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® A is a closed symmetric monoidal abelian category with a rank function
rk : ob(A) — R
® ¥ :V — Ais a strong symmetric monoidal functor such that
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Then we say ¥ is a size functor categorifying #.
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Definition (Leinster & Shulman, 2017)
The magnitude nerve of a V-category X is given for n € N by

MBI(X)= P IX(x0,x1)® - ®IX(Xn—1,%n)

X0s---sXnEX

with face maps ¢’ induced by composition in X and terminal maps in V.

Eg IfX=7Z--:Set — Ab, for X € Cat, MBX(X) =Z-{xg — x1 — -+ — xp in X}.
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Definition (Leinster & Shulman, 2017)
The magnitude complex of X has MC*(X) = MBZX(X), with boundary maps

On = > (=1)'6" : MCF(X) — MCx_(X).
i=0
The magnitude homology of X is the homology of MC*(X).
E.g. For X € Cat, MH,(X) is the homology of the classifying space BX.
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Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017)
Under finiteness conditions, MH* categorifies magnitude for V-categories:

X(MH®(X)) := ) (=1)'tk(MHF (X)) = Mag.4(X).

i=0

Theorem (Leinster & Shulman, 2017; Kaneta & Yoshinaga, 2018)

uniqueness of

geodesics
holes & their sizes
magnitude . i
gnt magnitude homology convexity
of a metric space cardinality
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The magnitude nerve as a size functor

Proposition

The magnitude nerve defines a strong symmetric monoidal functor
MB* : (VCat,®y) — ([A%, A], ®pw)-

Corollary (Kinneth Theorem)

Suppose A = Modg for R a P.I.D., and let X € VCat be such that MC*(X) is flat.
Then given any V-category Y, there is for each n € N a natural short exact sequence

0 — @ MHE(X) ®r MHE  (Y) — MHE(X @y Y)
k
— @ Tor (MHE(X), MHE_k_l(Y)) - 0.
k

The sequence splits, but the splitting is not natural.



Iterating magnitude homology

>N .
2vCat MB, [nop  pop ] BB, [a0p A] —C s Ch(A) —Hes AN

\/

MB?
Definition
The (iterated) magnitude nerve of a VCat-category X is

MB2(X) = diag (MBMBZ(X)> .



Iterating magnitude homology

MH?

mMBME® o o o 9 . N
2VCat —— [A% x AP A] —= [A°P,A] —— Ch(A) —— A

\/

MB?
Definition
The (iterated) magnitude nerve of a VCat-category X is

MB2(X) = diag (MBMBZ(X)> .
The (iterated) magnitude homology of X is

MH?(X) = H,C(MB?(X)).



Iterating magnitude homology

MH?

mAN
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Definition
The (iterated) magnitude nerve of a VCat-category X is

MB2(X) = diag (I\/IBMBZ(X)> .
The (iterated) magnitude homology of X is
MH?(X) = H,C(MB?(X)).

When V = Set, repeated iteration lets us define MH! : nCat — AbY.
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The classifying space of a 2-category X

The Segal approach

o 2Cat
take the classifying space
of each hom-category in X Br
TopCat
take the nerve of the
Top-category B, X N
[ A%, Top]
geometrically realize |—|
Top

Call BX the classifying space of X.

The Duskin or Street approach

Define a simplicial set AX by

[n=0—->1—-—n)

AX, = BiCatNLaX([n],X).

bicategories and
normal lax 2-functors

Call the topological space |AX]
the classifying space of X.

Theorem (Bullejos & Cegarra, 2003) There's a natural equivalence BX ~ |AX].
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MH? categorifies iterated magnitude

Lemma
For any 2-category X, MH?(X) is the homology of the classifying space of X.

Proof is via the description of BX in Bullejos & Cegarra (2003). O

Theorem
For any finite enough 2-category X we have x(MH?(X)) = Magpag (X).

Proof Tanaka (2014) showed x(|AX|[) = Magp,¢(X). Combine with the lemma.  [J

Theorem
For any finite enough locally metric category X we have x(MH?(X)) = Magpag (X).

Proof uses facts about spectral sequences, plus linear algebra. O
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The magnitude nerve of a locally metric category

MH?

MetCat VB, [A0p 5 Aop. AbE+] 928, [p0p ApE+] €y CL(ABR+) ey ApRexN
[ ; ] [A°P, ] ( )

\/

MB?

For a Met-category X the magnitude nerve is given in degrees n€ N and £ € R, by

foo fio fa—1.0 .
o N S VT e g
Z - X0 X T X2 ot Xpe1 7 Xn | Z Z d(fpq, fp,q+1) =L
\\:_/\ \\_/\ u p=0g=0
fon fin fnfl,n
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Gaps in a locally metric category

A gap of width /7 in X is an equivalence class of irreducible pairs of arrows: T};

hof G

®_> A pair is reducible if

hog ® we can tighten it by composing with another arrow
¢ » if (f,g) can't be tightened, call it tight
x@y ® or we can bridge it with an arrow strictly between f and g

» if (f,g) can't be bridged, call it adjacent

® or we can split it into two strictly smaller pairs
TN T . , . . .
x <tz <ty » if (f,g) can't be split, call it simple.
N N

A gap is a class of simple, tight, adjacent pairs under the equivalence relation gen'd by

f hof fok

X@y ~ x®z and W@y ~ x@y

G hog gok



The magnitude homology of a locally metric category

Theorem
Let X be a locally metric category in which all the hom-spaces are separated.

In real grading 0, the magnitude homology of X is the homology of its underlying
ordinary category X:

MH?(X) = H,(X).

In real gradings ¢ > 0, the first three magnitude homology groups are given by

Z - {gaps of width ¢ in X} k = 2.



more speculative

Z

Questions

. What do other choices of & : R, — A give us? For instance, those

related to persistent homology—see Otter (2018).

. Can the iterated magnitude nerve be adapted to give a sensible nerve

for approximate categorical structures?

. If so, can homological tools be used to distinguish locally metric

categories among approximate categorical structures?

. If so, might such tools help detect categorical structure in real-world

systems?
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