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To magnitude homology, all the directed cycles look different.
To GLMY path homology, Z, looks ‘contractible’ and all the rest look ‘circle-like’.

To reachability homology, every directed cycle looks ‘contractible’.



The category of directed graphs

Definition A directed graph X consists of
® a set of vertices V(X
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A map of graphs X — Y is a function
V(X) — V(Y) that preserves or contracts edges.

These form the category DiGraph.
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The category of directed graphs

Definition A directed graph X consists of
® a set of vertices V(X
(X) -

® aset of edges E(X) < V(X) x V(X). *
o

A map of graphs X — Y is a function
V(X) — V(Y) that preserves or contracts edges. ° X
L)

These form the category DiGraph.

Example For m < n, the only maps of graphs Z,, — Z, are the n constant maps.
There are many maps Z, — Z,, obtained by contracting edges.

Definition The shortest path metric on X is the distance function
d(x,x’) = min{n | there is a path x = xg — x1 — -+ — x, = x" in X}

or d(x,x") = o0 if no such path exists.



The reachability complex of a directed graph

Definition (Hepworth & R., 2023) The reachability complex of a digraph X is
RCk(X) = R-{(x0,x1,.-.,Xxk) | Xi—1 # xi and d(xj_1,x;) < oo for every i}
with differential d(xp, ..., xk) = D(—=1) (X0, ..., Xy ..., Xk).

The reachability homology of X is RH.(X) = H.(RC(X)).



The reachability complex of a directed graph

Definition (Hepworth & R., 2023) The reachability complex of a digraph X is

RCk(X) = R-{(x0,x1,.-.,Xxk) | Xi—1 # xi and d(xj_1,x;) < oo for every i}

. . . i ~ X
with differential d(xg, ..., xx) = D.(=1)" (X0y -y Xiy« -+, Xk)- . e
The reachability homology of X is RH.(X) = H.(RC(X)). T 2/ \\i B
RC,(X) can be filtered by the length of its generators: w® /

k
F;(RCk(X)) =R {(Xg,xl, e ,Xk) | Xj_1 # x; for every i, and Z d(X,',l,X,') < E} .
i=1

Example (w,x, z) is a generator of F3(RCy(Zs)) but not of Fo(RCy(Zs)).
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Definition (Di et al, 2023) The magnitude-path spectral sequence (MPSS) of a
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The magnitude-path spectral sequence

Definition (Di et al, 2023) The magnitude-path spectral sequence (MPSS) of a
digraph X is the spectral sequence E°*(X) associated to (RC,(X), Fy).

Observation (Hepworth & Willerton, 2015)

PHoo PH11 PHa2 PH33
E(X) is the magnitude homology MH,.(X).

Theorem (Asao, 2022) PHoy  PHi  PHy

E2(X) contains the GLMY path homology of X. PHp  PHys

Definition
E?(X) is the bigraded path homology PH....(X).

PHos

By construction E*(X) = RH.(X) under mild conditions on X.
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A chain map ¢: C, — D, is filtered if ¢(F;C,) < F;D, for every £.

Functoriality A filtered chain map ¢: C, — D, induces a map of spectral sequences
E*(¢): E*(C) — E*(D)

i.e. for every r a map of bigraded chain complexes E"(¢): E"(C) — E"(D).

Definition Let ¢,1: Cy — D, be filtered chain maps. A chain homotopy h: ¢ —
is called a chain r-homotopy if h(F;D.) < Fy.,D, for every £.

Homotopy invariance If there exists a chain r-homotopy from ¢ to 1, then E"(¢)
and E"(¢) are chain homotopic and E*(¢) = E*(¢)) for all s > r.

Moral We can talk about degrees of homotopy equivalence for filtered complexes.
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Functoriality Every map of graphs f: X — Y induces a map of spectral sequences
E*(f): E*(X) — E*(Y).
Fix r e N. We say there there is an r-homotopy from f to g, and write ¥ v, g, if

d(f(x),g(x)) < rforall x e X.

Theorem (Asao, 2023) If f v, g then ES(f) = ES(g) for all s > r.
Proof. Standard constructions give a chain r-homotopy RC.(f) — RC.(g). O

Corollary Bigraded path homology, like GLMY homology, is 1-homotopy invariant.

