
MATH11150
Stochastic Control and Dynamic Asset Allocation

Solutions and comments April and May 2019

Throughout the examination paper we will assume the existence of a suitable probability
space (Ω,F ,P). Results proved in the lectures may be used without further justification unless
the question is asking specifically for the proof of a particular result.

1. We consider the standard Black–Scholes model for optimal investment: a risk-free asset B
and a risky asset S given by

Bt := exp(rt) and St := S0 exp
!!
µ− 1

2σ
2
"
t+ σWt

"
.

Here W is a Wiener process and r, µ and σ are real constants with σ > 0. Fix T > 0. Let
Xs denote the investment portfolio value at time s ≥ t and Xt = x > 0. There will be no cash
injections and no consumption. Let ν = (νt)t∈[0,T ] be the fraction of portfolio value invested in the

risky asset. We will assume that E
# T

t
ν2s ds < ∞ and that ν is adapted to the filtration generated

by W . For such ν we write ν ∈ A.

a) Derive the SDE satisfied by the portfolio value process Xs = Xν,t,x
s . [3 marks]

b) Consider the control problem

v(t, x) := sup
ν∈A

E
$
ln(Xν,t,x

T )
%
. (1)

Write down the Bellman PDE that the function v must satisfy. [3 marks]

c) Show that
v(t, x) = lnx− (T − t)

$
1
2σ

2û2 − (µ− r)û− r
%
,

where

û :=
µ− r

σ2
.

[7 marks]

d) Use the verification theorem to prove that the v above and the optimal control you identified
are indeed the solution to the optimal control problem (1). [4 marks]

Comment: Parts a) and b) have been seen (a number of times). Parts c), d) and e) follow
Merton’s problem solution using Bellman PDEs students have seen in the course. This question
is meant as a straightforward application of Bellman PDE and verification theorems. All student
should be getting nearly full marks on this question.

Solution:

a) We calculate (Itô formula) that dBt = rBt dt and dSt = µSt dt+σSt dWt. We then have (with
ψt being the number of units of risky asset we hold)

dXt = ψt dSt +
Xt − ψtSt

Bt
dBt = νtXt

1

St
dSt +

Xt − νtXt

Bt
dBt .

So
dXt = Xt [(µ− r)νt + r] dt+ νtXtσ dWt .

[3 marks]

b)

∂tv + sup
u

&
1

2
σ2u2x2∂xxv + x[(µ− r)u+ r]∂xv

'
= 0 on [0, T )× (0,∞)

v(T, x) = lnx ∀x > 0 .

The domain has to be specified to get full marks. [3 marks]
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c) We “guess” the ansatz
v(t, x) = λ(t) ln(βx) + γ(t)

with λ, γ ∈ C1([0, T ]) and λ > 0. Hence we have ∂tv = λ′(t) lnx + γ′(t), ∂xv = λ(t)x−1,
∂xxv = −λ(t)x−2. So we get

λ′(t) lnx+ γ′(t) + sup
u∈R

$
− 1

2σ
2u2λ(t) + λ(t) ((µ− r)u+ r)

%
= 0 .

The function u '→ − 1
2σ

2u2λ(t) + λ(t) ((µ− r)u+ r) is maximized (calculus and concavity)
when

û =
µ− r

σ2
.

Hence
λ′(t) lnx+ γ′(t) + λ(t)

$
− 1

2σ
2û2 + (µ− r)û+ r

%
= 0 .

Collecting terms involving lnx and those without we get:

λ′(t) = 0 , λ(T ) = 1 so λ(t) = 1 for all t ∈ [0, T ]

and
γ′(t) = 1

2σ
2û2 − (µ− r)û− r =: Γ(σ, µ, r) , γ(T ) = 0 .

