Throughout the examination paper we will assume the existence of a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Results covered in the lectures may be used without further justification unless the question is asking specifically for the proof of a particular result.

1. Let $\mu, r, \sigma, \delta, \gamma \in \mathbb{R}$ be constants s.t. $\sigma \neq 0, \delta>0, \gamma \in(0,1)$. Consider the process

$$
d X_{t}=X_{t}\left(\nu_{t}(\mu-r)+r-\kappa_{t}\right) d t+\nu_{t} \sigma X_{t} d W_{t}, t \geq 0, X_{0}=x>0
$$

and let us write $X_{t}=X_{t}^{x, \nu, \kappa}$ to emphasize the dependence on the starting point x and the controls $\nu=\left(\nu_{t}\right)_{t \geq 0}$ and $\kappa=\left(\kappa_{t}\right)_{t \geq 0}$. We say that ν, κ are admissible if they are adapted and bounded. Let

$$
v(x)=\sup _{\nu, \kappa} \mathbb{E}\left[\int_{0}^{\infty} e^{-\delta t}\left(\kappa_{t} X_{t}^{x, \nu, \kappa}\right)^{\gamma} d t\right],
$$

where the supremum is taken over all admissible ν, κ.
Using the "guess" $v(x)=\lambda x^{\gamma}$ for some $\lambda>0$ solve the HJB equation giving explicit form for the constant λ depending only on μ, r, σ, δ and γ. You don't need to use the verification theorem here.
[30 marks]
Hint. An infinite time stochastic control problem can be written as

$$
v(x)=\sup _{\alpha} \mathbb{E} \int_{0}^{\infty} e^{-\delta t} f^{\alpha t}\left(X_{t}^{x, \alpha}\right) d t
$$

where the supremum is taken over admissible controls and subject to

$$
d X_{t}^{x, \alpha}=b^{\alpha_{t}}\left(X_{t}^{x, \alpha}\right) d t+\sigma^{\alpha t}\left(X_{t}^{x, \alpha}\right) d W_{t}, \quad t \in[0, \infty), \quad X_{0}^{x, \alpha}=x
$$

The HJB equation for this infinite-time-horizon problem is

$$
\sup _{a \in A}\left[\frac{1}{2}\left(\sigma^{a}\right)^{2} v^{\prime \prime}+b^{a} v^{\prime}-\delta v+f^{a}\right]=0 \text { on }[0, \infty) \times \mathbb{R}
$$

2.

(a) Assume that $g \in C^{1}(\mathbb{R})$. Show that $v(t, x)=g(x+(T-t))$ is a solution to

$$
\begin{aligned}
\partial_{t} v+\partial_{x} v & =0 \text { on }[0, T] \times \mathbb{R}, \\
v(T, x) & =g(x) \forall x \in \mathbb{R} .
\end{aligned}
$$

(b) Let $\mathcal{A}=\{\alpha:[0, T] \rightarrow\{-1,0,1\}: \alpha$ is measurable $\}$ and let

$$
v(t, x)=\inf _{\alpha \in \mathcal{A}}\left|X_{T}^{t, x, \alpha}\right|^{2} \text { where } X_{T}^{t, x, \alpha}=x+\int_{t}^{T} \alpha(s) d s
$$

Noting that the control has to take values in $\{-1,0,1\}$ guess an optimal Markovian control and hence solve the Bellman equation for v. Use this to verify that your guess is indeed an optimal control.
[25 marks]
3. With the action space $A=\mathbb{R}$ consider the problem

$$
\begin{aligned}
v(t, x) & =\sup _{\alpha \in \mathcal{A}} \mathbb{E}\left[-\frac{1}{2} \int_{t}^{T}\left|\alpha_{s}\right|^{2} d s+g\left(X_{T}^{t, x}\right)\right], \\
d X_{s}^{t, x} & =\alpha_{s} d s+d W_{s}, \quad s \in[t, T], \quad X_{t}^{t, x}=x \in \mathbb{R} .
\end{aligned}
$$

Here $g: \mathbb{R} \rightarrow \mathbb{R}$ is smooth and bounded. We say $\alpha \in \mathcal{A}$ if it is adapted and $\mathbb{E} \int_{0}^{T}\left|\alpha_{t}\right|^{2} d t<\infty$.
(a) Write down the HJB equation for v and hence show that

$$
\partial_{t} v+\frac{1}{2} \partial_{x x} v+\frac{1}{2}\left|\partial_{x} v\right|^{2}=0 \text { on }[0, T) \times \mathbb{R},
$$

with $v(T, x)=g(x)$ for $x \in \mathbb{R}$.
[10 marks]
(b) Let $u(t, x)=e^{v(t, x)}$. Show that

$$
\partial_{t} u+\frac{1}{2} \partial_{x x} u=0 \text { on }[0, T) \times \mathbb{R},
$$

with terminal condition $u(T, x)=e^{g(x)}$ for all $x \in \mathbb{R}$.
(c) Show that

$$
\begin{gathered}
v(t, x)=\log \int_{\mathbb{R}^{d}} e^{g(y)} p(T-t, y-x) d y \\
p(s, z)=(2 \pi s)^{-1 / 2} e^{-\frac{|z|^{2}}{2 s}}
\end{gathered}
$$

[15 marks]

