Throughout the examination paper we will assume the existence of a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Results covered in the lectures may be used without further justification unless the question is asking specifically for the proof of a particular result.

1. Let $\mu, r, \sigma, \delta, \gamma \in \mathbb{R}$ be constants s.t. $\sigma \neq 0, \delta > 0, \gamma \in (0, 1)$. Consider the process

$$dX_t = X_t (\nu_t (\mu - r) + r - \kappa_t) dt + \nu_t \sigma X_t dW_t, t \ge 0, X_0 = x > 0$$

and let us write $X_t = X_t^{x,\nu,\kappa}$ to emphasize the dependence on the starting point x and the controls $\nu = (\nu_t)_{t\geq 0}$ and $\kappa = (\kappa_t)_{t\geq 0}$. We say that ν, κ are admissible if they are adapted and bounded. Let

$$v(x) = \sup_{\nu,\kappa} \mathbb{E}\left[\int_0^\infty e^{-\delta t} \left(\kappa_t X_t^{x,\nu,\kappa}\right)^\gamma dt\right],$$

where the supremum is taken over all admissible ν, κ .

Using the "guess" $v(x) = \lambda x^{\gamma}$ for some $\lambda > 0$ solve the HJB equation giving explicit form for the constant λ depending only on μ, r, σ, δ and γ . You don't need to use the verification theorem here. [30 marks]

Hint. An infinite time stochastic control problem can be written as

$$v(x) = \sup_{\alpha} \mathbb{E} \int_0^\infty e^{-\delta t} f^{\alpha_t}(X_t^{x,\alpha}) \, dt \,,$$

where the supremum is taken over admissible controls and subject to

$$dX_t^{x,\alpha} = b^{\alpha_t}(X_t^{x,\alpha}) \, dt + \sigma^{\alpha_t}(X_t^{x,\alpha}) \, dW_t \,, \ t \in [0,\infty) \,, \ X_0^{x,\alpha} = x \,.$$

The HJB equation for this infinite-time-horizon problem is

$$\sup_{a \in A} \left[\frac{1}{2} (\sigma^a)^2 v'' + b^a v' - \delta v + f^a \right] = 0 \text{ on } [0, \infty) \times \mathbb{R}.$$

2.

(a) Assume that $g \in C^1(\mathbb{R})$. Show that v(t, x) = g(x + (T - t)) is a solution to

$$\partial_t v + \partial_x v = 0 \text{ on } [0, T] \times \mathbb{R},$$

 $v(T, x) = g(x) \quad \forall x \in \mathbb{R}.$

[5 marks]

(b) Let $\mathcal{A} = \{ \alpha : [0, T] \rightarrow \{-1, 0, 1\} : \alpha \text{ is measurable} \}$ and let

$$v(t,x) = \inf_{\alpha \in \mathcal{A}} |X_T^{t,x,\alpha}|^2$$
 where $X_T^{t,x,\alpha} = x + \int_t^T \alpha(s) \, ds$

Noting that the control has to take values in $\{-1, 0, 1\}$ guess an optimal Markovian control and hence solve the Bellman equation for v. Use this to verify that your guess is indeed an optimal control. [25 marks]

3. With the action space $A = \mathbb{R}$ consider the problem

$$v(t,x) = \sup_{\alpha \in \mathcal{A}} \mathbb{E}\left[-\frac{1}{2}\int_{t}^{T} |\alpha_{s}|^{2} ds + g(X_{T}^{t,x})\right],$$

$$dX_{s}^{t,x} = \alpha_{s} ds + dW_{s}, \ s \in [t,T], \ X_{t}^{t,x} = x \in \mathbb{R}.$$

Here $g: \mathbb{R} \to \mathbb{R}$ is smooth and bounded. We say $\alpha \in \mathcal{A}$ if it is adapted and $\mathbb{E} \int_0^T |\alpha_t|^2 dt < \infty$.

(a) Write down the HJB equation for v and hence show that

$$\partial_t v + \frac{1}{2} \partial_{xx} v + \frac{1}{2} |\partial_x v|^2 = 0 \text{ on } [0, T) \times \mathbb{R},$$

with v(T, x) = g(x) for $x \in \mathbb{R}$.

(b) Let $u(t, x) = e^{v(t,x)}$. Show that

$$\partial_t u + \frac{1}{2} \partial_{xx} u = 0$$
 on $[0, T) \times \mathbb{R}$,

with terminal condition $u(T, x) = e^{g(x)}$ for all $x \in \mathbb{R}$.

(c) Show that

$$v(t,x) = \log \int_{\mathbb{R}^d} e^{g(y)} p(T-t,y-x) \, dy \,,$$
$$p(s,z) = (2\pi s)^{-1/2} e^{-\frac{|z|^2}{2s}} \,.$$

[15 marks]

[10 marks]

[15 marks]