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Reading these notes

The reader is expected to know basic stochastic analysis and ideally a little bit of
financial mathematics. The notation and basic results used throughout the notes are
in Appendix A.

Sections 1 and 2 are essential reading for what follows but Sections 3 and 4 are basically
independent of each other.

Exercises

You will find a number of exercises throughout these notes. You must make an effort
to solve them (individually or with friends).

Solutions to some of the exercises will be made available as time goes by but remember:
no one ever learned swimming by watching other people swim (and similarly no-one
ever learned mathematics by reading others’ solutions).

Other reading

It is recommended that you read the relevant chapters of Pham [11, at least Chapters
1-3 and 6] as well as Touzi [13, at least Chapters 1-4 and 9].

Additionally one recommends Krylov [9] for those wishing to see everything done in
full generality and with proofs that do not contain any vague arguments but it is not
an easy book to read. Chapter 1 however, is very readable and much recommended.
Those interested in applications in algorithmic trading should read Cartea, Jaimungal
and Penalva [4] and those who would like to learn about mean field games there is
Carmona and Delarue [3].
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1 Introduction to stochastic control through examples

We start with some motivating examples.

1.1 Merton’s problem

In this part we give a motivating example to introduce the problem of dynamic asset
allocation and stochastic optimization. We will not be particularly rigorous in these
calculations.

The market Consider an investor can invest in a two asset Black-Scholes market: a
risk-free asset (“bank” or “Bond”) with rate of return r > 0 and a risky asset (“stock”)
with mean rate of return µ > r and constant volatility σ > 0. Suppose that the price
of the risk-free asset at time t, Bt, satisfies

dBt
Bt

= r dt or Bt = B0e
rt, t ≥ 0.

The price of the stock evolves according to the following SDE:

dSt
St

= µdt+ σ dWt,

where (Wt)t≥0 is a standard one-dimensional Brownian motion one the filtered prob-
ability space (Ω,F ,F = (Ft)t≥0,P).

The agent’s wealth process and investments Let X0
t denote the investor’s

wealth in the bank at time t ≥ 0. Let πt denote the wealth in the risky asset. Let
Xt = X0

t + πt be the investor’s total wealth. The investor has some initial capital
X0 = x > 0 to invest. Moreover, we also assume that the investor saves / consumes
wealth at rate Ct at time t ≥ 0.

There are three popular possibilities to describe the investment in the risky asset:

(i) Let ξt denote the number of units stocks held at time t (allow to be fractional
and negative),

(ii) the value in units of currency πt = ξtSt invested in the risky asset at time t,

(iii) the fraction νt = πt
Xt

of current wealth invested in the risky asset at time t.

The investment in the bond is then determined by the accounting identity X0
t =

Xt − πt. The parametrizations are equivalent as long as we consider only positive
wealth processes (which we shall do). The gains/losses from the investment in the
stock are then given by

ξt dSt,
πt
St
dSt,

Xtνt
St

dSt .

The last two ways to describe the investment are especially convenient when the model
for S is of the exponential type, as is the Black-Scholes one. Using (ii),

Xt = x+

∫ t

0

πs
Ss
dSs +

∫ t

0

Xs − πs
Bs

dBs −
∫ t

0
Cs ds

= x+

∫ t

0

[
πs(µ− r) + rXs − Cs

]
ds+

∫ t

0
πsσ dWs
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or in differential form

dXt =
[
πt(µ− r) + rXt − Ct

]
dt+ πtσ dWt, X0 = x .

Alternatively, using (iii), the equation simplifies even further.1 Recall π = νX.

dXt = Xtνt
dSt
St

+Xt

(
1− νt

) dBt
Bt
− Ct dt

=
[
Xt

(
νt(µ− r) + r

)
− Ct

]
dt+Xtνtσ dWt.

