
MATH11150
Stochastic Control and Dynamic Asset Allocation

Solutions and comments Apr 2017

There are three questions, each worth 25 marks. Correct answers to all questions yields the
maximum of 75 marks.

Throughout the examination paper we will assume the existence of a suitable probability space
(Ω,F ,P). Results in the lectures may be used without further justification unless the question is
asking specifically for the proof of a particular result.

1. Given (s, y) ∈ [0, 1)× R, consider the following stochastic control problem

V (0, 0) = min
ν

J(0, 0; ν)

= min
ν

E

Xν

0,0(1)
2 −

 1

0

2 s ν(s)ds



such that






dXν
0,0(r) = ν(r)dW (r), r ∈ [0, 1]

Xν
0,0(0) = 0

ν(t) ∈ R ∀t ∈ [0, 1], (Ft)t∈[0,T ]-adapted

and E[
 1

0


ν(s)

2
ds] < ∞

(a) Write the dynamic version of the optimal control problem above, i.e. write down V (t, y) for
t ∈ [0, 1] and y ∈ R.

[2 marks]

(b) Show that one can write V (t, x) = x2 + g(t) for some function g(t) you need to identify.

Compute further ∂xV (t, x) and ∂xxV (t, x).

[8 marks]

(c) Write down the HJB equation for this stochastic control problem.

[5 marks]

(d) Find a solution to the HJB equation and compute V (0, 0).

[10 marks]
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Solution:

(a) Dynamic version of the Value function & objective functional

V (t, x) = min
ν

J(t, x; ν)

= min
ν

E

Xν

t,x(1)
2 −

 1

t

2 s ν(s)ds



such that






dXν
t,x(s) = ν(s)dW (s), s ∈ [t, T ]

Xν
t,x(t) = x

ν(t) ∈ R ∀t ∈ [0, 1] and (Ft)t∈[0,T ]-adapted

[2 Marks]

(b) Properties of the Value function For this we start by computing E

Xν

t,x(1)
2
ds


. From

the SDE we have

Xν
t,x(s) = x+

 s

t

ν(r)dW (r) = x+Xν
t,0(s) [2 Marks]

and

E

Xν

t,x(1)
2

= x2 + 2xE
 1

t

ν(s)dW (s)


+ E

 1

t

ν(s)dW (s)
2



= x2 + 0 + E[

Xν

t,0(1)
2

]

= x2 + 0 + E[
 1

t

ν2(s)ds] [2 Marks]

replacing this in the expression for V (t, x) easily yields that V (t, x) = x2 + g(t), namely

V (t, x) = min
ν

J(t, x; ν) = min
ν

E

Xν

t,x(1)
2 −

 1

t

2 s ν(s)ds



= x2 +min
ν

E

Xν

t,0(1)
2 −

 1

t

2 s ν(s)ds


= x2 + V (t, 0).

[2 Marks]

The derivatives ∂xV (t, x) = 2x and ∂xxV (t, x) = 2. [2 Marks]

(c) The HJB equation depends on the generator of the diffusion given by dX(s) = ν(s)dW (s),
in this case LuG(t, x) = ∂tG+ 1

2u
2∂xxG with ν ∈ R (and no drift).

Thus, the HJB equation is given by

min
u∈R

{LuV − 2 t u} = 0,

or

∂tV + min
u∈[0,1]


1

2
u2∂xxV − 2 t u


= 0 for (s, x) ∈ [0, 1)× R, [3 Marks]

V (1, x) = x2 for x ∈ R. [2 Marks]

The terminal condition V (1, x) follows directly from the definition of V (t, x); just set t = 1.
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(d) Find a solution of the HJB equation.

Since we have V (t, x) = x2 + V (t, 0) we have ∂xxV = 2 which can be replaced into the HJB
equation to yield:

∂tV + min
ν∈[0,1]


1

2
u22− 2 t u


= 0.

