Throughout the examination paper we will assume the existence of a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Results proved in the lectures may be used without further justification unless the question is asking specifically for the proof of a particular result.

1. We consider the standard Black-Scholes model for optimal investment: a risk-free asset B and a risky asset S given by

$$
B_{t}:=\exp (r t) \text { and } S_{t}:=S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}\right)
$$

Here W is a Wiener process and r, μ and σ are real constants with $\sigma>0$. Fix $T>0$. Let X_{s} denote the investment portfolio value at time $s \geq t$ and $X_{t}=x>0$. There will be no cash injections and no consumption. Let $\nu=\left(\nu_{t}\right)_{t \in[0, T]}$ be the fraction of portfolio value invested in the risky asset. We will assume that $\mathbb{E} \int_{t}^{T} \nu_{s}^{2} d s<\infty$ and that ν is adapted to the filtration generated by W. For such ν we write $\nu \in \mathcal{A}$.
a) Derive the SDE satisfied by the portfolio value process $X_{s}=X_{s}^{\nu, t, x}$.
b) Consider the control problem

$$
\begin{equation*}
v(t, x):=\sup _{\nu \in \mathcal{A}} \mathbb{E}\left[\ln \left(X_{T}^{\nu, t, x}\right)\right] . \tag{1}
\end{equation*}
$$

Write down the Bellman PDE that the function v must satisfy.
c) Show that

$$
v(t, x)=\ln x-(T-t)\left[\frac{1}{2} \sigma^{2} \hat{u}^{2}-(\mu-r) \hat{u}-r\right]
$$

where

$$
\hat{u}:=\frac{\mu-r}{\sigma^{2}} .
$$

[7 marks]
d) Use the verification theorem to prove that the v above and the optimal control you identified are indeed the solution to the optimal control problem (1).
[4 marks]
2. We consider a simple model for optimal liquidation of an asset via market orders on an exchange over a finite time interval $[0, T]$. Let W be a real-valued Wiener process generating the filtration \mathbb{F}, let the process $Q=\left(Q_{t}\right)_{t \in[0, T]}$ represent the inventory level and let the process $S=\left(S_{t}\right)_{t \in[0, T]}$ represent the asset price. The control is $\alpha=\left(\alpha_{t}\right)_{t \in[0, T]}$ which represents the selling rate at t (if $\alpha_{t}>0$) or, buying rate at t (if $\alpha_{t}<0$). In our model

$$
\begin{aligned}
d Q_{t} & =-\alpha_{t} d t \\
d S_{t} & =\lambda \alpha_{t} d t+\sigma d W_{t}, \quad t \in[0, T], \quad Q_{0}=q>0, \quad S_{0}=S>0 .
\end{aligned}
$$

Here $\sigma>0$ is the volatility of the asset and $\lambda<0$ captures the permanent price impact of our trading. There is temporary price impact captured by the "slippage" parameter $\kappa>0$ and the price at which we actually sell is $S_{t}-\kappa \alpha_{t}$. Finally, there is a penalty for unsold inventory at time T given by $\theta \geq 0$.

Let the set of real-valued, \mathbb{F}-adapted processes $\alpha=\left(\alpha_{s}\right)_{s \in[0, T]}$ such that $\mathbb{E} \int_{0}^{T}\left|\alpha_{s}\right|^{2} d s<$ ∞ be denoted by \mathcal{A}. We wish to maximize, over $\alpha \in \mathcal{A}$, the functional

$$
M(q, S, \alpha)=\mathbb{E}^{q, S, \alpha}\left[\int_{0}^{T}\left(S_{t} \alpha_{t}-\kappa \alpha_{t}^{2}\right) d t+Q_{T} S_{T}-\theta Q_{T}^{2}\right]
$$

a) Prove that if $\alpha \in \mathcal{A}$ then $\mathbb{E}\left[\int_{0}^{T} Q_{t}^{2} d t\right]<\infty$. Hint: Use Hölder's inequality. [3 marks]
b) Hence show that with $\gamma:=\theta+\frac{1}{2} \lambda$

$$
M(q, S, \alpha)=q S-\theta q^{2}+J(q, \alpha), \text { where } J(q, \alpha):=\mathbb{E}^{q, \alpha}\left[\int_{0}^{T}\left(2 \gamma \alpha_{t} Q_{t}-\kappa \alpha_{t}^{2}\right) d t\right]
$$

Hint: Use product rule to calculate $d\left(Q_{t} S_{t}\right)=\ldots$ and $d\left(Q_{t}^{2}\right)=\ldots$.
c) Write down the Hamiltonian and the adjoint $\operatorname{BSDE}(\hat{Y}, \hat{Z})$ associated to the optimal control $\hat{\alpha}$ for the control problem

$$
\max _{\alpha \in \mathcal{A}} J(q, \alpha) \text { subject to } Q_{t}=q-\int_{0}^{t} \alpha_{s} d s
$$

d) Use the Pontryagin maximum principle to show that the optimal control is

$$
\hat{\alpha}_{t}=\frac{1}{\kappa}\left(\frac{1}{\gamma}+\frac{1}{\kappa}(T-t)\right)^{-1} \hat{Q}_{t} .
$$

Hint: Make the "ansatz" that $\hat{Y}_{t}=2 \xi(t) \hat{Q}_{t}$ for some $\xi \in C^{1}([0, T] ; \mathbb{R})$.
3. Let W be an \mathbb{R}-valued Wiener process generating the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ i.e $\mathcal{F}_{t}:=\sigma\left(W_{s}: s \leq t\right)$. Let the set of real-valued, \mathbb{F}-adapted processes $\alpha=\left(\alpha_{s}\right)_{s \in[0, T]}$ such that $\mathbb{E} \int_{0}^{T}\left|\alpha_{s}\right|^{2} d s<\infty$ be denoted by \mathcal{A}. For $x \in \mathbb{R}$ and $\alpha \in \mathcal{A}$ let

$$
X_{s}^{t, x, \alpha}=x+\int_{t}^{s} \alpha_{r} d W_{r}
$$

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be such that for some constants $K \geq 0, m \in \mathbb{N}$, it holds for all $x \in \mathbb{R}$ that $|g(x)| \leq K\left(1+|x|^{m}\right)$. For $t \in[0, T] \times \mathbb{R}$ let

$$
v(t, x):=\sup _{\alpha \in \mathcal{A}} \mathbb{E}\left[g\left(X_{T}^{t, x, \alpha}\right)\right] .
$$

Assume that $v \in C^{1,2}([0, T) \times \mathbb{R})$.
a) Prove that

$$
0 \geq \partial_{t} v+\frac{1}{2} a^{2} \partial_{x}^{2} v \text { on }[0, T) \times \mathbb{R}
$$

Hint: Use the Bellman principle (DPP) and then Itô's formula.
b) Hence prove that for any $t \in[0, T)$ the function $x \mapsto v(t, x)$ is concave.
c) Hence prove that if g is concave then $v(t, \cdot)=g$.

