Throughout the examination paper we will assume the existence of a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Results covered in the lectures may be used without further justification unless the question is asking specifically for the proof of a particular result.

1. Let $\mu, r, \sigma, \delta, \gamma \in \mathbb{R}$ be constants s.t. $\sigma \neq 0, \delta>0, \gamma \in(0,1)$. Consider the process

$$
d X_{t}=X_{t}\left(\nu_{t}(\mu-r)+r-\kappa_{t}\right) d t+\nu_{t} \sigma X_{t} d W_{t}, t \geq 0, X_{0}=x>0
$$

and let us write $X_{t}=X_{t}^{x, \nu, \kappa}$ to emphasize the dependence on the starting point x and the controls $\nu=\left(\nu_{t}\right)_{t \geq 0}$ and $\kappa=\left(\kappa_{t}\right)_{t \geq 0}$. We say that ν, κ are admissible if they are adapted and bounded. Let

$$
v(x)=\sup _{\nu, \kappa} \mathbb{E}\left[\int_{0}^{\infty} e^{-\delta t}\left(\kappa_{t} X_{t}^{x, \nu, \kappa}\right)^{\gamma} d t\right],
$$

where the supremum is taken over all admissible ν, κ.
Using the "guess" $v(x)=\lambda x^{\gamma}$ for some $\lambda>0$ solve the HJB equation giving explicit form for the constant λ depending only on μ, r, σ, δ and γ. You don't need to use the verification theorem here.
[30 marks]
Hint. An infinite time stochastic control problem can be written as

$$
v(x)=\sup _{\alpha} \mathbb{E} \int_{0}^{\infty} e^{-\delta t} f^{\alpha_{t}}\left(X_{t}^{x, \alpha}\right) d t
$$

where the supremum is taken over admissible controls and subject to

$$
d X_{t}^{x, \alpha}=b^{\alpha_{t}}\left(X_{t}^{x, \alpha}\right) d t+\sigma^{\alpha_{t}}\left(X_{t}^{x, \alpha}\right) d W_{t}, \quad t \in[0, \infty), \quad X_{0}^{x, \alpha}=x
$$

The HJB equation for this infinite-time-horizon problem is

$$
\sup _{a \in A}\left[\frac{1}{2}\left(\sigma^{a}\right)^{2} v^{\prime \prime}+b^{a} v^{\prime}-\delta v+f^{a}\right]=0 \text { on }[0, \infty) \times \mathbb{R}
$$

Comment: Students have seen this in the finite time setting with no consumption. With the "ansatz" for the solution is given, this shouldn't be hard.
Solution: Let

$$
L^{u, k} v=\frac{1}{2} u^{2} \sigma^{2} x^{2} v^{\prime \prime}(x)+[u(\mu-r)+r-k] x v^{\prime}(x)-\delta v(x) .
$$

The HJB is

$$
\sup _{u, k}\left(L^{u, k} v(x)+(k x)^{\gamma}\right)=0, x \in(0, \infty)
$$

Let us use the ansatz $v(x)=\lambda x^{\gamma}$ for some $\lambda>0$. Then

$$
v^{\prime}(x)=\gamma v(x) x^{-1}, v^{\prime \prime}(x)=-\gamma(1-\gamma) v(x) x^{-2}, x^{\gamma} k^{\gamma}=k^{\gamma} v(x) \lambda^{-1}
$$

So the HJB becomes

$$
\sup _{u, k}\left(-\frac{1}{2} u^{2} \sigma^{2} \gamma(1-\gamma) v(x)+[u(\mu-r)+r-k] \gamma v(x)-\delta v(x)+k^{\gamma} v(x) \lambda^{-1}\right)=0, x \in(0, \infty)
$$

Since we have $v(x)>0$ we can divide by this further simplifying the situation. By inspection this is concave in (u, k) and so we can maximize it by finding the point where the gradient vector $\nabla_{u, k}$ is zero. That is

$$
-u \sigma^{2} \gamma(1-\gamma)+(\mu-r) \gamma=0 \text { i.e. } \hat{u}=\frac{\mu-r}{\sigma^{2}(1-\gamma)}
$$

and

$$
-\gamma+\frac{\gamma}{\lambda} k^{\gamma-1}=0 \text { i.e. } \hat{k}=\lambda^{\frac{1}{\gamma-1}} .
$$

Note that $\hat{k}^{\gamma} \lambda^{-1}=\hat{k}$. The HJB equation reduces to

$$
-\frac{1}{2} \hat{u}^{2} \sigma^{2} \gamma(1-\gamma)+[\hat{u}(\mu-r)+r] \gamma-\delta+(1-\gamma) \lambda^{\frac{1}{\gamma-1}}=0
$$

i.e.

$$
\lambda=\left(\frac{1-\gamma}{\delta-C}\right)^{1-\gamma}
$$

with

$$
C:=-\frac{1}{2} \hat{u}^{2} \sigma^{2} \gamma(1-\gamma)+[\hat{u}(\mu-r)+r] \gamma=\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2} \frac{\gamma}{1-\gamma}+r \gamma
$$

Hence

$$
v(x)=\left(\frac{1-\gamma}{\delta-C}\right)^{1-\gamma} x^{\gamma}
$$

2.

