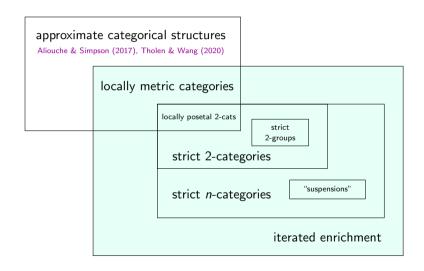
Magnitude homology and iterated enrichment

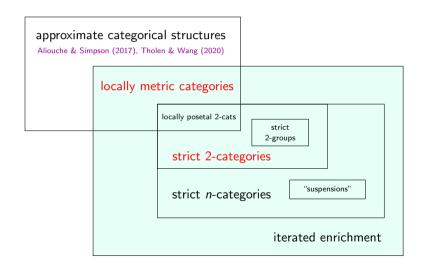
Emily Roff
The University of Edinburgh

CT20→21 Genova

Why think about iterated enrichment?



Why think about iterated enrichment?



Plan

I. Magnitude homology

II. Iterating magnitude homology

III. The magnitude homology of a locally metric category

Part I

Magnitude homology

Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, ...)

Finite categories: magnitude is a generalized Euler characteristic

Finite metric spaces: magnitude is "effective number of points"

Compact metric spaces: magnitude knows volume, surface area, Euler characteristic...

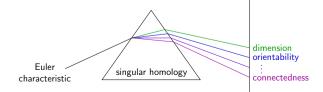
notion of 'size' for objects in $\mathcal V$ \longrightarrow $\boxed{ m{magnitude} }$ \longrightarrow for $\mathcal V$ -categories

Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, ...)

Finite categories: magnitude is a generalized Euler characteristic

Finite metric spaces: magnitude is "effective number of points"

Compact metric spaces: magnitude knows volume, surface area, Euler characteristic. . .



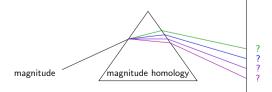
notion of 'size' o $oxed{ extbf{magnitude}} o$ notion of 'size' for objects in $\mathcal V$ -categories

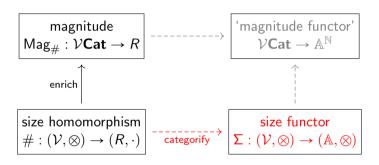
Examples (Leinster, Willerton, Meckes, Carbery, Gimperlein, ...)

Finite categories: magnitude is a generalized Euler characteristic

Finite metric spaces: magnitude is "effective number of points"

Compact metric spaces: magnitude knows volume, surface area, Euler characteristic. . .





Suppose R is a ring and

ullet ${\cal V}$ is a semicartesian monoidal category with a size homomorphism

$$\#: (\mathsf{ob}(\mathcal{V}), \otimes) \to (R, \cdot)$$

Suppose R is a ring and

ullet ${\cal V}$ is a semicartesian monoidal category with a size homomorphism

$$\#: (\mathsf{ob}(\mathcal{V}), \otimes) \to (R, \cdot)$$

• A is a closed symmetric monoidal abelian category with a rank function

$$\mathsf{rk} : \mathsf{ob}(\mathbb{A}) \to R$$

Suppose R is a ring and

ullet ${\cal V}$ is a semicartesian monoidal category with a size homomorphism

$$\#: (\mathsf{ob}(\mathcal{V}), \otimes) \to (R, \cdot)$$

• A is a closed symmetric monoidal abelian category with a rank function

$$\mathsf{rk} : \mathsf{ob}(\mathbb{A}) \to R$$

• $\Sigma: \mathcal{V} \to \mathbb{A}$ is a strong symmetric monoidal functor such that

Suppose R is a ring and

ullet ${\cal V}$ is a semicartesian monoidal category with a size homomorphism

$$\#: (\mathsf{ob}(\mathcal{V}), \otimes) \to (R, \cdot)$$

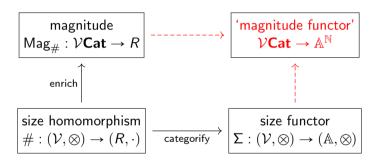
ullet A is a closed symmetric monoidal abelian category with a rank function

$$\mathsf{rk} : \mathsf{ob}(\mathbb{A}) \to R$$

• $\Sigma: \mathcal{V} \to \mathbb{A}$ is a strong symmetric monoidal functor such that

Then we say Σ is a **size functor** categorifying #.