We can make a further simplification and obtain an SDE in “geometric Brownian
motion” format if we assume that the consumption Ct can be written as a fraction of
the total wealth, i.e. Ct = κtXt. Then

dXt = Xt

[
νt(µ− r) + r − κt

]
dt+Xtνtσ dWt . (1.1)

Exercise 1.1. Assuming that all coefficients in SDE (1.1) are integrable, solve the
SDE for X and hence show X > 0 when X0 = x > 0.

The optimization problem The investment allocation/consumption problem is
to choose the best investment possible in the stock, bond and at the same time con-
sume the wealth optimally. How to translate the words “best investment” into a
mathematical criteria?

Classical modeling for describing the behavior and preferences of agents and investors
are: expected utility criterion and mean-variance criterion.

In the first criterion relying on the theory of choice in uncertainty, the agent com-
pares random incomes for which he knows the probability distributions. Under some
conditions on the preferences, Von Neumann and Morgenstern show that they can be
represented through the expectation of some function, called utility. Denoting it by
U , the utility function of the agent, the random income X is preferred to a random in-
come X ′ if E[U(X)] ≥ E[U(X ′)]. The deterministic utility function U is nondecreasing
and concave, this last feature formulating the risk aversion of the agent.

Example 1.2 (Examples of utility functions). The most common utility functions
are

• Exponential utility: U(x) = −eαx, the parameter α > 0 is the risk aversion.

• Log utility: U(x)− log(x)

• Power utility: U(x) = (xγ − 1)/γ for γ ∈ (−∞, 0) ∪ (0, 1).

• Iso-elastic: U(x) = x1−ρ/(1− ρ) for ρ ∈ (−∞, 0) ∪ (0, 1).

In this portfolio allocation context, the criterion consists of maximizing the expected
utility from consumption and from terminal wealth. In the the finite time-horizon
case: T <∞, this is

sup
ν,C

E
[∫ T

0
U
(
Ct
)
dt+ U

(
Xν,C
t

)]
, where (1.1) gives Xν,C

t = Xt. (1.2)

1Note that, if νt expresses the fraction of the total wealth X invested in the stock, then the fraction
of wealth invested in the bank account is simply 1− νt.
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Without consumption, i.e. ∀ t we have C(t) = 0, the optimization problem could be
written as

sup
ν

E
[
U
(
Xν
t

)]
, where (1.1) gives Xν

t = Xt. (1.3)

Note that the maximization is done under the expectation.

In the infinite time-horizon case: T =∞. In our context the optimization problem
is written as (recall that Ct = κtX

ν,κ
t )

sup
κ,ν

E
[∫ ∞

0
e−γtU

(
κtX

ν,κ
t

)
dt , with (1.1) giving Xt = Xν,κ

t .

]
(1.4)

Let us go back to the finite horizon case: T < ∞. The second criterion for
describing the behavior and preferences of agents and investors, the mean-variance
criterion, relies on the assumption that the preferences of the agent depend only on
the expectation and variance of his random incomes. To formulate the feature that
the agent likes wealth and is risk-averse, the mean-variance criterion focuses on mean-
variance-efficient portfolios, i.e. minimizing the variance given an expectation.

In our context and assuming that there is no consumption, i.e. ∀ t we have Ct = 0,
then the optimization problem is written as

inf
ν

{
Var
(
Xν
T

)
: E[Xν

T ] = m, m ∈ (0,∞)
}
.

We shall see that this problem may be reduced to the resolution of a problem in the
form (1.2) for the quadratic utility function: U(x) = λ−x2, λ ∈ R. See Example 4.12.

1.2 Optimal liquidation problem

Trader’s inventory, an R-valued process:

dQu = −αu du with Qt = q > 0 initial inventory.

Here α will typically be mostly positive as the trader should sell all the assets. We
will denote this process Qu = Qt,q,αu because clearly it depends on the starting point
q at time t and on the trading strategy α. Asset price, an R-valued process:

dSu = λαu du+ σ dWu , St = S .