Integrating this we get γ(t) = −(T − t)Γ. So v(t, x) = lnx− (T − t)Γ. [7 marks]

d) We have established that v(t, x) = lnx − (T − t)Γ solves the Bellman PDE. Moreover the
Markovian optimal control û(t, x) = µ−r

σ2 is constant and hence certainly measurable.
[1 mark]

The wealth equation with the optimal control is

dX̂t = X̂t [(µ− r)û+ r] dt+ ûX̂tσ dWt .

This is a linear SDE with Lipschitz coefficients so it has unique solution which moreover has
all the moments when started from deterministic initial value. [1 mark]

We consider

t′ '→
( t′

t

1

X̂s

ûX̂sσ dWs = ûσ(Wt′ −Wt) .

This is a martingale (Wiener process is) and so the verification is complete, the constant
strategy û is optimal and the optimal value for this control is v. [2 marks]
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2. We consider a simple model for optimal liquidation of an asset via market orders on an
exchange over a finite time interval [0, T ]. Let W be a real-valued Wiener process generating
the filtration F, let the process Q = (Qt)t∈[0,T ] represent the inventory level and let the process
S = (St)t∈[0,T ] represent the asset price. The control is α = (αt)t∈[0,T ] which represents the selling
rate at t (if αt > 0) or, buying rate at t (if αt < 0). In our model

dQt = −αt dt

dSt = λαt dt+ σ dWt , t ∈ [0, T ] , Q0 = q > 0 , S0 = S > 0 .

Here σ > 0 is the volatility of the asset and λ < 0 captures the permanent price impact of our
trading. There is temporary price impact captured by the “slippage” parameter κ > 0 and the
price at which we actually sell is St − καt. Finally, there is a penalty for unsold inventory at time
T given by θ ≥ 0.

Let the set of real-valued, F-adapted processes α = (αs)s∈[0,T ] such that E
# T

0
|αs|2 ds < ∞ be

denoted by A. We wish to maximize, over α ∈ A, the functional

M(q, S,α) = Eq,S,α

)( T

0

(Stαt − κα2
t ) dt+QTST − θQ2

T

*
.

a) Prove that if α ∈ A then E
+# T

0
Q2

t dt
,
< ∞. Hint: Use Hölder’s inequality. [3 marks]

b) Hence show that with γ := θ + 1
2λ

M(q, S,α) = qS − θq2 + J(q,α) , where J(q,α) := Eq,α

)( T

0

!
2γαtQt − κα2

t

"
dt

*
.

Hint: Use product rule to calculate d(QtSt) = . . . and d(Q2
t ) = . . .. [3 marks]

c) Write down the Hamiltonian and the adjoint BSDE (Ŷ , Ẑ) associated to the optimal control α̂
for the control problem

max
α∈A

J(q,α) subject to Qt = q −
( t

0

αs ds .

[3 marks]

d) Use the Pontryagin maximum principle to show that the optimal control is

α̂t =
1

κ

-
1

γ
+

1

κ
(T − t)

.−1

Q̂t .

Hint: Make the “ansatz” that Ŷt = 2ξ(t)Q̂t for some ξ ∈ C1([0, T ];R). [8 marks]

Comment: Parts a) and b) are very simple but strictly speaking unseen but should not be hard
given the hints provided.

Parts d) and e) are a special case of the general linear-quadratic control problem solved using
Pontryagin maximum principle and this has been done in the lectures.
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Solution:

a) Let ‖α‖2 := E
# T

0
α2
s ds. We see that Qt = q −

# t

0
αs ds and hence using Hölder’s inequality we

get

Q2
t ≤ 2q2 + 2

-( t

0

αs ds

.2

≤ 2q2 + 2T

( T

0

α2
s ds .

Hence

E

)( T

0

Q2
t dt

*
=

( T

0

EQ2
t dt ≤ 2q2T + 2T 2‖α‖2 < ∞ .

[3 marks]

b) We calculate, using Itô’s formula, that

Q2
T = q2 − 2

( T

0

αtQt dt

and, using Itô’s product rule, that

QTST = qS +

( T

0

(λαtQt − Stαt) dt+ σ

( T

0

Qt dWt .

