Stochastic Control and Dynamic Asset Allocation
MATH11150 Solutions and comments April and May 2020

Throughout the examination paper we will assume the existence of a suitable probability
space (2, F,P). Results proved in the lectures may be used without further justification unless
the question is asking specifically for the proof of a particular result.

1. We consider the standard Black—Scholes model for optimal investment: a risk-free asset B
and a risky asset S given by

By :=exp(rt) and Sy := Soexp ((u— 302t +oW;) .

Here W is a Wiener process and r,u and o are real constants with ¢ > 0. Fix T > 0. Let
X, denote the investment portfolio value at time s > ¢ and X; = x > 0. There will be no cash
injections and no consumption. Let v = (1);¢[0,1) be the fraction of portfolio value invested in the
risky asset. We will assume that E fOT v2ds < oo and that v is adapted to the filtration generated
by W. For such v we write v € A. Let g(z) := 27, v € (0,1) and

o(t,x) := sup E [g(X7"")] . (1)
veA

a) Find a candidate for the optimal control and hence show that the solution to the corresponding
Bellman PDE is

v(t,x) = exp ((T - t)ﬁ)x” ,

where 8 is a constant given in terms of o, u, r and «. Give an explicit expression for S.

[7 marks]

b) Use verification theorem to check that © = v and the candidate optimal control is the true
optimal control. [8 marks]
Comment: This question is meant as a straightforward application of Bellman PDE and

verification theorems or Pontryiagin’s optimality and is available in lecture notes. Full marks
will be awarded only if verification theorem was employed correctly.

Solution:

a) We calculate (Itd formula) that dB; = rBy dt and dS; = uSy dt + oSy dW;. We then have (with
1 being the number of units of risky asset we hold)

Xt — St
By

1 X, - 1X
AB, = 1, X, — dS, + “L— "2t g,
t

dXt = wt dSt + S B
t

So
dXy = X¢ [(p— r)ve + 7] dt + 1y Xeo dWs .
We can check that the solution to this SDE is of the form X; = Xgexp(...) > 0 for Xy > 0.
The Bellman PDE is
1
Opv + sup 502u2x28mv +z[(p—r)u+r)dv| =0 on [0,T) x (0,00)
v(T,z) =27 Vx> 0.
Since X; > 0 for all ¢ € [0,T] the spatial domain is (0, c0).
The domain has to be specified and justified to get full marks.

We “guess” the form of the solution
v(t,x) = A(t)x”

with A € C1([0,7]) and A > 0. Hence we have d;v = N (t)z7, dpv = A(t)y2? "L, Oppv =
(v —1)x7=2. So we get

N (t)a -+ sup [Bouy(y = DAD)T + ML) (1= )+ 1) 327] =0,



Stochastic Control and Dynamic Asset Allocation

MATH11150 Solutions and comments April and May 2020

We can divide by 27 > 0. The function u — So2u?y(y — DAE) + A(t) (1 —r)u+1)7 is
maximized (calculus and concavity) when
0=o%uy(y—1)+ (n—r)y
ie. p—r
C TRy

The maximum itself is
1 27, %\2 *
Bi= 50 (W) y(y = 1) + (p—r)yu” +ry.
Thus
N(t) = —BA1), NT) =1 = A(t) = exp (T — 1)B) .
We have established that v(¢,2) = exp((T — t)5)z” is a solution to the Bellman PDE.

Let us check whether it’s the value function of the control problem using verification. Moreover
the Markovian optimal control 4(t,z) = % is constant and hence certainly measurable.
The wealth equation with the optimal control is

dX, = X [(u—r)a+r] dt + aX,0dW, .

This is a linear SDE with Lipschitz coefficients so it has unique solution which moreover has all
the moments when started from deterministic initial value. In particular Esup,.p |X;[* < co.

We consider ; .
e / ’Y(XS)’YilﬁXsadWs = ﬁfyg\/ (‘Ys)’Y dWs .
t t
Now
T A~
E/ | X > dt < o
0

because of the moment bound above. So the stochastic integral is a martingale. So the
verification is complete, the constant strategy @ is optimal and the optimal value for this
control is v = 0.
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2. A producer with production rate X = X; at time ¢t may allocate a portion @ = a of their
production rate to reinvestment (thus increasing production rate) and 1 — i to actual production
of a storable good. Thus

dXt:’)/Otitdt, tE[O,T], Xo=2>0,

where v > 0 is a constant. The admissible controls are measurable maps ¢t — «; € [0,1]. The
objective is to maximize the amount of goods produced over time [0, 7] i.e. maximize

J(z,a) = /OT(I —ay) Xy dt.

i) Use Pontryagin’s maximum principle to show that an optimal control is

0if ¥; < 2,
oy = . 1
1lfY;>§,

where Y; is the solution of the adjoint (backward) equation in Pontryagin optimality.

[5 marks]
ii) Assume that T > % Show that since Yr = 0 we have
(T—1) if te (T~ 3,T],
Y, = |
%exp(’y (T— %) —'yt) if te0,T— %]
[5 marks]
ili) Hence show that the optimally controlled state is given by
t 1
N ze if t€[0,T - ],
t = 1
27 (T3) it ¢ €(T—2,1].
[5 marks]

Comment: An application of Pontryagin’s optimality that’s not been seen.

Solution:

i) We can solve the controlled ODE to see that X; = xexp (fy fot o, dr) > 0.