Categorifying magnitude



$$\mathcal{V}\textbf{Cat} \xrightarrow{\textit{MB}^\Sigma} \left[\triangle^{op}, \mathbb{A}\right] \xrightarrow{\textit{C}} \operatorname{Ch}(\mathbb{A}) \xrightarrow{\textit{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$$

$$\mathcal{V}$$
Cat $\xrightarrow{\mathit{MB}^{\Sigma}} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{\mathit{C}} \mathrm{Ch}(\mathbb{A}) \xrightarrow{\mathit{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$

Definition (Leinster & Shulman, 2017)

The **magnitude nerve** of a V-category **X** is given for $n \in \mathbb{N}$ by

$$MB_n^{\Sigma}(\mathbf{X}) = \bigoplus_{x_0, \dots, x_n \in \mathbf{X}} \Sigma \mathbf{X}(x_0, x_1) \otimes \dots \otimes \Sigma \mathbf{X}(x_{n-1}, x_n)$$

with face maps δ^i induced by composition in ${\bf X}$ and terminal maps in ${\cal V}.$

$$\mathcal{V}$$
Cat $\xrightarrow{\mathit{MB}^{\Sigma}} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{\mathit{C}} \mathrm{Ch}(\mathbb{A}) \xrightarrow{\mathit{H}_{\bullet}} \mathbb{A}^{\mathbb{N}}$

Definition (Leinster & Shulman, 2017)

The **magnitude nerve** of a V-category **X** is given for $n \in \mathbb{N}$ by

$$\mathit{MB}^{\Sigma}_n(\mathbf{X}) = \bigoplus_{x_0, \dots, x_n \in \mathbf{X}} \Sigma \mathbf{X}(x_0, x_1) \otimes \dots \otimes \Sigma \mathbf{X}(x_{n-1}, x_n)$$

with face maps δ^i induced by composition in ${\bf X}$ and terminal maps in ${\cal V}.$

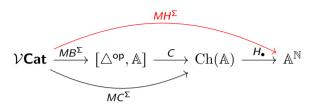
E.g. If
$$\Sigma = \mathbb{Z} - :$$
 Set \to **Ab**, for $\mathbf{X} \in$ **Cat**, $MB_n^{\Sigma}(\mathbf{X}) = \mathbb{Z} \cdot \{x_0 \to x_1 \to \cdots \to x_n \text{ in } \mathbf{X}\}.$

$$\mathcal{V}\mathsf{Cat} \xrightarrow{\mathsf{MB}^\Sigma} [\triangle^{\mathsf{op}}, \mathbb{A}] \xrightarrow{C} \mathrm{Ch}(\mathbb{A}) \xrightarrow{H_{\bullet}} \mathbb{A}^{\mathbb{N}}$$

Definition (Leinster & Shulman, 2017)

The magnitude complex of **X** has $MC_n^{\Sigma}(\mathbf{X}) = MB_n^{\Sigma}(\mathbf{X})$, with boundary maps

$$\hat{\sigma}_n = \sum_{i=0}^n (-1)^i \delta^i : MC_n^{\Sigma}(\mathbf{X}) \to MC_{n-1}^{\Sigma}(\mathbf{X}).$$

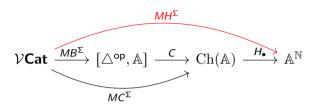


Definition (Leinster & Shulman, 2017)

The magnitude complex of **X** has $MC_n^{\Sigma}(\mathbf{X}) = MB_n^{\Sigma}(\mathbf{X})$, with boundary maps

$$\hat{\sigma}_n = \sum_{i=0}^n (-1)^i \delta^i : MC_n^{\Sigma}(\mathbf{X}) \to MC_{n-1}^{\Sigma}(\mathbf{X}).$$

The **magnitude homology** of **X** is the homology of $MC^{\Sigma}(\mathbf{X})$.



