1 = \sup(\exp(\operatorname{Shannon}))$$

which is uniquely attained by the uniform distribution.



A maximising measure

Take a finite set X, and K = I. Then

$$D_{\sf max}(X) = \sup D_1^I = \sup(\exp({\sf Shannon}))$$

which is uniquely attained by the uniform distribution.

This no longer holds when $K \neq I$.

Balance

Maximising distributions possess a different sort of 'evenness', which is responsive to the geometry of the space.

Balance

Maximising distributions possess a different sort of 'evenness', which is responsive to the geometry of the space.

A distribution μ on X is **balanced** if $K\mu$ is constant on supp (μ) .

Lemma

Any maximising distribution is balanced.

Balance

Maximising distributions possess a different sort of 'evenness', which is responsive to the geometry of the space.

A distribution μ on X is **balanced** if $K\mu$ is constant on supp (μ) .

Lemma

Any maximising distribution is balanced.

Example

If an ecological community is maximally diverse, then all the species present must be equally typical.

Consider $[0, r] \subset \mathbb{R}$. Its maximising distribution is

$$\mu = \frac{\delta_0 + \lambda_{[0,r]} + \delta_r}{2+r}$$

Scale the space by t > 0. The maximising distribution on [0, tr] is

$$\mu_t = \frac{\delta_0 + t\lambda_{[0,tr]} + \delta_r}{2 + tr}$$

Scale the space by t > 0. The maximising distribution on [0, tr] is

$$\mu_t = \frac{\delta_0 + t\lambda_{[0,tr]} + \delta_r}{2 + tr}$$

Scale the space by t > 0. The maximising distribution on [0, tr] is

$$\mu_t = \frac{\delta_0 + t\lambda_{[0,tr]} + \delta_r}{2 + tr}.$$

Scale the space by t > 0. The maximising distribution on [0, tr] is

$$\mu_t = \frac{\delta_0 + t\lambda_{[0,tr]} + \delta_r}{2 + tr}.$$

Uniform distribution

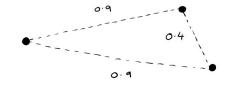
Given a metric space X and any $t \in [0, \infty)$, write tX for the space X after its distances have been scaled by t.

Definition

Let X be a compact metric space. Suppose tX has a unique maximising distribution μ_t for all $t \gg 0$, and that $\lim_{t\to\infty} \mu_t$ exists in P(X).

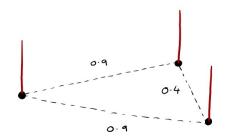
Then the **uniform distribution** on X is

 $\mu_X = \lim_{t \to \infty} \mu_t.$



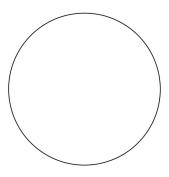
Proposition

On a finite metric space, the uniform measure is the uniform measure.



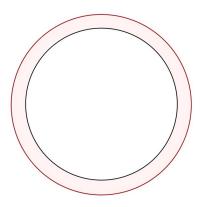
Proposition

On a finite metric space, the uniform measure is the uniform measure.



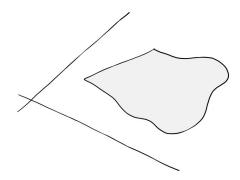
Proposition

On a homogeneous space, the uniform measure is the Haar measure.



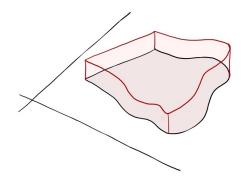
Proposition

On a homogeneous space, the uniform measure is the Haar measure.



Proposition

On a compact subset of \mathbb{R}^n with nonzero volume, the uniform measure is normalised Lebesgue measure.



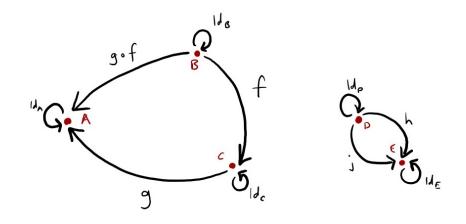
Proposition

On a compact subset of \mathbb{R}^n with nonzero volume, the uniform measure is normalised Lebesgue measure.

Part V

Categorical Connections

Ordinary categories



Ordinary categories

A category A consists of

- (Objects) A set ob (A)
- (Morphisms) For each $A, B \in \mathsf{ob}(\mathsf{A})$ a set $\mathsf{Hom}(A, B)$
- (Identities) For each $A \in \mathsf{ob}(\mathbf{A})$ a function $\{*\} \to \mathsf{Hom}(A, A)$
- (Composition) For each $A, B, C \in ob(\mathbf{A})$ a function

 $\operatorname{Hom}(A, B) \times \operatorname{Hom}(B, C) \to \operatorname{Hom}(A, C).$

Ordinary categories

A category A consists of

- (Objects) A set ob (A)
- (Morphisms) For each $A, B \in ob(A)$ a set Hom(A, B)
- (Identities) For each $A \in ob(\mathbf{A})$ a function $\{*\} \rightarrow Hom(A, A)$
- (Composition) For each $A, B, C \in ob(\mathbf{A})$ a function

$$\operatorname{Hom}(A, B) \times \operatorname{Hom}(B, C) \to \operatorname{Hom}(A, C).$$

Idea

Why not replace sets and functions with something more interesting? All we really need is a 'multiplication' like \times with a 'unit' like {*}.