We will denote this process Su = St,S,αu because clearly it depends on the starting
point S at time t and on the trading strategy. Here the constant λ controls how much
permanent impact the trader’s own trades have on its price. Trader’s execution price
(for κ > 0):

Ŝt = St − καt .
This means that there is a temporary price impact of the trader’s trading: she doesn’t
receive the full price St but less, in proportion to her selling intensity.

Quite reasonably we wish to maximize (over trading strategies α), up to to some
finite time T > 0, the expected amount gained in sales, whilst penalising the terminal
inventory (with θ > 0):

J(t, q, S, α) := E
[ ∫ T

t
Ŝt,S,αu αu du︸ ︷︷ ︸

gains from sale

+ Qt,q,αT St,S,αT︸ ︷︷ ︸
val. of inventory

− θ |Qt,q,αT |2︸ ︷︷ ︸
penalty for unsold

]
.
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Figure 1.1: Value function for the Optimal Liquidation problem, Section 1.2, as func-
tion of time and inventory, in the case λ = 0, T = 1, θ = 10, κ = 1 and S = 100.

Figure 1.2: Optimal control for the Optimal Liquidation problem, Section 1.2, as
function of time and inventory, in the case λ = 0, T = 1, θ = 10 and κ = 1.

The goal is to find
V (t, q, S) := sup

α
J(t, q, S, α) .

In Section 3.2 we will show that V satisfies a nonlinear partial differential equation,
called the HJB equation which will allow us to solve this optimal control problem and
we will see that, in the case λ = 0, the value function (see also Figure 1.1) is

V (t, q, S) = qS + γ(t)q2 ,

whilst the optimal control (see also Figure 1.2) is

a∗(t, q, S) = −1

κ
γ(t)q ,

where

γ(t) = −
(

1

θ
+

1

κ
(T − t)

)−1

.

It is possible to solve this with either the Bellman principle (see Exercise 3.12) or with
Pontryagin maximum principle (see Example 4.11). Problems of this type arise in
algorithmic trading. More can be found e.g. in Cartea, Jaimungal and Penalva [4].

1.3 Systemic risk - toy model

The model describes a network of N banks. We will use Xi
t to denote the logarithm

of cash reserves of bank i ∈ {1, . . . , N} at time t ∈ [0, T ]. Let us assume that there
are N+1 independent Wiener processes W 0,W 1, . . .WN . Let us fix ρ ∈ [−1, 1]. Each
bank’s reserves are impacted by Bi

t where

Bi
t :=

√
1− ρ2W i

t + ρW 0
t .

We will have bank i’s reserves influenced by “its own” i.e. “idiosyncratic” source of
randomness W i and also by a source of uncertainty common to all the banks, namely
W 0 (the “common noise”). Let X̄t := 1

N

∑N
i=1X

i
t i.e. the mean level of log-reserves.

We model the reserves as

dXi
u =

[
a(X̄u −Xi

u) + αiu
]
du+ σdBi

u , u ∈ [t, T ] , Xi
t = xi .

Let us look at the terms involved:

i) The term a(X̄u−Xi
u) models inter-bank lending and borrowing; if bank i is below

the average then it borrows money (the log reserves increase) whilst if bank i’s
level is above the average then it lends out money (the log reserves decrease).
This happens at rate a > 0.
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ii) The term αit is the “control” of bank i and the interpretation is that it represents
lending / borrowing outside the network of the N banks (e.g. taking deposits
from / lending to individual borrowers).

iii) The term stochastic term (with σ > 0) models unpredictable gains / losses to the
bank’s reserves with the idiosyncratic and common noises as explained above.

iv) The initial reserve (at time t) of bank i is xi.

v) Note that we should be really writing Xi,t,x,α
u for Xi

u since each bank’s reserves
depend on the starting point x = (x1, . . . , xN ) of all the banks and also on the
controls αu = (α1

u, . . . , α
N
u ) of all the individual banks. The equations are thus

fully coupled.