We now solve the minimization problem so that we can solve the HJB.

min
u∈R


1

2
u22− 2 t u


= min

u∈R


(u− t)2 − t2



⇒ u(t) = t [3 Marks] For the minimization

replacing u∗ = t inside the HJB we obtain that (u∗)2 − 2tu∗ = t2 − 2t2 = −t2 and hence

∂tV + min
u∈[0,1]


1

2
u2∂xxV − 2 t u


= 0 ⇔ ∂tV − t2 = 0.

This can be solved by direct integration,

∂tV = t2 ⇒
 1

t

∂tV (s, x)ds =

 1

t

s2ds

⇔ V (1, x)− V (t, x) =
1− t3

3
⇔ V (t, x) = x2 − 1− t3

3
. [6 Marks]

Finally, V (0, 0) = −1/3 [1 Marks]

Comment:

(a) Easy; evaluates basic Stochastic Analysis knowledge;

(b) Easy; evaluates basic Stochastic Analysis knowledge;

(c) Easy; Students must identfy the Dynkin generator and write down the HJB equation.
Boundary condition must also be identified

(d) Medium. Solving the minimization problem is easy when the explicit formula for ∂yyV is
injected;
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2.

(a) Denote V (t, x) as the value function of the optimal control problem below starting from time
t at position x, i.e.,

V (t, x) := inf
ν
E

 T

t

f

s,Xν

t,x(s), ν(s)

ds+ h


Xν

t,x(T )



where






dXν
t,x(s) = b


s,Xν

t,x(s), ν(s)

ds+ σ


s,Xν

t,x(s), ν(s)

dWs, s ∈ [t, T ]

Xν
t,x(t) = x

ν ∈ Uad[t, T ]

.

Make the general assumption that the SDE coefficients satisfy assumption (S1) from class and
Uad is the usual admissibility set used in class implying that the SDE is well defined and has
good properties, in particular, it holds that

E


sup
s∈[t,T ]

|Xν
t,y(s)−Xν

t,x(s)|2

≤ C|y − x|2.

Assume additionally that the function h : R → R is Lipschitz. Assume the function f :
[0, T ]×R×R → R, i.e. f(t, x, u) is Lipschitz in x uniformly in t, u and uniformly bounded in
u and t.

Then, show that there exists constants K > 0 such that

|V (t, x)− V (t, y)| ≤ K|x− y|.

[12 marks]

(b) A Black-Scholes market is given where there are only one stock (with drift a ∈ R and volatility
σ > 0) and one bank account with constant interest rate r > 0.

In this market an investor, with initial wealth x0 > 0 selects among proportion strategies ν
that are constants and with such a strategy the proportion of wealth invested in the stock is a
constant throughout.

The investor seeks to maximise his expected utility at time T which is a power-type utility

U(x) = log x, x > 0.

(i) Identify the dynamics for the underlying assets.

Show that the SDE expressing the wealth process

Xν(t)


t∈[0,T ]

is of Geometric Brownian

motion type and write its explicit solution.

[5 marks]

(ii) Write clearly the optimization problem and then compute the constant optimal proportion
strategy ν explicitly using the duality theory approach, in other words, determine:
the deflator process (Yt)t∈[0,T ] and all necessary related quantities; the optimal wealth

random variable XT using duality theory; then the optimal wealth process ( Xt)t∈[0,T ];
finally determine ν∗.

[8 marks]
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Solution:

(a) Fix any t ∈ [0, T ), x and y in R.
Step #1: Preparation. For any ε > 0, there exists an ε-control ν ∈ Uad[t, T ] with state process
X(s) := Xνε

t,x(s) for s ∈ [t, T ] such that (we omit the dependencies in t, x, νε)

V (t, x) ≥ J(t, x, νε)− ε

= E

 T

t

f

s,X(s), ν(s)


ds+ h


X(T )

Xt,x(t) = x


− ε

⇔ −V (t, x) ≤ −J(t, x, νε) + ε.