Definition (Leinster & Shulman, 2017)

The magnitude complex of **X** has $MC_n^{\Sigma}(\mathbf{X}) = MB_n^{\Sigma}(\mathbf{X})$, with boundary maps

$$\hat{\sigma}_n = \sum_{i=0}^n (-1)^i \delta^i : MC_n^{\Sigma}(\mathbf{X}) \to MC_{n-1}^{\Sigma}(\mathbf{X}).$$

The **magnitude homology** of **X** is the homology of $MC^{\Sigma}(\mathbf{X})$.

E.g. For $X \in Cat$, $MH_{\bullet}(X)$ is the homology of the classifying space BX.

Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017)

Under finiteness conditions, MH^{Σ} categorifies magnitude for \mathcal{V} -categories:

$$\chi(\mathit{MH}^\Sigma(\mathbf{X})) := \sum_{i \geqslant 0} (-1)^i \mathsf{rk}(\mathit{MH}^\Sigma_i(\mathbf{X})) = \mathsf{Mag}_\#(\mathbf{X}).$$

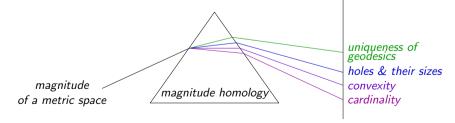
Magnitude homology categorifies magnitude

Theorem (Leinster & Shulman, 2017)

Under finiteness conditions, MH^{Σ} categorifies magnitude for V-categories:

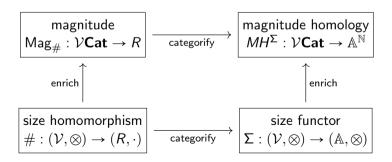
$$\chi(\mathit{MH}^\Sigma(\mathbf{X})) := \sum_{i \geqslant 0} (-1)^i \mathsf{rk}(\mathit{MH}^\Sigma_i(\mathbf{X})) = \mathsf{Mag}_\#(\mathbf{X}).$$

Theorem (Leinster & Shulman, 2017; Kaneta & Yoshinaga, 2018)

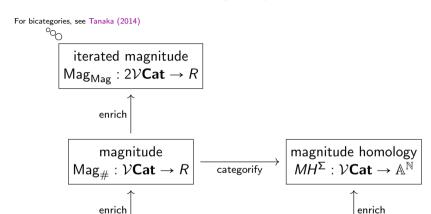


Part II

Iterating magnitude



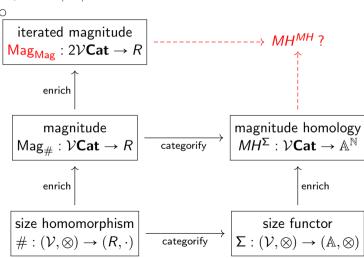
Iterating magnitude



$$\begin{array}{c} \text{size homomorphism} \\ \#: (\mathcal{V}, \otimes) \to (R, \cdot) \end{array} \xrightarrow{ \text{categorify} } \begin{array}{c} \text{size functor} \\ \Sigma: (\mathcal{V}, \otimes) \to (\mathbb{A}, \otimes) \end{array}$$

Iterating magnitude

For bicategories, see Tanaka (2014)



The magnitude nerve as a size functor

Proposition

The magnitude nerve defines a strong symmetric monoidal functor

$$MB^{\Sigma}: (\mathcal{V}Cat, \otimes_{\mathcal{V}}) \to ([\triangle^{op}, \mathbb{A}], \otimes_{pw}).$$

The magnitude nerve as a size functor

Proposition

The magnitude nerve defines a strong symmetric monoidal functor

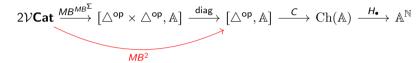
$$MB^{\Sigma}: (\mathcal{V}\mathsf{Cat}, \otimes_{\mathcal{V}}) \to ([\triangle^{\mathsf{op}}, \mathbb{A}], \otimes_{pw}).$$

Corollary (Künneth Theorem)

Suppose $\mathbb{A} = \mathbf{Mod}_R$ for R a P.I.D., and let $\mathbf{X} \in \mathcal{V}\mathbf{Cat}$ be such that $MC^{\Sigma}_{\bullet}(\mathbf{X})$ is flat. Then given any \mathcal{V} -category \mathbf{Y} , there is for each $n \in \mathbb{N}$ a natural short exact sequence

$$\begin{split} 0 &\to \bigoplus_k MH_k^{\Sigma}(\mathbf{X}) \otimes_R MH_{n-k}^{\Sigma}(\mathbf{Y}) \to MH_n^{\Sigma}(\mathbf{X} \otimes_{\mathcal{V}} \mathbf{Y}) \\ &\to \bigoplus_k \mathsf{Tor}\left(MH_k^{\Sigma}(\mathbf{X}), MH_{n-k-1}^{\Sigma}(\mathbf{Y})\right) \to 0. \end{split}$$