(a) Assume that $g \in C^{1}(\mathbb{R})$. Show that $v(t, x)=g(x+(T-t))$ is a solution to

$$
\begin{aligned}
\partial_{t} v+\partial_{x} v & =0 \text { on }[0, T] \times \mathbb{R}, \\
v(T, x) & =g(x) \forall x \in \mathbb{R} .
\end{aligned}
$$

[5 marks]
(b) Let $\mathcal{A}=\{\alpha:[0, T] \rightarrow\{-1,0,1\}: \alpha$ is measurable $\}$ and let

$$
v(t, x)=\inf _{\alpha \in \mathcal{A}}\left|X_{T}^{t, x, \alpha}\right|^{2} \quad \text { where } \quad X_{T}^{t, x, \alpha}=x+\int_{t}^{T} \alpha(s) d s
$$

Noting that the control has to take values in $\{-1,0,1\}$ guess an optimal Markovian control and hence solve the Bellman equation for v. Use this to verify that your guess is indeed an optimal control.
[25 marks]
Comment: Part (a) is there purely to help with part (b) but it should be easy for anyone who's done calculus. Part (b) is an unseen question using Bellman / HJB PDE.

Solution:

(a) We just calculate $\partial_{t} v=-\left(\partial_{x} g\right)(x+(T-t)), \partial_{x} v=\left(\partial_{x} g\right)(x+(T-t))$. Hence

$$
\partial_{t} v+\partial_{x} v=-\left(\partial_{x} g\right)(x+(T-t))+\left(\partial_{x} g\right)(x+(T-t))=0
$$

Moreover $v(T, x)=g(x)$ as required.
(b) By inspection we can see that

$$
a(t, x)=\left\{\begin{aligned}
-1 & \text { if } \quad x>T-t \\
0 & \text { if } x \in[-(T-t), T-t] \\
1 & \text { if } \quad x<-(T-t)
\end{aligned}\right.
$$

is an optimal control (not unique).
[10 marks]
We now write the Bellman equation

$$
\partial_{t} v+\inf _{a \in\{-1,0,1\}} a \partial_{x} v=0 \text { on }[0, T] \times \mathbb{R}, v(T, x)=x^{2}
$$

With the above control we have three cases to consider.
(i) If $x>T-t$ then the Bellman PDE becomes

$$
\partial_{t} v-\partial_{x} v=0 \text { on }[0, T] \times \mathbb{R}, v(T, x)=x^{2}
$$

Looking at how part (a) of the question worked it's easy to check that $v(t, x)=(x-$ $(T-t))^{2}$ solves this. Indeed $\partial_{t} v=2(x-(T-t)), \partial_{x} v=2(x-(T-t))$ so the equation and terminal condition is satisfied.
(ii) If $x \in[-(T-t), T-t]$ then $v(t, x)=0$ solves the equation.
(iii) Finally if $x<-(T-t)$ then the Bellman PDE becomes

$$
\partial_{t} v+\partial_{x} v=0 \text { on }[0, T] \times \mathbb{R}, v(T, x)=x^{2}
$$

Again using part (a) we see that $v(t, x)=(x+(T-t))^{2}$ is the solution. Indeed $\partial_{t} v=-2\left(x+(T-t), \partial_{x} v=2(x+(T-t))\right.$ so the equation and terminal condition is satisfied.

We can summarize this as:

$$
v(t, x)=\left\{\begin{array}{cl}
(x-(T-t))^{2} & \text { if } x>T-t \\
0 & \text { if } x \in[-(T-t), T-t] \\
(x+(T-t))^{2} & \text { if } x<-(T-t)
\end{array}\right.
$$

[10 marks]
Now we have our candidate and we need to check that it solves the HJB equation. There are again three cases:
(i) If $x \in[-(T-t), T-t]$ then $\partial_{x} v=2(x-(T-t))>0$ and so $\arg \inf _{a \in\{-1,0,1\}} a \partial_{x} v=-1$.
(ii) If $x \in[-(T-t), T-t]$ then $\partial_{x} v=0$ so $\arg \inf _{a \in\{-1,0,1\}} a \partial_{x} v \ni 0$.
(iii) Finally if $x<-(T-t)$ then $\partial_{x} v=2(x+(T-t))<0$ and so $\arg \inf _{a \in\{-1,0,1\}} a \partial_{x} v=1$.