Moral We can talk about degrees of homotopy equivalence for digraphs.
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Degrees of homotopy equivalence

Definition Digraphs X and Y are r-homotopy equivalent, and write X ~, Y/, if
there exist maps f: X 2 Y : g such that

[ ]
® gof isrelated to Idx by a zig-zag of r-homotopies, and . {; \%
® fogisrelated to Idy by a zig-zag of r-homotopies. [ \3\ \::i y
2T
Corollary If X ~, Y, then E*(X) =~ E*(Y) for all s > r. * '/\ /’4

Lemma If X has diameter D, then X ~p e and E"(X) is trivial for all r > D.

Proof. The self-map constant at any vertex v in X is D-homotopic to Idx. O

Example Fix reN. Then Z, ~, eforn<r+1, and Z, %, Z,forr+1 < m < n.
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E"(Zy) is trivial for every m <

Example
Directed cycles
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r,and E"(Z,) # E"(Z,) for r < m < n.



Example
Directed cycles

S e D T
Theorem (Hepworth & R., 2024)

E"(Zp) is trivial for every m < r, and E"(Z,) % E"(Z,) for r < m < n.
In particular, bigraded path homology distinguishes the directed m-cycles for all m = 2.



Infinitely many homology theories!

Basic observation
For each r > 0, page E"(—) of the MPSS is a functor DiGraph — ModIEXN.

Theorem (Asao, 2023)
For each r > 0, page E"(—) of the MPSS is invariant under r-homotopy equivalences.



Infinitely many homology theories!

Basic observation
For each r > 0, page E"(—) of the MPSS is a functor DiGraph — ModIEXN.

Theorem (Asao, 2023)
For each r > 0, page E"(—) of the MPSS is invariant under r-homotopy equivalences.

Theorems (Hepworth & R., 2024)



Infinitely many homology theories!

Basic observation
For each r > 0, page E"(—) of the MPSS is a functor DiGraph — ModIEXN.

Theorem (Asao, 2023)
For each r > 0, page E"(—) of the MPSS is invariant under r-homotopy equivalences.

Theorems (Hepworth & R., 2024)

® Every page E"(—) satisfies a Kiinneth theorem with respect to the box product.



Infinitely many homology theories!

Basic observation
For each r > 0, page E"(—) of the MPSS is a functor DiGraph — ModIEXN.

Theorem (Asao, 2023)
For each r > 0, page E"(—) of the MPSS is invariant under r-homotopy equivalences.

Theorems (Hepworth & R., 2024)
® Every page E"(—) satisfies a Kiinneth theorem with respect to the box product.

* Every page E'"(—) satisfies an excision theorem with respect to the class of
subgraph inclusions that Carranza et al call cofibrations.



Infinitely many homology theories!

Basic observation
For each r > 0, page E"(—) of the MPSS is a functor DiGraph — ModIEXN.

Theorem (Asao, 2023)
For each r > 0, page E"(—) of the MPSS is invariant under r-homotopy equivalences.

Theorems (Hepworth & R., 2024)
® Every page E"(—) satisfies a Kiinneth theorem with respect to the box product.

® Every page E"(—) satisfies an excision theorem with respect to the class of
subgraph inclusions that Carranza et al call cofibrations.

e Like simplicial homology, every page E"(—) preserves filtered colimits.*

* This result is also in Di et al (2023); we give an alternative and more explanatory proof.



Infinitely many homology theories!

Basic observation
For each r > 0, page E"(—) of the MPSS is a functor DiGraph — ModIEXN.

Theorem (Asao, 2023)
For each r > 0, page E"(—) of the MPSS is invariant under r-homotopy equivalences.

Theorems (Hepworth & R., 2024)
® Every page E"(—) satisfies a Kiinneth theorem with respect to the box product.

® Every page E"(—) satisfies an excision theorem with respect to the class of
subgraph inclusions that Carranza et al call cofibrations.

e Like simplicial homology, every page E"(—) preserves filtered colimits.*

Corollary These results hold for magnitude homology & bigraded path homology.