Enriched categories

Let ${\mathcal V}$ be a category with a monoidal product \otimes and unit ${\it I}.$

A $\mathcal V\text{-}\textbf{category}~\textbf{A}$ consists of

- (Objects) A set ob (A)
- (Morphisms) For each $A, B \in \mathsf{ob}(\mathsf{A})$ an object of \mathcal{V} , $\mathsf{Hom}(A, B)$
- (Identities) For each $A \in \mathsf{ob}(\mathbf{A})$ an arrow in \mathcal{V} , $I \to \mathsf{Hom}(A, A)$
- (Composition) For each $A, B, C \in ob(\mathbf{A})$ an arrow in \mathcal{V} ,

 $\operatorname{Hom}(A, B) \otimes \operatorname{Hom}(B, C) \to \operatorname{Hom}(A, C).$

Enriched categories

Let ${\mathcal V}$ be a category with a monoidal product \otimes and unit ${\it I}.$

A $\mathcal V\text{-}\textbf{category}~\textbf{A}$ consists of

- (Objects) A set ob (A)
- (Morphisms) For each $A, B \in \mathsf{ob}(\mathsf{A})$ an object of \mathcal{V} , $\mathsf{Hom}(A, B)$
- (Identities) For each $A \in \mathsf{ob}(\mathbf{A})$ an arrow in \mathcal{V} , $I \to \mathsf{Hom}(A, A)$
- (Composition) For each $A, B, C \in ob(\mathbf{A})$ an arrow in \mathcal{V} ,

 $\operatorname{Hom}(A,B)\otimes\operatorname{Hom}(B,C)\to\operatorname{Hom}(A,C).$

Examples

- If $\mathcal{V} = (\bot \to \top, \land)$, a \mathcal{V} -category is a preorder.
- If $\mathcal{V} = (\text{Vect}, \otimes)$, a one-object \mathcal{V} -category is an associative algebra.

$[0,\infty)$ -categories

Let $\mathcal{V} = [0, \infty)$. It's a category: there's an arrow $x \to y$ if and only if $x \ge y$. It has a monoidal product + with unit 0.

- A $[0,\infty)$ -category X consists of
 - (Objects) A set **X**
 - (Morphisms) For each $x, y \in \mathbf{X}$ a number $d(x, y) \in [0, \infty)$
 - (Identities) For each $x \in \mathbf{X}$ an inequality $0 \ge d(x, x)$
 - (Composition) For each $x, y, z \in \mathbf{X}$ an inequality,

$$d(x,y)+d(y,z)\geq d(x,z).$$

$[0,\infty)$ -categories

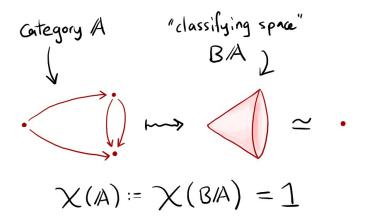
Let $\mathcal{V} = [0, \infty)$. It's a category: there's an arrow $x \to y$ if and only if $x \ge y$. It has a monoidal product + with unit 0.

- A $[0,\infty)$ -category X consists of
 - (Objects) A set **X**
 - (Morphisms) For each $x, y \in \mathbf{X}$ a number $d(x, y) \in [0, \infty)$
 - (Identities) For each $x \in \mathbf{X}$ an inequality $0 \ge d(x, x)$
 - (Composition) For each $x, y, z \in \mathbf{X}$ an inequality,

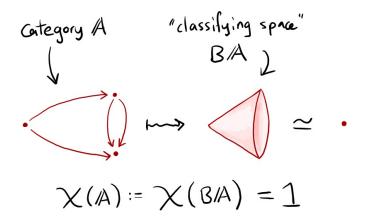
$$d(x,y)+d(y,z)\geq d(x,z).$$

Moral A $[0,\infty)$ -category is a generalized metric space.

The Euler characteristic of a category



The Euler characteristic of a category



Questions

- What is the Euler characteristic of an enriched category?
- What is the Euler characteristic of a metric space?

The magnitude (or Euler characteristic) of a metric space

Let X be a compact metric space.

Definition

A weighting on X is a signed measure ν such that $K\nu \equiv 1$.

If X possesses a weighting ν , the magnitude of X is

 $\chi(X) := \nu(X).$

The magnitude (or Euler characteristic) of a metric space

Let X be a compact metric space.

Definition

A weighting on X is a signed measure ν such that $K\nu \equiv 1$.

If X possesses a weighting ν , the **magnitude** of X is

 $\chi(X) := \nu(X).$

Now let μ be a maximum entropy distribution on X. We know it's balanced: $K\mu|_{supp \ \mu} \equiv c$ for some constant c. So its restriction to supp μ is proportional to a weighting, $\hat{\mu} = \frac{1}{c}\mu$.

Theorem

 $D_{\max}(X) = \chi(\text{supp } \mu)$ for any maximising measure μ .

Bibliography

- Leinster and Cobbold, *Measuring diversity: the importance of species similarity*. Ecology 93 (2012).
- Leinster and Meckes, *Maximizing diversity in biology and beyond*. Entropy 18(3) (2016).
- Leinster and Meckes, *The magnitude of a metric space: from category theory to geometric measure theory*. Nicola Gigli (ed.), Measure Theory in Non-Smooth Spaces, de Gruyter Open, (2017).
- Leinster and Roff, *The maximum entropy of a metric space*. arXiv:1908.11184 (2019).