We will say that in this model each bank tries to minimize

J i(t, x, α) := E
[ ∫ T

t

(1

2
|αiu|2 − q αiu(X̄i,t,x,α

u −Xi,t,x,α
u ) +

ε

2
|X̄i,t,x,α

u −Xi,t,x,α
u |2

)
du

+
c

2
|X̄i,t,x,α

T −Xi,t,x,α
T |2

]
.

Let’s again look at the terms involved:

i) The term 1
2 |α

i
u|2 indicates that lending / borrowing outside the bank network

carries a cost.

ii) With −q αiu(X̄i,t,x,α
u −Xi,t,x,α

u ) for some constant q > 0 we insist that bank i will
want to borrow if it’s below the mean (αiu > 0) and vice versa.

iii) The final two terms provide a running penalty and terminal penalty for being too
different from the average (think of this as the additional cost imposed on the
bank if it’s “too big to fail” versus the inefficiency of a bank that is much smaller
than competitors).

Amazingly, under the assumption that q2 ≤ ε it is possible to solve this problem
explicitly, using either techniques we will develop in Sections 3 or 4. This is an
example from the field of N -player games, much more can be found in Carmona and
Delarue [3].

1.4 Optimal stopping

Consider a probability space (Ω,F ,P) on which we have a d′-dimensional Wiener
process W = (Wu)u∈[0,T ] generating Fu := σ(Ws : s ≤ u). Let Tt,T be the set of all
(Ft)-stopping times taking values in [t, T ].

Given some Rd-valued stochastic process (Xt,x
u )u∈[t,T ], such that Xt,x

t = x, adapted

to the filtration (Fu)u∈[t,T ] and a reward function g : Rd → R the optimal stopping
problem is to find

w(t, x) = sup
τ∈Tt,T

E
[
g(Xt,x

τ )
]
. (1.5)

Example 1.3. A typical example is the American put option. In the Black–Scholes
model for one risky asset the process (Xt,x

u )u∈[t,T ] is geometric Brownian motion, W
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is R-valued Wiener process (and P denotes the risk-neutral measure in our notation
here) so that

dXu = rXu du+ σXu dWu , u ∈ [t, T ] , Xt = x

where r ∈ R and σ ∈ [0,∞) are given constants. For the American put option
g(x) := [K − x]+. In this case w given by (1.6) gives the no-arbitrage price of the
American put option for current asset price x at time t.

It has been shown (see Krylov [9] or Gyöngy and Šǐska [6] )that the optimal stopping
problem (1.6) is a special case of optimal control problem given by

v(t, x) = sup
ρ∈R

E
[ ∫ T

t
g(Xt,x

u ) ρu e
−
∫ u
t ρr dr + g(Xt,x

T ) e−
∫ T
t ρr dr

]
(1.6)

so that w(t, x) = v(t, x). Here the control processes ρu must be adapted and such that
for a given ρ = (ρu)u∈[t,T ] there exists n ∈ N such that ρu ∈ [0, N ] for all u ∈ [t, T ].

1.5 Basic elements of a stochastic control problem

The above investment-consumption problem and its variants (is the so-called “Merton
problem” and) is an example of a stochastic optimal control problem. Several key
elements, which are common to many stochastic control problems, can be seen.

These include:

Time horizon. The time horizon in the investment-consumption problem may be
finite or infinite, in the latter case we take the time index to be t ∈ [0,∞). We will also
consider problems with finite horizon: [0, T ] for T ∈ (0,∞); and indefinite horizon:
[0, τ ] for some stopping time τ (for example, the first exit time from a certain set).

(Controlled) State process. The state process is a stochastic process which de-
scribes the state of the physical system of interest. The state process is often given by
the solution of an SDE, and if the control process appears in the SDE’s coefficients it
is called a controlled stochastic differential equation. The evolution of the state pro-
cess is influenced by a control. The state process takes values in a set called the state
space, which is typically a subset of Rd. In the investment-consumption problem, the
state process is the wealth process Xν,C in (1.1).