* This result is also in Di et al (2023); we give an alternative and more explanatory proof.
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Bigraded path homology



The Kunneth Theorem

The box product of X and Y is the digraph X o Y with
* vertices (x,y) € V(X) x V(Y)
° anedge (x,y) > (X,y)ifx=x"inXandy >y orx—>x"andy=y"inY.
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The Kunneth Theorem

The box product of X and Y is the digraph X o Y with
* vertices (x,y) € V(X) x V(Y)
° anedge (x,y) > (X,y)ifx=x"inXandy >y orx—>x"andy=y"inY.

Theorem (Hepworth & R., 2024)
Fix a ground ring R which is a field. Then we have

ewenaemor | 1|
L

for every r = 1. In particular,
® MH, (X oY) = MH, .(X)®MH, .(Y)
® PH, (X oY) =PH,.(X)®PH. .(Y).

A subtler statement holds when Risa PI1D. = +-------cc----- !



Cofibrations

Let A< X be an induced subgraph. The reach of A is the induced subgraph rA with

V(rA) = {x € V(X) | there exists a path from A to x}.
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Let A< X be an induced subgraph. The reach of A is the induced subgraph rA with

V(rA) = {x € V(X) | there exists a path from A to x}.

Definition (Carranza et al, 2022)
A cofibration is an inclusion A »— X such that:
1. There are no edges from X\A to A.
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Cofibrations

Let A< X be an induced subgraph. The reach of A is the induced subgraph rA with

V(rA) = {x € V(X) | there exists a path from A to x}.

Definition (Carranza et al, 2022)
A cofibration is an inclusion A »— X such that:
1. There are no edges from X\A to A.

d(a,x) = d(a,n(x)) + d(7(x), x) i /

2. There is a function w: V(rA) — V/(A) satisfying o« T .
\ \
[ ] \
for every a€ V(A) and x € V(rA). . A e
yae V(A) (rA) A

Example A — Cone(A) is always a cofibration. L ________________ ‘
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’I lj i: A X is a cofibration. Then j is a cofibration and the
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The Excision Theorem

Theorem (Hepworth & R., 2024)

A vy Suppose we have a pushout of directed graphs in which
{ lj i: A X is a cofibration. Then j is a cofibration and the
induced map E[ (X, A) — E[ (X uaY,Y)isan

g
X —— XuaY  isomorphism for every r = 1. In particular,
MH, (X, A) = MH, (X Ua Y, Y) and PH,.(X,A) = PH, (X Ua Y, Y).

Proof sketch. Since a map inducing an isomorphism on E* will induce an

isomorphism on E” for all r > 1, it's enough to prove it for MH,. ,.(—). For MH, ,(—

we adapt the proof of the excision theorem in Hepworth & Willerton (2017).

)

O



The Mayer—Vietoris Theorem

f

Theorem (Hepworth & R., 2024) —r

Given a pushout of digraphs in which i: A— X is a
cofibration, there is a split short exact sequence in
magnitude homology

-

f

L)XU

—< >

Y

x
>

0 — MH. . (A) Linh), MH, «(X) @ MH,. ..(Y) Exis, MH, «(XuaY)—0
and a long exact sequence in bigraded path homology

ey —he). PH.«(X) @ PH.(Y) Ex Ok, PH, «(X Ua Y)

Ox
PH. 1 4(A) —— PHy—14+(X) @ PH.(Y) —— PH._1x(X ua Y) — - --

e —> PH*7*(A)



Example

Spheres

Definition For each n > 0, let S” be the face poset of the cell-decomposition of the
n-sphere into hemispheres. Let S* be the colimit of S® «<» St < ... < §" s ...,



Example

Spheres

Theorem (Hepworth & R., 2024)
Let n > 1. Then PHy 4(S") = 0 for k # £, while

R itk=0,n
0 otherwise.

PHk7k(Sn) =~ {



Example

Spheres
Theorem (Hepworth & R., 2024) 77777 /\ 777777777777777777777777777
Let n> 1. Then PHy ¢(S") = 0 for k # ¢, while N
R itk=0,n
PHy «(S") = ’
k(87 {O otherwise. I 7777777777 o l 7777777777
N

Proof sketch. S" is the pushout of the maps /;IZ%\\ P (/;
Cone(S"1) «<S" 1 — o. Write down the L nea

Mayer—Vietoris sequence and use the fact that
Cone(S" 1) ~; e to see that PHy ¢(S") = PHk,l,g(S"*l). Now induct on n.