Since E
+# T

0
Q2

t dt
,
< ∞ we know that E

+# T

0
Qt dWt

,
= 0. Then

M(q, S,α) = Eq,S,α

)( T

0

(Stαt − κα2
t ) dt+QTST − θQ2

T

*

= Eq,S,α

)( T

0

(Stαt − κα2
t ) dt+ qS +

( T

0

(λαtQt − Stαt) dt− θq2 + 2θ

( T

0

αtQt dt

*

= qS − θq2 + Eq,α

)( T

0

(γαtQt − κα2
t ) dt

*

as required. [3 marks]

c) The Hamiltonian is H(q, a, y) = −ay − κa2 + 2γqa and the adjoint BSDE is

dŶt = −∂qH(Q̂t, α̂t, Ŷt) dt+ Ẑt dWt , t ∈ [0, T ] , ŶT = 0

i.e.
dŶt = −2γα̂t + Ẑt dWt , t ∈ [0, T ] , ŶT = 0 .

[3 marks]

d) We note that the Pontryagin maximum principle does apply (terminal condition is concave as
a function of q since it’s constant and the Hamiltonian is differentiable and concave in (q, a)).

We maximize the Hamiltonian as a function of a ∈ R, since it’s concave it’s enough to solve
for a in

−y − 2κa+ 2γq = 0 .

By the Pontryagin’s maximum principle

α̂t =
2γQ̂t − Ŷt

2κ
=

γ − ξ(t)

κ
Q̂t

where we used the suggested guess for Ŷ . [3 marks]
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So the adjoint BSDE becomes

dŶt = 2γ
1

κ
(ξ(t)− γ)Q̂t dt+ Ẑt dWt .

But our guess also forces us to conclude, since dQ̂t =
1
κ (ξ(t)− γ)Q̂t dt, that

dŶt = 2d(ξ(t)Q̂t) = 2ξ′(t)Q̂t dt+ 2ξ(t) dQ̂t = 2ξ′(t)Q̂t dt+
2

κ
(ξ(t)− γ)ξ(t)Q̂t dt .

[2 marks]

As both equations for Ŷ must hold simultaneously we conclude that Ẑ = 0 and moreover

ξ′(t) = − 1

κ
(ξ(t)− γ)2 , t ∈ [0, T ] , ξ(T ) = 0 .

[2 marks]

To solve this take ψ(t) := ξ(t)− γ so that ψ′(t) = − 1
κψ(t)

2 with ψ(T ) = −γ. Then

ψ(t) = −
-
1

γ
+

1

κ
(T − t)

.−1

.

[1 mark]
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3. Let W be an R-valued Wiener process generating the filtration F = (Ft)t∈[0,T ] i.e Ft := σ(Ws :

s ≤ t). Let the set of real-valued, F-adapted processes α = (αs)s∈[0,T ] such that E
# T

0
|αs|2 ds < ∞

be denoted by A. For x ∈ R and α ∈ A let

Xt,x,α
s = x+

( s

t

αr dWr .

Let g : R → R be such that for some constants K ≥ 0, m ∈ N, it holds for all x ∈ R that
|g(x)| ≤ K(1 + |x|m). For t ∈ [0, T ]× R let

v(t, x) := sup
α∈A

E
$
g(Xt,x,α

T )
%
.

Assume that v ∈ C1,2([0, T )× R).

a) Prove that

0 ≥ ∂tv +
1

2
a2∂2

xv on [0, T )× R .

Hint: Use the Bellman principle (DPP) and then Itô’s formula. [10 marks]

b) Hence prove that for any t ∈ [0, T ) the function x '→ v(t, x) is concave. [3 marks]

c) Hence prove that if g is concave then v(t, ·) = g. [3 marks]

Comment: This is a deliberately harder question. To get full marks in part a) students need to
carefully use a stopping time argument, continuity of v and the process and mean value theorem
as well as justify each step. However some marks can be collected from just DPP and Ito formula.
Part b) has not been seen as such but it requires only a) and characterization of concave functions
in terms of 2nd derivative. Part c) only requires the use of Jensen’s inequality and students would
have seen similar argument when showing that American call options are no more valuable than
European call options.

