2023/24 Semester 2 Stochastic Control and Dynamic Asset Allocation Problem Sheet 2, for Week 3 - Last updated 13th January 2024

Exercise 2.1 (Non-existence of solution).

1. Let $I = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$. Find a solution X for

$$\frac{dX_t}{dt} = X_t^2, \ t \in I, \ X_0 = 1.$$

2. Does a solution to the above equation exist on I = [0, 1]? If yes, show that it satisfies the definition of an SDE solution from SAF lectures. In not, which property is violated?

Exercise 2.2 (Non-uniqueness of solution). Fix T > 0. Consider

$$\frac{dX_t}{dt} = 2\sqrt{|X_t|}, \ t \in [0,T], \ X_0 = 0.$$

- 1. Show that $\bar{X}_t := 0$ for all $t \in [0, T]$ is a solution to the above ODE.
- 2. Show that $X_t := t^2$ for all $t \in [0, T]$ is also a solution.
- 3. Find at least two more solutions different from \bar{X} and X.

Exercise 2.3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $X : \Omega \to \mathbb{R}$ be a r.v. and let $\mathcal{G} = \{\emptyset, \Omega\}$.

- 1. Show that there is a $c \in \mathbb{R}$ such that $\mathbb{E}[X|\mathcal{G}] = c$.
- 2. Show that in fact $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}X$.

Exercise 2.4. Consider the SDE

$$dX_s^{t,x} = b(X_s^{t,x}) \, ds + \sigma(X_s^{t,x}) \, dW_s, \ t \le s \le T, \ X_t^{t,x} = x \, .$$

Assume it has a pathwise unique solution i.e. if $Y_s^{t,x}$ is another process that satisfies the SDE then

$$\mathbb{P}\left[\sup_{t\leq s\leq T}|X_s^{t,x}-Y_s^{t,x}|>0\right]=0.$$

Show that then the *flow property* holds i.e. for $0 \le t \le t' \le T$ we have almost surely that

$$X_s^{t,x} = X_s^{t',X_{t'}^{\circ,x}}, \qquad \forall s \in [t',T].$$