Control process. The control process is a stochastic process, chosen by the “control-
ler” to influence the state of the system. For example, the controls in the investment-
consumption problem are the processes (νt)t and (Ct)t (see (1.1)).

We collect all the control parameters into one process denoted α = (ν, C). The control
process (αt)t∈[0,T ] takes values in an action set A. The action set can be a complete
separable metric space but most commonly A ∈ B(Rm).

For the control problem to be meaningful, it is clear that the choice of control must
allow for the state process to exist and be determined uniquely. More generally, the
control may be forced satisfy further constraints like “no short-selling” (i.e. π(t) ≥ 0)
and or the control space varies with time. In the financial context, the control map
at time t should be decided at time t based on the available information Ft. This
translates into requiring the control process to be adapted.

Admissible controls. Typically, only controls which satisfy certain “admissibil-
ity” conditions can be considered by the controller. These conditions can be both
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technical, for example, integrability or smoothness requirements, and physical, for
example, constraints on the values of the state process or controls. For example, in
the investment-consumption problem we will only consider processes Xν,C for which
a solution to (1.1) exists. We will also require the consumption process Ct0 such that
the investor has non-negative wealth at all times.

Objective function. There is some cost/gain associated with the system, which may
depend on the system state itself and on the control used. The objective function con-
tains this information and is typically expressed as a function J(x, α) (or in finite-time
horizon case J(t, x, α)), representing the expected total cost/gain starting from system
state x (at time t in finite-time horizon case) if control process α is implemented.

For example, in the setup of (1.3) the objective functional (or gain/cost map) is

J(0, x, ν) = E
[
U
(
Xν(T )

)]
, (1.7)

as it denotes the reward associated with initial wealth x and portfolio process ν. Note
that in the case of no-consumption, and given the remaining parameters of the problem
(i.e. µ and σ), both x and ν determine by themselves the value of the reward.

Value function. The value function describes the value of the maximum possible gain
of the system (or minimal possible loss). It is usually denoted by v and is obtained,
for initial state x (or (t, x) in finite-time horizon case), by optimizing the cost over
all admissible controls. The goal of a stochastic control problem is to find the value
function v and find a control α∗ whose cost/gain attains the minimum/maximum
value: V (x) = J(x, α∗) for starting state x. For completeness sake, from (1.3) and
(1.7), if ν∗ is the optimal control, then we have the value function

V (x) = sup
ν

E
[
U
(
Xν(T )

)]
= sup

ν
J(x, ν) = J(x, ν∗). (1.8)

Typical questions of interest Typical questions of interest in Stochastic control
problems include:

• Is there an optimal control?

• Is there an optimal Markov control?

• How can we find an optimal control?

• How does the value function behave?

• Can we compute or approximate an optimal control numerically?

There are of course many more and, before we start, we need to review some concepts
of stochastic analysis that will help in the rigorous discussion of the material in this
section so far.

1.6 Exercises

The aim of the exercises in this section is to build some confidence in manipulating
the basic objects that we will be using later. It may help to browse through Section A
before attempting the exercises.

Exercise 1.4. Read Definition A.18. Show that H ⊂ S.
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Exercise 1.5 (On Gronwall’s lemma). Prove Gronwall’s Lemma (see Lemma A.6) by
following these steps:

i) Let

z(t) =
(
e−
∫ t
0 λ(r)dr

)∫ t

0
λ(s)y(s) ds.

and show that
z′(t) ≤ λ(t)e−

∫ t
0 λ(r)dr (b(t)− a(t)) .

ii) Integrate from 0 to t to obtain the first conclusion Lemma A.6.

iii) Obtain the second conclusion of Lemma A.6.

Exercise 1.6 (On liminf). Let (an)n∈N be a bounded sequence. Then the number

lim
n→∞

(inf{ak : k ≥ n})

is called limit inferior and is denoted by lim infn→∞ an.