Solution:

a) Let a ∈ R and (t, x) ∈ [0, T ) × R be fixed. Let αs := a for all s ∈ [t, T ]. Let Xs := Xt,x,α
s for

all s ∈ [t, T ]. For h > 0 define

τh := inf{s > t : s > t+ h or Xs /∈ (x− 1, x+ 1)} .

Then τh → t as h → 0. Moreover for almost all ω, due to continuity of s '→ Xs(ω), we have
some h̄(ω) such that for h < h̄(ω) it holds that Xs(ω) ∈ (x− 1, x+ 1) for all s ∈ [t, t+ h) and
so for h < h̄(ω) it holds that τh(ω) = t+ h.

From the dynamic programming principle

v(t, x) ≥ E
$
v(τh, X

t,x,a
τh

)
%
.

By Itô’s formula applied to the function v and process X we have that

E
$
v(τh, X

t,x,a)− v(t, x)
%
= E

( τh

t

&
∂tv +

1

2
a2∂2

xv

'
(r,Xr) dr + E

( τh

t

∂xv(r,Xr)a dWr .

[3 marks]
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Since v ∈ C1,2([0, T )× R) we have that ∂xv is bounded on [t, t+ h]× [x− 1, x+ 1] and hence
the stochastic integral is a martingale. Thus

0 ≥ Eh
( τh

t

&
∂tv +

1

2
a2∂2

xv

'
(r,Xr) dr . (2)

[1 mark]

By Fatou’s lemma

0 ≥ lim inf
h→0

Eh
( τh

t

&
∂tv +

1

2
a2∂2

xv

'
(r,Xr) dr ≥ E

&
lim inf
h→0

h

( τh

t

&
∂tv +

1

2
a2∂2

xv

'
(r,Xr) dr

'
.

[1 mark]

Now fix ω and h < h̄(ω) so that τh = t+ h. By the mean value theorem there is ξ ∈ [t, t+ h]
such that

h

( t+h

t

&
∂tv +

1

2
a2∂2

xv

'
(r,Xr(ω)) dr =

&
∂tv +

1

2
a2∂2

xv

'
(ξ, Xξ(ω)) .

Sending h → 0 and using that v ∈ C1,2([0, T )× R) and r '→ Xr(ω) is continuous we get that

lim inf
h→0

h

( τh

t

&
∂tv +

1

2
a2∂2

xv

'
(r,Xr) dr =

&
∂tv +

1

2
a2∂2

xv

'
(t, x) .

Hence

0 ≥
&
∂tv +

1

2
a2∂2

xv

'
(t, x) .

Noting that (t, x) ∈ [0, T )× R was arbitrary completes the argument. [5 marks]

Note on marking: Students who use the DPP, correctly apply Itô’s formula and then (without
justification) write down (2) and claim that they’ve answered should get about 6-7 marks. The
idea is there, the proof is not.

b) Next we show that v is concave. Indeed, fix (t, x). Then

∂2
xv(t, x) ≤ − 2

a2
∂tv(t, x) → 0 as a → ∞ .

Hence for each t, x we have ∂2
xv(t, x) ≤ 0 i.e. v is concave. [3 marks]

c) First we note that

v(t, x) = sup
α∈A

E[g(Xt,x,α
T )] ≥ E[g(Xt,x,0

T )] = g(x) .

Using concavity of v we note that by Jensen’s inequality it holds that

E[g(Xt,x,α
T )] ≤ g

!
E[Xt,x,α

T ]
"
= g(x)

since Xt,x,α is a martingale for all α ∈ A. Hence

v(t, x) = sup
α∈A

E[g(Xt,x,α
T )] ≤ g(x) .

But then v(t, ·) = g. [3 marks]

7