The Hamiltonian is H(x,y,a) = vazy + (1 —a)x = ax - (yy — 1) + «. This is a linear function
of a. Since we only need to consider x > 0 this will be increasing when vy — 1 > 0 and
decreasing or flat otherwise. So, if Y; > % then this is maximized by oy = 1 and when V; < 1
then this is maximized by oy = 0. [5 marks]

ii) The question is asking us to solve the backward equation
dY; = —(yath +(1 —at)) dt, t€1[0,T), Yr=0

for the optimal control. Since Y7 = 0 we know that at (and for ¢ close to T, due to continuity)
Y: < % and so the optimal control is 0. So dY; = —dt i.e. Y; = T —t. Letting time run

backwards it is increasing linearly from 0 and will reach % when t =T — % Thus we have

— 1
Yi=T—t for te (T —11].

[2 marks]
For earlier times we have dY; = —vY; dt and so Y; = C exp(—~t). Moreover % =Y, _1 which
¥
implies that % = Cexp(—y(T — %)) ie. C= %exp(’y(T - %)) [3 marks]
iii) This follows from parts i), ii) and iii) since until 7'— % the optimal control is 1 while afterwards
the optimal control is 0. [5 marks]
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3. We consider a problem of optimal trade execution. Fix "> 0, A > 0, 0 > 0, kK > 0. The
mid-price of an asset is

dS; = )\atdt+ath, te [O,T], So > 0.
Our holding in the asset is given by
dé& = apdt , t€[0,T], & €eR.

Our cash account is

dBtz—at(St—Fgat) dt, te [0,71]7 By >0.

Here the control is @ = ay representing they “buying rate”. The constant A > 0 is the “permanent
price impact” while k > 0 is the “temporary price impact”.

Our task is to deliver one unit of the risky asset at time 7' > 0 and there is a quadratic penalty
for missing the target. We want to do this while maximising our cash balance. Let A comprise

processes oy adapted to the filtration generated by W and such that E fOT a? dt < oo. The overall
objective to maximize is, over a € A,

M(So, &0, Bo,a) = E [_%ET —1*+ Br + (¢ — 1)ST:| .

a) Show that
E?XM(SO’&)’ By, o) = By — S + &S0 + max J(&o, ),
where - ; .
J(&, ) = E[/O (— Sa+ (& - 1)) dt — 5 |ér - 1|2] .
[8 marks]

b) Find an explicit expression for the optimal control. Hint. You can use either the Bellman PDE
or Pontryagin optimality to solve this. [12 marks]

Comment: A new question in the spirit of optimal execution. It’s basically a linear-quadratic
control problem (the students will need to recognise this).

Solution:
a) Clearly we have S; = S + )\fot asds + oW, and B, = By + fot(—oerr — %a?)dr. Moreover
d(étSt) = )\Oétgt dt + O'étth + StOét dt .

[2 marks]
We note that with Holder’s inequality we have

T T t 2 T t T
IE/ f?dt:}E/ (/ ardr> dtSlE/ t/ afdrdtSTQIE/ oZdr < oo
0 0 0 0 0 0

for admissible controls. Hence E fOT & dW, = 0. [3 marks]
We thus have that

T
ESTST = fOS() + E/ ()\atft + Stat) dt .
0

This leads to

T 1
M(So. &0, Bo, ) = Bo—so+§oso+E[/ (—aeSi—FaZ—rai+Aaigi+Srar) dt—§fT—1l2] -
0

4
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Hence
M(So,fo, BOa Oé) = BO - SO + 5050 + ‘](gOa a) ’
where
g K 2 1 2
J(€0,0) = E[/O (- Sa? 4+ da(6 - 1) dt - Sler =1 ] .
This conveniently reduced the dimension of the underlying state space to 1. [3 marks]

Let us further set Q; = & — 1 so that dQ; = a; dt with Qg = & — 1. So let us maximize
T
K 1
J(Qo, ) = ]E{/o (— 5043 + )\OétQT) dt — 5@%} .
The Hamiltonian is .
H(Q,Y,Z,a) = aY + \aQ — §a2 .

We can check that this is concave as a function of (@, a), the terminal condition ¢ — —%q2 is

also concave, and so we are allowed to apply Pontryagin optimality. The adjoint equation is
dYy = —dapdt + Z, dW;, Yp=—Qr.

We know the optimal control must locally maximize the Hamiltonian and so

0=V.,H =Y, 4+ AQ¢ — kay

means that
Y+ AQ¢
= ——.
K
[7 marks]
We try the solution to the adjoint of the form Y; = ¢;Q;, ¢ € C', o1 = —1 so that
(At e)Qe
= ———— .
K
We also see that (chain rule, substitute optimal control):
A+
Yy = @t%@t dt + Q) dt
while at the same time (substituting optimal control):
A
ay, = —ALK%)Qt dt + 2, dW,.
This can only be true if Z; = 0 and if
A+ A+
</>t( (pt)+50§=—)\( t)
K K
which leads to an ODE for ¢ of the form:
A+ A+ 1
(P;:_A( Sot)_sat( spt)Z__()\_’_SOt)Q
K K K
So we must solve )
o =——(A+e)?, te[0,T], ¢r=-1.
This is
— ﬂ + L B -\
bt = K A—1 '
The optimal control is thus
t—T 1\
—1
= — -1
e ( - + P 1> (& —1)
[5 marks]




