
MATH11150
Stochastic Control and Dynamic Asset Allocation

Solutions and comments May 2022

Throughout we will assume the existence of a suitable probability space (Ω,F ,P) which
supports all the random variables and processes introduced. Results covered in the lectures may
be used without further justification unless the question is asking specifically for the proof of a
particular result.

1. Let T > 0, κ > 0, λ > 0, σ ∈ R, θ > 0 s.t. θ ∕= λ be fixed constants. Let W be a real-
valued Wiener process. Consider the following optimal liquidation problem. The selling rate is
denoted α. Admissible selling rates α are adapted to the filtration generated by W and such that

E
󰁕 T

0
α2
u du < ∞. The mid-price process is

dSu = −λαu du+ σ dWu , u ∈ [t, T ] , St = S > 0

and the inventory process is

dQu = −αu du , u ∈ [t, T ] , Qt = q > 0 .

The objective is to maximize

M(t, q, S,α) := E

󰀥󰁝 T

t

(Su − 1
2καu)αu du+QTST − 1

2θ|QT |2
󰀦

over admissable α.

(a) Find a formula for the value function V (t, q, S) = supα M(t, q, S,α) and for the optimal
Markov control i.e. a function A∗ = A∗(t, q, S) such that if α∗ is the optimal control and
Q∗, S∗ are the optimally controlled inventory and price processes then α∗

t = A∗(t, Q∗
t , S

∗
t ).

[25 marks]

(b) You may have used either the HJB equation or the Pontryagin optimality principle to solve
(1). If you used the HJB equation please apply the verification theorem. If you used
the Pontryagin optimality please make sure to explain why the conditions for applying
Pontryagin’s optimality principle as a sufficient condition apply. [10 marks]

(c) Hence or otherwise find the optimal Markov control and the value for the case where we
introduce the additional constraint that QT = 0. [5 marks]

Comment: Here (a) and (b) are a variation on a problem that’s been solved in class. There are
many ways to proceed. Part (c) is new.

Solution:

(a) We will first note that

E
󰁝 T

0

Q2
r dr = E

󰁝 T

t

󰀕
q +

󰁝 r

t

αu du

󰀖2

dr ≤ 2q2(T − t) + 2E
󰁝 T

t

󰀕󰁝 r

t

αu du

󰀖2

dr

≤ 2q2(T − t) + 2E
󰁝 T

t

󰀕󰁝 r

t

du

󰀖󰁝 r

t

α2
u du dr ≤ 2q2(T − t) + 2T 2E

󰁝 T

0

α2
u du < ∞ .

Hence E
󰁕 T

0
Qr dWt = 0. Hence

E[QTST ] = qS + E
󰁝 T

t

(−λQuαu − Suαu) du

and so

M(t, q, S,α) = qS + E

󰀥
−
󰁝 T

t

( 12κα
2
u + λQuαu) du− 1

2θ|QT |2
󰀦
=: qS + J(t, q,α) .
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So we see it’s enough to maximize J over α and a seemingly 2 dimensional problem is just
1 dimensional.

Let v(t, q) := supα J(t, q,α). The HJB equation is

∂tv + sup
a

󰀓
− a(∂qv +

1
2κa+ λq)

󰀔
= 0 in [0, T ]× R , v(T, q) = − 1

2θ|q|
2 ∀q ∈ R .

Since the function a 󰀁→ −a∂qv − 1
2κa

2 − λqa is concave it’s easy to see that the supermum

is achieved for a∗ = −λq+∂qv
κ and so

sup
a

󰀓
− a(∂qv +

1
2κa+ λq)

󰀔
= 1

κ (λq + ∂qv)(
1
2∂qv +

1
2λv) =

1
2κ (λq + ∂qv)

2 .

Hence the HJB is

∂tv +
1
2κ (λq + ∂qv)

2 = 0 in [0, T ]× R , v(T, q) = − 1
2θ|q|

2 ∀q ∈ R .

As always we need to make a guess as to what form the solution will take. Since it seems
like we’ll have q0, q1 and q2 appearing let us try

v(t, q) = A(t)q0 +B(t)q1 + 1
2C(t)q2 , A(T ) = 0 , B(T ) = 0 , C(T ) = −θ ,

with A,B,C ∈ C1([0, T ]). Substituting into the HJB and collecting terms we get

0 = A′ + 1
2κB

2 ,

0 = B′ + 1
2κ2(λ+ C)B ,

0 =
1

2
C ′ + 1

2κ (λ+ C)2 .

From this and the terminal conditions we see that A(t) = B(t) = 0 for t ∈ [0, T ]. Letting
γ(t) = λ+ C(t) we only have to solve

0 = γ′ +
1

κ
γ2 , γ(T ) = λ− θ .