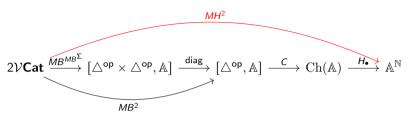
The sequence splits, but the splitting is not natural.



Definition

The (iterated) magnitude nerve of a VCat-category X is

$$\mathit{MB}^2(\mathbf{X}) = \mathsf{diag}\left(\mathit{MB}^{\mathit{MB}^\Sigma}(\mathbf{X})\right).$$



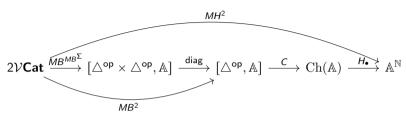
Definition

The (iterated) magnitude nerve of a VCat-category X is

$$MB^2(\mathbf{X}) = \operatorname{diag}\left(MB^{MB^{\Sigma}}(\mathbf{X})\right).$$

The (iterated) magnitude homology of X is

$$MH^2_{\bullet}(\mathbf{X}) = H_{\bullet}C(MB^2(\mathbf{X})).$$



Definition

The (iterated) magnitude nerve of a VCat-category X is

$$MB^2(\mathbf{X}) = \operatorname{diag}\left(MB^{MB^{\Sigma}}(\mathbf{X})\right).$$

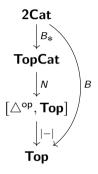
The (iterated) magnitude homology of X is

$$MH^2_{\bullet}(\mathbf{X}) = H_{\bullet}C(MB^2(\mathbf{X})).$$

When $\mathcal{V} = \mathbf{Set}$, repeated iteration lets us define $MH_{\bullet}^{n} : n\mathbf{Cat} \to \mathbf{Ab}^{\mathbb{N}}$.

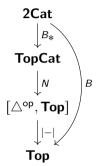
The Segal approach

take the classifying space of each hom-category in **X**



The Segal approach

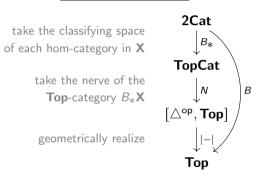
take the classifying space of each hom-category in \mathbf{X} take the nerve of the \mathbf{Top} -category $B_*\mathbf{X}$



The Segal approach

take the classifying space of each hom-category in \mathbf{X} take the nerve of the Top-category $B_*\mathbf{X}$ geometrically realize $\begin{bmatrix} \Delta^{\mathbf{op}}, \mathbf{Top} \end{bmatrix}$ Top

The Segal approach



Call **BX** the **classifying space** of **X**.

The Segal approach

Call **BX** the **classifying space** of **X**.

The Duskin or Street approach

Define a simplicial set $\triangle X$ by

$$[n] = (0 \to 1 \to \cdots \to n)$$

$$\triangle \mathbf{X}_n = \mathbf{BiCat}_{\mathsf{NLax}}([n], \mathbf{X}).$$
 bicategories and normal lax 2-functors

The Segal approach

take the classifying space of each hom-category in \mathbf{X} take the nerve of the Top-category $B_*\mathbf{X}$ geometrically realize $\begin{bmatrix} \triangle^{\mathrm{op}}, \mathrm{Top} \end{bmatrix}$ Top

Call BX the classifying space of X.

The Duskin or Street approach

Define a simplicial set $\triangle \mathbf{X}$ by

$$[n] = (0 \to 1 \to \cdots \to n)$$

$$\triangle \mathbf{X}_n = \mathbf{BiCat}_{\mathsf{NLax}}([n], \mathbf{X}).$$
 bicategories and normal lax 2-functors

Call the topological space $|\triangle X|$ the classifying space of X.