Step #2: Preparation. By definition in infimum, we have V (t, y) ≤ J(t, y, νε). Denote the
state process associated to y and νε by Y := Xνε

t,y(s) for s ∈ [t, T ].

Step #3: Proof. Using step #1 and #2, we have

V (t, y)− V (t, x)

≤ J(t, y, νε)− J(t, x, νε) + ε

= E
  T

t


f

s, Y (s), νε(s)


− f


s,X(s), νε(s)


ds

+ h

Y (T )


− h


X(T )

 X(t) = x, Y (t) = y

+ ε

≤ E

K

 T

t

|Y (s)−X(s)|ds+K|Y (T )−X(T )|
X(t) = x, Y (t) = y


+ ε

≤ K

1 + (T − t)


E


sup
s∈[t,T ]

|Y (s)−X(s)|

+ ε

≤ K

1 + (T − t)


E


sup
s∈[t,T ]

|Y (s)−X(s)|2
 1

2

+ ε,

where for the first inequality we used first the ε-control and the definition of infimum (with
νε); for the second inequality we used the properties of the expectations (can you explain why
the two expectation can be merged in this way?); the third, is simply the Lipschitz property
of f and h in (S2); and, the last inequality is simply taking the sup over the time interval and
the Cauchy-Schwarz inequality (with multiplication with 1).

The last line can be estimated through the result on SDEs stated in the problem. Injecting
this last inequality in the above estimation we find an L > 0 ∀x, y such that V (t, y)−V (t, x) ≤
L|y − x|+ ε ∀ ε > 0. Since ε is arbitrary we conclude V (t, y)− V (t, x) ≤ L|y − x|.
By inspecting the above proof, we can easily prove that V (t, x) − V (t, y) ≤ L|x − y| follows
by the same arguments. Hence x → V (·, x) is uniformly Lipschitz.

[12 marks]

(b) Question (b.i):

The wealth process. The stock and riskless process, denoted S and B respectively, have
the following dynamics as postulated by the Black-Scholes market

dS(t) = S(t) [adt+ σdW (t)] and dB(t) = rB(t)dt.

If the strategies are constant proportions of wealth, ν for the proportion of wealth invested in
the Stock and 1− ν for the proportion of wealth invested in the bank account, then equation
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of the wealth is given by

dX(t) =
νX(t)

S(t)
dS(t) +

(1− ν)X(t)

B(t)
dB(t)

= X(t) [(a− r) ν + r] dt+ νσX(t)dW (t), X(0) = x0,

As the controls are constant, X(·) can be computed explicitly as it is a Geometric Brownian
motion. The solution is given by

Xν(t) = x0 · exp


(a− r)ν + r − 1

2
ν2σ2


t


· exp {νσW (t)} .

[5 marks]

Question (b.ii): The optimization For a wealth process Xν and a control ν the
optimization problem can be written as

sup
ν∈R

E

U

Xν(T )


, U(x) = log x.

From the work in class on convex duals we have:

U(x) = log x, U ′(x) =
1

x
, I(y) = (U ′)−1(y) =

1

y

Following notation in class we define the Deflator process (Yt)t∈[0,T ] as

Yt := DtZt = exp

− rt


E

− λWT


= exp


− rt


exp


− λWT − 1

2
λ2T



with λ the usual Market price of risk for this model, i.e. λ = (a− r)/σ.

Using the theory from class, the optimal wealth random variable is XT = I(yYT ) with I(·) as
defined above for U and the number y is determined by the Lagrangian condition E[YT

XT ] =
E[YT I(yYT )] = x0 ⇔ X (y) = x0.

Hence,

XT = I(yYT ) =
1

yYT
and X (y) = x0 ⇔ E[YT

1

yYT
] = x0 ⇔ 1

y
= x0.

The optimal wealth at time t = T is given by

XT = I(yYT ) =
1

yYT
=

x0

YT
.

and the optimal wealth process ( Xt)t∈[0,T ] is given by

Xt =
1

Yt
E[YT

Xt|Ft] =
x0

Yt
, t ∈ [0, T ].