1. Show that the limit inferior is well defined, that is, the limit limn→∞ (inf{ak : k ≥ n})
exists and is finite for any bounded sequence (an).

2. Show that the sequence (an)n∈N has a subsequence that converges to limn→∞ inf an.

Hint: Argue that for any n ∈ N one can find i ≥ n such that

inf{ak : k ≥ n} ≤ ai < inf{ak : k ≥ n}+
1

n
.

Use this to construct the subsequence we are looking for.

Exercise 1.7 (Property of the supremum/infimum). Let a, b ∈ R. Prove that

if b > 0, then sup
x∈X

{
a+ bf(x)

}
= a+ b sup

x∈X
f(x),

if b < 0, then sup
x∈X

{
a+ bf(x)

}
= a+ b inf

x∈X
f(x).

Exercise 1.8. Assume that X = (Xt)t≥0 is a martingale with respect to a filtration
F := (Ft)t≥0. Show that:

1. if for all t ≥ 0 it holds that E|Xt|2 < ∞ then the process given by |Xt|2 is a
submartingale and

2. the process given by |Xt| is a submartingale.

Exercise 1.9 (ODEs). Assume that (rt) is an adapted stochastic process such that
for any t ≥ 0

∫ t
0 |rs| ds <∞ holds P-almost surely (in other words r ∈ A).

1. Solve
dBt = Btrtdt, B0 = 1. (1.9)

2. Is the function t 7→ Bt continuous? Why?

3. Calculate d(1/Bt).
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Exercise 1.10 (Geometric Brownian motion). Assume that µ ∈ A and σ ∈ S. Let
W be a real-valued Wiener martingale.

1. Solve
dSt = St [µt dt+ σt dWt] , S(0) = s. (1.10)

Hint: Solve this first in the case that µ and σ are real constants. Apply Itô’s
formula to the process S and the function x 7→ lnx.

2. Is the function t 7→ St continuous? Why?

3. Calculate d(1/St), assuming s 6= 0.

4. With B given by (1.9) calculate d(St/Bt).

Exercise 1.11 (Multi-dimensional gBm). Let W be an Rd-valued Wiener martingale.
Let µ ∈ Am and σ ∈ Sm×d. Consider the stochastic processes Si = (Si(t))t∈[0,T ] given
by

dSit = Sitµ
i
t dt+ Sit

m∑
j=1

σijt dW
j
t , S

i
0 = si, i = 1, . . . ,m. (1.11)

1. Solve (1.11) for i = 1, . . . ,m.
Hint: Proceed as when solving (1.10). Start by assuming that µ and σ are
constants. Apply the multi-dimensional Itô formula to the process Si and the
function x 7→ ln(x). Note that the process Si is just R-valued so the multi-
dimensionality only comes from W being Rd valued.

2. Is the function t 7→ Sit continuous? Why?

Exercise 1.12 (Ornstein–Uhlenbeck process). Let a, b, σ ∈ R be constants such that
b > 0, σ > 0. Let W be a real-valued Wiener martingale.

1. Solve
drt = (b− art) dt+ σt dWt, r(0) = r0. (1.12)

Hint: Apply Itô’s formula to the process r and the function (t, x) 7→ eatx.

2. Is the function t 7→ rt continuous? Why?

3. Calculate E[rt] and E[r2
t ].

4. What is the distribution of rt?

Exercise 1.13. If X is a Gaussian random variable with E[X] = µ and Var(X) =
E[X2 − (E[X])2] = σ2 then we write X ∼ N(µ, σ2). Show that if X ∼ N(µ, σ2) then

E[eX ] = eµ+σ2

2 .
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1.7 Solutions to Exercises

Solution (Solution to Exercise 1.5). Let

z(t) =
(
e−

∫ t
0
λ(r)dr

)∫ t

0

λ(s)y(s) ds.