Separating variables we get that
γ−2dγ = − 1

κ dt

which is
−γ−1 = − 1

κ t+ const .

Hence
γ−1 = − 1

κ (T − t) + (λ− θ)−1 .

Rearranging we get

C(t) = κ
󰀓
t− T + κ

λ−θ

󰀔−1

− λ .

So that finally

V (t, q, S) = qS + v(t, q) = qS −
󰀕

κ
2

󰀓
T − t+ κ

θ−λ

󰀔−1

− 1
2λ

󰀖
q2

and

A∗(t, q, S) =

󰀕󰀓
T − t+ κ

θ−λ

󰀔−1
󰀖
q .

(b) To carry out verification we note that

(i) (t, q) 󰀁→ a∗(t, q) :=

󰀕󰀓
T − t+ κ

θ−λ

󰀔−1
󰀖
q is clearly measurable.
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(ii) The equation
dQu = −a∗(t, Qu) du

has unique solutions since the coefficient is linear in q.

(iii) We note that there is no randomness once we’ve reduced the dimension so there is no
stochastic integral to check.

This completes the verification.

(c) Let us re-examine the objective, this time writing its dependence on θ explicitly

Mθ(t, q, S,α) := E

󰀥󰁝 T

t

(Su − 1
2καu)αu du+QTST − 1

2θ|QT |2
󰀦
.

We note that for any t, q, S,α the integrand is monotone decreasing in θ. Thus by monotone
convergence theorem

M∞(t, q, S,α) = E

󰀥󰁝 T

t

(Su − 1
2καu)αu du+QTST − lim

θ→∞
1
2θ|QT |2

󰀦

=

󰀻
󰁁󰀿

󰁁󰀽

E

󰀥󰁝 T

t

(Su − 1
2καu)αu du

󰀦
if QT = 0 ,

−∞ if QT ∕= 0 .

Thus the constrained case corresponds to the case when we take θ → ∞. In that case

V (t, q, S) = qS −
󰀓

κ
2 (T − t)

−1
+ 1

2λ
󰀔
q2

and
A∗(t, q, S) =

q

T − t
.

2. Let W be a d′-dimensional Wiener process. Let m ∈ N and T > 0 be fixed. Let b : Rd → Rd

and σ : Rd → Rd×d′
satisfy the condition: there is K > 0 such that

|b(x)− b(x′)|+ |σ(x)− σ(x′)| ≤ K|x− x′| ∀x, x′ ∈ Rd .

Assume that |b(0)| ≤ K and |σ(0)| ≤ K. Let Xt,x be the unique solution of

Xt,x
s = x+

󰁝 s

t

b(Xt,x
r ) dr +

󰁝 s

t

σ(Xt,x
r ) dWr , s ∈ [t, T ] .

Assume you have shown that for any m ∈ N there is c > 0 (depending on K, m and T ) such that
for all x ∈ Rd we have

sup
s∈[t,T ]

E|Xt,x
s |2m ≤ c(1 + |x|2m) .

Show that for any m ∈ N there is c > 0 (depending on T , K, m) such that for all x ∈ Rd we have

E|Xt,x
s′ −Xt,x

s |2m ≤ c(1 + |x|2m)|s′ − s|m .

[30 marks]

Comment: Related to proofs seen in the lectures but not actually given.

Solution: We start by noting that b and σ have linear growth: for any x ∈ Rd

|b(x)| = |b(x)− b(0) + b(0)| ≤ K|x|+ |b(0)|
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and similarly for σ. Clearly

|Xt,x
s′ −Xt,x

s |2m ≤ 2m+1

󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

b(Xu) du

󰀏󰀏󰀏󰀏󰀏

2m

+ 2m+1

󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

σ(Xu) dWu

󰀏󰀏󰀏󰀏󰀏

2m

.

Applying Hölder’s inequality twice we have

󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

b(Xu) du

󰀏󰀏󰀏󰀏󰀏

2m

≤ (s′ − s)m

󰀣󰁝 T

t

|b(Xu)|2 du
󰀤m

≤ (s′ − s)mcT,m

󰁝 T

s

|b(Xu)|2m du .

Using the growth assumption and moment bound for solutions

E
󰁝 T

s

|b(Xu)|2m du ≤ cm,T

󰀣
1 +

󰁝 T

s

E|Xu|2m du

󰀤
≤ cT,m(1 + |x|2m) .