By construction, the wealth dynamics is characterized by the SDE

XtYt = x0 +

 t

0

XsYs(ν
∗
sσ − λ)dWs

with the budget constraint E[YTXT ] = x0 (since the market is complete).

The optimal strategy is given by ν = λ/σ as to cancel out the stochastic integral.

[8 marks]

Comment:
This question is fairly standard and straightforward; Tests ability to manipulate the objects

discussed in class.

(a) This question recalls the ideas behind sup / inf and ε-controls.

(b) This question is easy and is a straightforward test of the basic learning outcomes of the
course. In particular, the last part of the course on Duality theory.
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3.
Let B := (B, B⊥) be a two-dimensional Brownian motion (BM) on a stochastic basis (Ω,F ,F :=
(Ft)0≤t≤T ,P), with F denoting the filtration generated by B.

Take a financial market with a bank account with interest rate of zero, a stock price S and its
volatility Y follow

dSt = St(µdt+ YtdBt), dYt = a(Yt)dt+ b(Yt)dWt, µ ∈ R,

where W is a BM given by

Wt := ρBt +

1− ρ2B⊥

t , ρ ∈ [−1, 1], 0 ≤ t ≤ T.

The maps a, b are deterministic such that Y is positive, and the stock’s market price of risk
λ := µ/Y is square-integrable. An agent with initial wealth x > 0 and logarithmic utility function
U(·) = log(·) maximises expected utility of wealth at time T , with wealth process X generated
from trading S. Admissible strategies π ∈ A yield non-negative X. Denote by V the convex
conjugate of U . Define Z as the density process with respect to P of any martingale measure
Q ∈ M, where M denotes the set of equivalent martingale measures.

(a) Write down a stochastic exponential formula for Z involving λ and a second adapted process
λ⊥.

[1 marks]

(b) Derive the dynamics of ZX, deduce that E[ZTXT ] ≤ x, for any Q ∈ M, and show that
u(x) ≤ v(y) + xy, where u(x) := supπ∈A E[U(XT )] is the primal value function and v(y) :=
infQ∈M E[V (yZT )] is the dual value function, for y > 0.

[5 marks]

(c) Explain the relation between the optimal terminal wealth X̂T and yẐT , where y > 0, and ẐT

is the Radon-Nikodym derivative of the dual minimiser Q̂ ∈ M, and explain how y is fixed.
Hence derive a formula for X̂T , given that U(·) = log(·) .

[5 marks]

(d) Derive a formula for the optimal wealth process X̂ = (X̂t)0≤t≤T , the optimal portfolio

proportion process θ̂, and characterise the dual minimiser Q̂ ∈ M.

[5 marks]

(e) Show that the primal value function is given by u(x) = log x+H, where H is a constant which
you should express in terms of λ.

[1 marks]

(f) Suppose Yt = σ exp(αWt), t ∈ [0, T ], for positive constants σ,α. Derive the form of u(x) in
this case, show that in the limit α → 0 we have

u(x) = log x+
1

2

µ
σ

2

T,

and interpret the result.

[8 marks]
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Solution:

(a) Solution:
Zt = E(−λ ·B − λ⊥ ·B⊥)t, 0 ≤ t ≤ T.

[1 marks]

(b) Solution: The Itô product rule gives

d(ZtXt) = ZtdXt +XtdZt + d[Z, X]t.

Use
dXt = Ytπt(λtdt+ dBt) , dZt = −Zt(λtdBt + λ⊥

t dB
⊥
t ) ,

where π is the wealth in the stock, and we get

d(ZtXt) = Zt[(Ytπt −Xtλt)dBt −Xtλ
⊥
t dB

⊥
t ].

So ZX is a local martingale bounded from below, hence a super-martingale, and we have

E[ZTXT ] ≤ x.