This means that our v solves the HJB equation and it also confirms that a above is an optimal control.
[5 marks]
3. With the action space $A=\mathbb{R}$ consider the problem

$$
\begin{aligned}
v(t, x) & =\sup _{\alpha \in \mathcal{A}} \mathbb{E}\left[-\frac{1}{2} \int_{t}^{T}\left|\alpha_{s}\right|^{2} d s+g\left(X_{T}^{t, x}\right)\right] \\
d X_{s}^{t, x} & =\alpha_{s} d s+d W_{s}, \quad s \in[t, T], \quad X_{t}^{t, x}=x \in \mathbb{R}
\end{aligned}
$$

Here $g: \mathbb{R} \rightarrow \mathbb{R}$ is smooth and bounded. We say $\alpha \in \mathcal{A}$ if it is adapted and $\mathbb{E} \int_{0}^{T}\left|\alpha_{t}\right|^{2} d t<\infty$.
(a) Write down the HJB equation for v and hence show that

$$
\partial_{t} v+\frac{1}{2} \partial_{x x} v+\frac{1}{2}\left|\partial_{x} v\right|^{2}=0 \text { on }[0, T) \times \mathbb{R}
$$

with $v(T, x)=g(x)$ for $x \in \mathbb{R}$.
[10 marks]
(b) Let $u(t, x)=e^{v(t, x)}$. Show that

$$
\partial_{t} u+\frac{1}{2} \partial_{x x} u=0 \text { on }[0, T) \times \mathbb{R}
$$

with terminal condition $u(T, x)=e^{g(x)}$ for all $x \in \mathbb{R}$.
[15 marks]
(c) Show that

$$
\begin{gathered}
v(t, x)=\log \int_{\mathbb{R}^{d}} e^{g(y)} p(T-t, y-x) d y \\
p(s, z)=(2 \pi s)^{-1 / 2} e^{-\frac{|z|^{2}}{2 s}}
\end{gathered}
$$

[15 marks]
Comment: The question goes one step beyond linear-quadratic control and as such is unseen. Many intermediate steps are given, making it hopefully accessible.

Solution:

(a) The HJB equation is

$$
\partial_{t} v+\sup _{a \in A}\left[\frac{1}{2} \partial_{x x} v+a \cdot \partial_{x} v-\frac{1}{2}|a|^{2}\right]=0 \text { on }[0, T) \times \mathbb{R}
$$

with $v(T, x)=g(x)$ for $x \in \mathbb{R}$. We note that $a \mapsto a \cdot y-\frac{1}{2}|a|^{2}$ is maximized (concave function), for any $y \in \mathbb{R}$ with

$$
0=y-a^{*} \Longrightarrow a^{*}=y
$$

Hence the HJB equation is

$$
\begin{equation*}
\partial_{t} v+\frac{1}{2} \partial_{x x} v+\frac{1}{2}\left|\partial_{x} v\right|^{2}=0 \text { on }[0, T) \times \mathbb{R} \tag{1}
\end{equation*}
$$

with $v(T, x)=g(x)$ for $x \in \mathbb{R}$.
(b) We have $u(t, x)=e^{v(t, x)}$ and we calculate partial derivatives:

$$
\begin{aligned}
\partial_{t} u & =e^{v} \partial_{t} v, \quad \partial_{x} u=e^{v} \partial_{x} v, \\
\partial_{x x} u & =e^{v} \partial_{x x} v+\partial_{x} v \cdot e^{v} \cdot \partial_{x} v=e^{v} \partial_{x x} v+e^{v}\left|\partial_{x} v\right|^{2} .
\end{aligned}
$$

We multiply the HJB equation (1) by e^{v} to get

$$
e^{v} \partial_{t} v+e^{v} \frac{1}{2} \partial_{x x} v+e^{v} \frac{1}{2}\left|\partial_{x} v\right|^{2}=0 \text { on }[0, T) \times \mathbb{R},
$$

which, applying the derivative identities leads to

$$
\partial_{t} u+\frac{1}{2} \partial_{x x} u=0 \text { on }[0, T) \times \mathbb{R},
$$

with terminal condition $u(T, x)=e^{g(x)}$ for $x \in \mathbb{R}$.
(c) There are many ways to solve the heat equation: here we write down a probabilistic one. The solution is

$$
u(t, x)=\mathbb{E}\left[e^{g\left(X_{T}^{t, x}\right)}\right], \quad X_{s}^{t, x}=x+W_{s-t}
$$

so

$$
u(t, x)=\mathbb{E}\left[e^{g(x+\sqrt{T-t} Z)}\right], \quad Z \sim N(0,1)
$$

Hence

$$
u(t, x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{g(x+\sqrt{T-t} z)} e^{-\frac{|z|^{2}}{2}} d z
$$

Introducing $y=x+\sqrt{T-t} z$ and changing variables in the integral we get

$$
u(t, x)=\frac{1}{\sqrt{2 \pi(T-t)}} \int_{\mathbb{R}} e^{g(y)} e^{-\frac{|y-x|^{2}}{2(T-t)}} d y=\int_{\mathbb{R}} e^{g(y)} p(T-t, y-x) d y
$$

Finally undoing the transform (taking log) we get

$$
v(t, x)=\log \int_{\mathbb{R}} e^{g(y)} p(T-t, y-x) d y
$$