From the Burkholder–Davis–Gundy inequality, Hölder’s inequality and then with the growth
assumption and moment bound

E

󰀵

󰀷
󰀏󰀏󰀏󰀏󰀏

󰁝 s′

s

σ(Xu) dWu

󰀏󰀏󰀏󰀏󰀏

2m
󰀶

󰀸 ≤ cmE

󰀥󰀣󰁝 s′

s

|σ(Xu)|2 du
󰀤m󰀦

≤ cmE

󰀵

󰀷
󰀣󰁝 s′

s

1
m

m−1 du

󰀤m−1 󰀣󰁝 s′

s

|σ(Xu)|2m du

󰀤󰀶

󰀸

≤ cm(s′ − s)m−1

󰀣󰁝 s′

s

E|σ(Xu)|2m du

󰀤
≤ cm,T (1 + |x|2m)|s′ − s|m .

Altogether
E|Xt,x

s′ −Xt,x
s |2m ≤ cm,T (1 + |x|2m)|s′ − s|m .

3. Let σ ∈ R, T > 0, K > 0 be fixed constants. Let W be a real-valued Wiener process.

(a) Let
dSr = σSr dWr r ∈ [t, T ] , St = S > 0 .

Let v(t, S) = E[max(ST −K, 1)|St = S]. Use Feynman–Kac formula to write down the PDE
that v satisfies. Express v using the Black–Scholes formula. [5 marks]

(b) Let A denote the class of all processes α that are adapted to the filtration generated by W

and such that E
󰁕 T

0
α2
s ds < ∞. Let

dSr = σSrαr dt+ σSr dWr r ∈ [t, T ] , St = S ∈ R

and denote the solution to the equation started from S at time t ∈ [0, T ] and controlled by
α as St,S,α. Let

u(t, S) = sup
α∈A

E

󰀥
−
󰁝 T

t

1
2α

2
s ds+ g(St,S,α

T )

󰀦
,

where g(S) = ln (max(S −K, 1)).

(i) Write down the HJB equation satisfied by u. [4 marks]
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(ii) Show that this is equivalent to

∂tu+ 1
2σ

2S2∂2
Su+ 1

2σ
2S2 (∂Su)

2
= 0 in [0, T ]× R

u(T, ·) = g on R .

[6 marks]

(iii) Solve the HJB equation. Hint: Do an exponential transformation of u and note that
you thus obtain a linear PDE. You should recognise this linear PDE. [15 marks]

You do not need to carry out verification.

Comment: Part a) only serves as an extended hint to part b) but should be trivial. Part b) is
a variation on Cole-Hopf transform method to solve HJB equation; this has been seen but not in
this context.

Solution:

(a) From Feynman–Kac we know that

∂tv +
1
2σ

2S2∂2
Sv = 0 in [0, T )× R

v(T, S) = max(S −K, 1) ∀S ∈ R .

We note that max(S −K, 1) = max(S − (K + 1), 0) + 1 and so

v(t, S) = E[max(ST −K, 1)|St = S] = E[max(ST − (K + 1), 0)|St = S] + 1 .

Thus v(t, S) is 1 plus the value given by a Black–Scholes formula for call options with risk-free
rate 0, volatility σ, strike K + 1, initial asset price S and time to maturity T − t.

(b) (i) The HJB equation is

∂tu+ 1
2σ

2S2∂2
Su+ sup

a∈R

󰀃
σSa∂Su− 1

2a
2
󰀄
= 0 in [0, T )× R

u(T, ·) = g on R .

(ii) We note that since a 󰀁→ σSa∂Su− 1
2a

2 is concave regardless of the values of σ, S, ∂Su
we can find the a for which supremum above is achieved simply by solving

0 = σS∂Su− a

substituting the solution:

sup
a∈R

󰀃
σSa∂Su− 1

2a
2
󰀄
= σ2S2(∂Su)

2 − 1
2σ

2S2(∂Su)
2 = 1

2σ
2S2(∂Su)

2 .

Hence we get

∂tu+ 1
2σ

2S2∂2
Su+ 1

2σ
2S2 (∂Su)

2
= 0 in [0, T )× R

u(T, ·) = g on R .

(iii) Let v = eu so that

∂tv = eu∂tu , ∂Sv = eu∂Su , ∂2
Sv = eu(∂Su)

2 + eu∂2
Su .

Multiplying the above PDE by eu and noting that eu∂2
Su = ∂2

Sv = eu(∂Su)
2 we get

0 = ∂tv +
1
2σ

2S2∂2
Sv − 1

2σ
2S2eu(∂Su)

2 + 1
2σ

2S2eu(∂Su)
2.

Hence we get that v must solve

∂tv +
1
2σ

2S2∂2
Sv = 0 in [0, T )× R

v(T, ·) = eg on R .

But v(T, S) = eg(S) = eln(max(S−K,1) = max(S −K, 1).

Hence u(t, S) = ln v(t, S) where v(t, S) is given by the solution from part (a).
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