Then, almost everywhere in I,

z′(t) = λ(t)e−
∫ t
0
λ(r)dr

(
y(t)−

∫ t

0

λ(s)y(s) ds

)
︸ ︷︷ ︸

≤b(t)−a(t)

,

by the inequality in our hypothesis. Hence for a.a. s ∈ I

z′(s) ≤ λ(s)e−
∫ s
0
λ(r)dr (b(s)− a(s)) .

Integrating from 0 to t and using the fundamental theorem of calculus (which gives us∫ t
0
z′(s) ds = z(t)− z(0) = z(t)) we obtain∫ t

0

λ(s)y(s) ds ≤ e
∫ t
0
λ(r)dr

∫ t

0

λ(s)e−
∫ s
0
λ(r)dr (b(s)− a(s)) ds

=

∫ t

0

λ(t)e
∫ t
s
λ(r)dr (b(s)− a(s)) ds.

Using the left hand side of above inequality as the right hand side in the inequality in our
hypothesis we get

y(t) + a(t) ≤ b(t) +

∫ t

0

λ(s)e
∫ t
s
λ(r)dr (b(s)− a(s)) ds,

which is the first conclusion of the lemma. Assume now further that b is monotone increasing
and a nonnegative. Then

y(t) + a(t) ≤ b(t) + b(t)

∫ t

0

λ(s)e
∫ t
s
λ(r)dr ds

= b(t) + b(t)

∫ t

0

−de
∫ t
s
λ(r)dr = b(t) + b(t)

(
−1 + e

∫ t
0
λ(r)dr

)
= b(t)e

∫ t
0
λ(r) dr.

Solution (Solution to Exercise 1.6). Let n ∈ N.

1. The sequence bn := inf{ak : k ≥ n} is monotone increasing as {ak : k ≥ n + 1} is a
subset of {ak : k ≥ n}, hence bn ≤ bn+1. Additionally, the sequence is also bounded
by the same bounds as the initial sequence (an). A monotone and bounded sequence of
real numbers must converge and hence we can conclude that lim infn→∞ an exists.

2. It follows from the definition of infimum that there exists a sequence i = i(n) ≥ n such
that

bn = inf{ak : k ≥ n} ≤ ai < inf{ak : k ≥ n}+
1

n
= bn +

1

n
.

The sequence of indices
(
i(n)

)
n∈N might not be monotone, but since i(n) ≥ n it is

always possible to select its subsequence, say
(
j(n)

)
n∈N, that is monotone.

Since |ai(n) − bn| → 0 and (bn)n∈N converges to lim infn→∞ an, then so does (ai(n))n.
As (aj(n))n is a subsequence of (ai(n))n the same is true for (aj(n))n. Hence the claim
follows.
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Solution (Solution to Exercise 1.7). We will show the result when b > 0, assuming that the
sup takes a finite value. Let f∗ := supx∈X f(x), and V ∗ := supx∈X

{
a+ bf(x)

}
.

To show that V ∗ = a+ bf∗, we start by showing that V ∗ ≤ a+ bf∗.

Note that for all x ∈ X we have a + bf∗ ≥ a + bf(x), that is, a + bf∗ is an upper bound for
the set {y : y = a+ bf(x) for some x ∈ X}. As a consequence, its least upper bound V ∗ must
be such that a+ bf∗ ≥ V ∗ = supx∈X{a+ bf(x)}.
To show the converse, note that from the definition of f∗ as a supremum (see Definition A.1),
we have that for any ε > 0 there must exist a xε ∈ X such that f(xε) > f∗ − ε.
Hence a + bf(xε) > a + bf∗ − bε. Since xε ∈ X, it is obvious that V ∗ ≥ a + bf(xε). Hence
V ∗ ≥ a+ bf∗ − bε. Since ε was arbitrarily chosen, we have our result: V ∗ ≥ a+ bf∗.

Solution (to Exercise 1.8).