The Segal approach

take the classifying space of each hom-category in X $\begin{array}{c} \mathbf{2Cat} \\ \downarrow \mathcal{B}_* \\ \mathbf{TopCat} \\ \text{take the nerve of the} \\ \mathbf{Top}\text{-category } \mathcal{B}_* \mathbf{X} \\ & [\triangle^{\mathbf{op}}, \mathbf{Top}] \\ \text{geometrically realize} \\ & \mathbf{Top} \end{array}$

Call BX the classifying space of X.

The Duskin or Street approach

Define a simplicial set $\triangle \mathbf{X}$ by

$$[n] = (0 \to 1 \to \cdots \to n)$$

$$\triangle \mathbf{X}_n = \mathbf{BiCat}_{\mathsf{NLax}}([n], \mathbf{X}).$$
 bicategories and normal lax 2-functors

Call the topological space $|\triangle X|$ the classifying space of X.

Theorem (Bullejos & Cegarra, 2003) There's a natural equivalence $B\mathbf{X} \simeq |\Delta \mathbf{X}|$.

Lemma

For any 2-category \mathbf{X} , $MH^2(\mathbf{X})$ is the homology of the classifying space of \mathbf{X} .

Proof is via the description of BX in Bullejos & Cegarra (2003).

Lemma

For any 2-category X, $MH^2(X)$ is the homology of the classifying space of X.

Proof is via the description of BX in Bullejos & Cegarra (2003).

Theorem

For any finite enough 2-category \mathbf{X} we have $\chi(\mathbf{MH^2}(\mathbf{X})) = \mathsf{Mag}_{\mathsf{Mag}}(\mathbf{X})$.

Proof Tanaka (2014) showed $\chi(|\Delta \mathbf{X}|) = \mathsf{Mag}_{\mathsf{Mag}}(\mathbf{X})$. Combine with the lemma.

Lemma

For any 2-category \mathbf{X} , $MH^2(\mathbf{X})$ is the homology of the classifying space of \mathbf{X} .

Proof is via the description of BX in Bullejos & Cegarra (2003).

Theorem

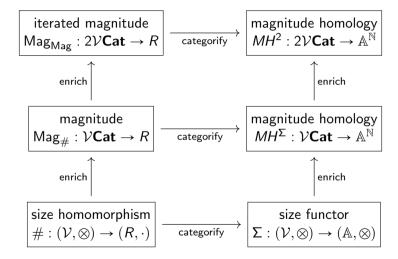
For any finite enough 2-category \mathbf{X} we have $\chi(\mathbf{MH^2}(\mathbf{X})) = \mathsf{Mag}_{\mathsf{Mag}}(\mathbf{X})$.

Proof Tanaka (2014) showed $\chi(|\Delta \mathbf{X}|) = \mathsf{Mag}_{\mathsf{Mag}}(\mathbf{X})$. Combine with the lemma.

Theorem

For any finite enough locally metric category \mathbf{X} we have $\chi(\mathbf{MH^2(X)}) = \mathsf{Mag_{Mag}(X)}$.

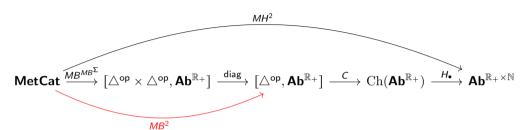
Proof uses facts about spectral sequences, plus linear algebra.



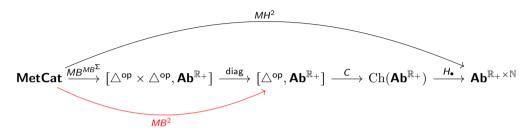
Part III

The magnitude homology of a locally metric category

The magnitude nerve of a locally metric category



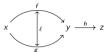
The magnitude nerve of a locally metric category



For a **Met**-category **X** the magnitude nerve is given in degrees $n \in \mathbb{N}$ and $\ell \in \mathbb{R}_+$ by

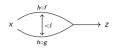
A gap of width ℓ in **X** is an equivalence class of irreducible pairs of arrows: χ'

A gap of width ℓ in ${\bf X}$ is an equivalence class of irreducible pairs of arrows: $_{\scriptscriptstyle \times}$



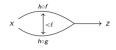
- we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight

A gap of width ℓ in ${\bf X}$ is an equivalence class of irreducible pairs of arrows:



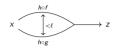
- we can tighten it by composing with another arrow
 - lacktriangledown if (f,g) can't be tightened, call it tight