Filtered colimits and the infinite sphere

Question The infinite topological sphere is contractible. What about S*7?
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Every page of the MPSS is a finitary functor: it preserves filtered colimits.



Filtered colimits and the infinite sphere

Question The infinite topological sphere is contractible. What about S*7?

Theorem (Hepworth & R., 2024; Di et al, 2023)
Every page of the MPSS is a finitary functor: it preserves filtered colimits.

Corollary Bigraded path homology sees S® as contractible:

R k=/¢=0
PH, ,(S®) =
k’g( ) {0 otherwise.

Proof.  Since PH, .(—) is finitary, we have
Pij(SOO) = PHk,g(COHm N(Sn)) =~ colim N(PH&@(S")).

For each n, the map ix: PHy o(S") — PHy o(S™*) is zero except when k = ¢ = 0.
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A little formal homotopy theory



A new cofibration category of directed graphs

A cofibration category is ‘one half of a model category’. It is a category equipped
with two distinguished classes of morphisms: - 1

o —> 06— 0

® weak equivalences X = Y | /‘ /‘ /‘ |
e cofibrations A — X i ° . . !
satisfying several axioms. i \/' Ay/‘ AY/' 3
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A new cofibration category of directed graphs

A cofibration category is ‘one half of a model category’. It is a category equipped
with two distinguished classes of morphisms: - 1

o —> 06— 0

® weak equivalences X = Y | /‘ /‘ /‘ |
e cofibrations A — X i ° ° . !

satisfying several axioms. \ ° > ® JY .
SN A/
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Theorem (Hepworth & R., 2024)

DiGraph carries a cofibration category structure in which
® weak equivalences are maps inducing isomorphisms on bigraded path homology;
* cofibrations are those defined in Carranza et al (2023).

This structure is strictly finer than that for GLMY homology given by Carranza et al.

Proof. Combines all the homological properties of bigraded path homology. O
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Towards a nested family of structures

Question

Most of the homological properties of PH.., and MH,. hold for all pages of the MPSS.
Is there a cofibration category structure associated to every page?

Obstruction
Our proof of Mayer—Vietoris holds only for PH,, and MH..,.

Recall A cofibration is a subgraph inclusion A — X such that:
1. There are no edges from X\A to A.

2. There is a function m: V(rA) — V/(A) satisfying
d(a,x) = d(a,m(x)) + d(n(x), x) for every ae V(A) and x € V(rA).



Towards a nested family of structures

Question

Most of the homological properties of PH.., and MH,. hold for all pages of the MPSS.
Is there a cofibration category structure associated to every page?

Obstruction
Our proof of Mayer—Vietoris holds only for PH,, and MH..,.

Definition A short cofibration is a subgraph inclusion A — X such that:
1. There are no edges from X\A to A.

2. There is a map of graphs 7: rA — A satisfying
d(a,x) = d(a,7(x)) + d(n(x), x) for every ae V(A) and x € V(rA).



A conjecture

Conjecture DiGraph has a nested family of oco-many cofibration category structures:

® A weak equivalence at level r is a map f: X — Y inducing an isomorphism on
page E'! of the magnitude-path spectral sequence.

® A cofibration at any level is a short cofibration.

These structures are all distinct: at level m, the cycle Z,, ‘becomes contractible’.

. \ /\ [/Z\
N / \/ e/



Conclusions

For directed graphs, homotopy equivalence is a matter of degree: for each r e N
we can define r-homotopy equivalence for digraphs, getting weaker as r grows.

For each r € N, page E" of the magnitude-path spectral sequence is an
r-homotopy invariant of directed graphs and has good homological properties.

Page E? is bigraded path homology. It shares the homotopy invariance of GLMY
homology, but is strictly finer: it distinguishes directed cycles of different lengths.

The spectral sequence is a useful tool to prove results about MH,. ..(—), PHy ..(—)
and GLMY homology.

Eventually, we hope it will cast more light on the homotopy theory of digraphs.



Thank you.
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