2023/24 Semester 2

Stochastic Control and Dynamic Asset Allocation

Problem Sheet 5, for Week 9 - Last updated 18th March 2024

Recall the optimal liquidation problem: trader's inventory, an \mathbb{R}-valued process:

$$
d Q_{u}=-\alpha_{u} d u \text { with } Q_{t}=q>0 \text { initial inventory. }
$$

Here α will typically be mostly positive as the trader should sell all the assets. We will denote this process $Q_{u}=Q_{u}^{t, q, \alpha}$ because clearly it depends on the starting point q at time t and on the trading strategy α. Asset price, an \mathbb{R}-valued process:

$$
d S_{u}=\lambda \alpha_{u} d u+\sigma d W_{u}, \quad S_{t}=S
$$

We will denote this process $S_{u}=S_{u}^{t, S, \alpha}$ because clearly it depends on the starting point S at time t and on the trading strategy. Here $\lambda \leq 0$ controls how much permanent impact the trader's own trades have on its price. Trader's execution price (for $\kappa>0$):

$$
\hat{S}_{t}=S_{t}-\kappa \alpha_{t} .
$$

This means that there is a temporary price impact of the trader's trading: she doesn't receive the full price S_{t} but less, in proportion to her selling intensity.
Quite reasonably we wish to maximize (over trading strategies α that are adapted to the filtration generated by the Wiener process and such that $\left.\mathbb{E} \int_{0}^{T} \alpha_{u}^{2} d u<\infty\right)$, up to to some finite time $T>0$, the expected amount gained in sales, whilst penalising the terminal inventory (with $\theta>0$):

$$
J(t, q, S, \alpha):=\mathbb{E}[\underbrace{\int_{t}^{T} \hat{S}_{u}^{t, S, \alpha} \alpha_{u} d u}_{\text {gains from sale }}+\underbrace{Q_{T}^{t, q, \alpha} S_{T}^{t, S, \alpha}}_{\text {val. of inventory }}-\underbrace{\theta\left|Q_{T}^{t, q, \alpha}\right|^{2}}_{\text {penalty for unsold }}]
$$

The goal is to find

$$
V(t, q, S):=\sup _{\alpha} J(t, q, S, \alpha) .
$$

Exercise 5.1 (Optimal liquidation with no permanent market impact). Solve the optimal liquidation problem above in the case $\lambda=0$ (i.e. there is no permanent price impact of our trading on the market price).
Hint 1: By calculating $d\left(Q_{t} S_{t}\right)=\ldots$ reduce the dimensionality of the problem by showing that the process $\left(S_{u}\right)_{u \in[t, T]}$, as a martingale, only plays a role in terms of its starting value.
Hint 2: Next, follow the linear-quadratic example in the lecture notes but in this case the Ricatti ODE arising here has an explicit solution.