A gap of width ℓ in \boldsymbol{X} is an equivalence class of irreducible pairs of arrows:



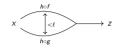
- we can tighten it by composing with another arrow
 - \rightarrow if (f,g) can't be tightened, call it tight
- ullet or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent

A gap of width ℓ in \boldsymbol{X} is an equivalence class of irreducible pairs of arrows:



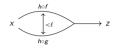
- we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight
- ullet or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent

A gap of width ℓ in \boldsymbol{X} is an equivalence class of irreducible pairs of arrows:



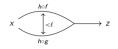
- we can tighten it by composing with another arrow
 - \blacktriangleright if (f,g) can't be tightened, call it tight
- ullet or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent
- or we can split it into two strictly smaller pairs
 - if (f,g) can't be split, call it simple.

A gap of width ℓ in \boldsymbol{X} is an equivalence class of irreducible pairs of arrows:



- we can tighten it by composing with another arrow
 - \rightarrow if (f,g) can't be tightened, call it tight
- ullet or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent
- or we can split it into two strictly smaller pairs
 - if (f,g) can't be split, call it simple.

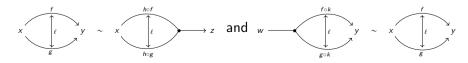
A gap of width ℓ in ${\bf X}$ is an equivalence class of irreducible pairs of arrows:



A pair is reducible if

- we can tighten it by composing with another arrow
 - if (f,g) can't be tightened, call it tight
- ullet or we can bridge it with an arrow strictly between f and g
 - if (f,g) can't be bridged, call it adjacent
- or we can split it into two strictly smaller pairs
 - if (f,g) can't be split, call it simple.

A gap is a class of simple, tight, adjacent pairs under the equivalence relation gen'd by



The magnitude homology of a locally metric category

Theorem

Let **X** be a locally metric category in which all the hom-spaces are separated.

In real grading 0, the magnitude homology of \boldsymbol{X} is the homology of its underlying ordinary category $\underline{\boldsymbol{X}}$:

$$MH_{\bullet}^{0}(\mathbf{X}) \cong H_{\bullet}(\underline{\mathbf{X}}).$$

In real gradings $\ell > 0$, the first three magnitude homology groups are given by

$$extit{MH}_k^\ell(\mathbf{X})\congegin{cases} 0 & k=0,1\ \mathbb{Z}\cdot\{ extit{gaps of width ℓ in \mathbf{X}}\} & k=2. \end{cases}$$

Questions

- 1. What do other choices of $\Sigma : \mathbb{R}_+ \to \mathbb{A}$ give us? For instance, those related to persistent homology—see Otter (2018).
- 2. Can the iterated magnitude nerve be adapted to give a sensible nerve for approximate categorical structures?
- 3. If so, can homological tools be used to distinguish locally metric categories among approximate categorical structures?
- 4. If so, might such tools help detect categorical structure in real-world systems?

References

Magnitude and magnitude homology

- Hepworth and Willerton. Categorifying the magnitude of a graph. Homology, Homotopy and Applications 19 (2017).
- Kaneta and Yoshinaga. Magnitude homology of metric spaces and order complexes. arXiv:1803.04247 (2018).
- Leinster and Shulman. Magnitude homology of enriched categories and metric spaces. *Algebraic and Geometric Topology* (to appear).
- Otter. Magnitude meets persistence. Homology theories for filtered simplicial sets. arXiv:1807.01540 (2018).
- Tanaka. The Euler characteristic of a bicategory and the product formula for fibered bicategories. arXiv:1410.0248 (2014).

...and many more at https://www.maths.ed.ac.uk/~tl/magbib/.

References

Homology theories for 2-categories

- Bullejos and Cegarra. On the geometry of 2-categories and their classifying spaces. K-Theory 29 (2003).
- Ellis. Homology of 2-types. Journal of the LMS 46 (1992).

Approximate categorical structures and Met-enrichment

- Aliouche and Simpson. Approximate categorical structures. Theory and Applications of Categories 32 (2017).
- Tholen and Rosický. Approximate injectivity. Applied Categorical Structures 26 (2018).
- Tholen and Wang. Metagories. Topology and its Applications 273 (2020).