For any strategy π ∈ A and any Z ∈ M we have, for y > 0,

E[U(XT )] ≤ E[U(XT )] + y(x− E[ZTXT ])

= E[U(XT )− yZTXT ] + xy

≤ E[V (yZT )] + xy (since U(x)− xy ≥ V (y) for y > 0).

Taking the supremum over π on the LHS and the infimum over Q on the RHS yields

u(x) ≤ v(y) + xy.

[5 marks]

(c) Solution: We get equality in (b) if
(i) XT = X̂t and ZT = Ẑt such that U ′(X̂T ) = yẐT and
(ii) if y > 0 is fixed via E[ẐT X̂T ] = x (so the super-martingale constraint becomes a martingale
constraint).

Using U ′(x) = 1/x we get X̂T = 1/(yẐT ), and using this in the constraint E[ẐT X̂T ] = x gives

X̂T =
x

ẐT

.

[5 marks]

(d) Solution: ẐX̂ is a martingale, so for t ≤ T, ẐtX̂t = E[ẐT X̂T |Ft] = x, so

X̂t =
x

Ẑt

, 0 ≤ t ≤ T.

Comparing ẐtX̂t = x with the solution of the SDE in (b) for ẐX̂:

ẐtX̂t = x+

 t

0

Ẑs[(Ysπ̂s − X̂tλt)dBt − X̂tλ̂
⊥
t dB

⊥
t ],

involving an optimal process λ̂⊥, gives σπ̂ − X̂λ = 0 and λ̂⊥ = 0, so that

θ̂t :=
π̂t

X̂t

=
λt

Yt
, λ̂⊥

t = 0, 0 ≤ t ≤ T.

Hence the dual optimiser Q̂ is the minimal martingale measure, with Ẑ = E(−λ ·B) .

[5 marks]
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(e) Solution: Using u(x) = E[log X̂T ] we get

u(x) = log x− E[log ẐT ] = log x+ E[
1

2

 T

0

λ2
tdt] =: log x+H.

[1 marks]

(f) Solution: We have λ = µ/Y = (µ/σ) exp(−αW ) , so

H =
1

2
(
µ

σ
)2E[

 T

0

exp(−2αWt)dt]

=
1

2
(
µ

σ
)2

 T

0

E[exp(−2αWt)]dt

=
1

2
(
µ

σ
)2

 T

0

exp(2α2t)dt

=
1

2
(
µ

σ
)2

1

2α2
(exp(2α2T )− 1) .

So the value function is given by

u(x) = log x+
1

2
(
µ

σ
)2

1

2α2
(exp(2α2T )− 1) .

To get the limit as α → 0 we observe directly that the expectation in the first line of the

computation of H converges to T , or take a Taylor expansion of the last formula, giving

1

2α2
(exp(2α2T )− 1) =

1

2α2
(1 + 2α2T +O(α4)− 1) = T +O(α2) ,

so in the limit α → 0 we get

u(x) = log x+
1

2
(
µ

σ
)2T.

This is the form for the case where the volatility is not stochastic (when α → 0 the

volatility becomes the constant σ) and the market price of risk is is the constant µ/σ.

[8 marks]

Comment:

(a) Standard, and a hint that they have to realise we are in an incomplete market driven by two
Brownian motions.

(b) Standard; 2 marks for the dynamics, 1 mark for for the supermartingale constraint, and 2 for
the duality inequality.

(c) This should be standard, but they must take into account dual optimisation, as we are in an
incomplete market; 2 marks each for the reasonings in (i) and (ii), and 1 mark for the formula
for X̂T .

(d) Slightly less familiar, as they have done relatively less work with incomplete markets; 1 mark
for X̂, 2 each for the optimal portfolio and dual minimiser.

(e) Easy, just need to use that (λ ·B) is a martingale.

(f) More tricky, and unseen: 4 marks for the computation, 2 for the asymptotics, 2 for the
interpretation.
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