1. Since Xt is Ft-measurable it follows that |Xt|2 is also Ft-measurable. Integrability holds
by assumption. We further note that the conditional expectation of a non-negative
random variable is non-negative and hence for t ≥ s ≥ 0 we have

0 ≤ E[|Xt −Xs|2|Fs] = E[|Xt|2|Fs]− 2E[XtXs|Fs] + E[|Xs|2|Fs]
= E[|Xt|2|Fs]− 2XsE[Xt|Fs] + |Xs|2 = E[|Xt|2|Fs]− |Xs|2 ,

since Xs is Fs-measurable and since X is a martingale. Hence E[|Xt|2|Fs] ≥ |Xs|2 for
all t ≥ s ≥ 0.

2. First note that the adaptedness and integrability properties hold. Next note that∣∣E[Xt|Fs]
∣∣ ≤ E

[
|Xt|

∣∣∣Fs] by standard properties of conditional expectations. Since

X is a martingale we have
E[Xt|Fs] = Xs

and taking absolute value on both sides we see that

|Xs| =
∣∣E[Xt|Fs]

∣∣ ≤ E
[
|Xt|

∣∣∣Fs] .
Solution (Solution to Exercise 1.9). Let t ∈ [0,∞).

1. We are looking to solve:

B(t) = 1 +

∫ t

0

r(s) ds,

which is equivalent to

dB(t)

dt
= r(t)B(t) for almost all t, B(0) = 1.

Let us calculate (using chain rule and the above equation)

d

dt
[lnB(t)] =

dB(t)

dt
· 1

B(t)
= r(t).

Integrating both sides and using the fundamental theorem of calculus

lnB(t)− lnB(0) =

∫ t

0

r(s) ds

and hence

B(t) = exp

(∫ t

0

r(s) ds

)
.

2. First we note that for any function f integrable on [0,∞) we have that the map t 7→∫ t
0
f(x) dx is absolutely continuous in t and hence it is continuous. The function x 7→ ex

is continuous and composition of continuous functions is continuous. Hence t 7→ B(t)
must be continuous.
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3. There are many ways to do this. We can start with (1.9) and use chain rule:

d

dt

[
1

B(t)

]
=
dB(t)

dt
·
(
− 1

B2(t)

)
= −r(t)

(
− 1

B(t)

)
and so

d

(
1

B(t)

)
= −r(t) 1

B(t)
dt.

Or we can start with the solution that we have calculated write

d

dt

[
1

B(t)

]
=

d

dt
exp

(
−
∫ t

0

r(s)ds

)
= −r(t) exp

(
−
∫ t

0

r(s)ds

)
= −r(t)

(
− 1

B(t)

)
which leads to the same conclusion again.

Solution (Solution to Exercise 1.10). 1. We follow the hint (but skip directly to the gen-
eral µ and σ). From Itô’s formula:

d(lnS(t) =
1

S(t)
dS(t)− 1

2

1

S2(t)
dS(t) · dS(t) =

(
µ(t)− 1

2
σ2(t)

)
dt+ µ(t)dW (t).

Now we write this in the full integral notation:

lnS(t) = lnS(0) +

∫ t

0

[
µ(s)− 1

2
σ2(s)

]
ds+

∫ t

0

µ(s)dW (s).

Hence

S(t) = s exp

(∫ t

0

[
µ(s)− 1

2
σ2(s)

]
ds+

∫ t

0

µ(s)dW (s)

)
. (1.13)

Now this is the correct result but using invalid application of Itô’s formula. If we want
a full proof we call (1.13) a guess and we will now check that it satisfies (1.10). To that
end we apply Itô’s formula to x 7→ s exp(x) and the Itô process

X(t) =

∫ t

0

[
µ(s)− 1

2
σ2(s)

]
ds+

∫ t

0

µ(s)dW (s).

Thus

dS(t) = d(f(X(t)) = seX(t)dX(t) +
1

2
seX(t)dX(t)dX(t)

= S(t)

[(
µ(t)− 1

2
σ2(t)

)
dt+ µ(t)dW (t)

]
+

1

2
S(t)σ2(t)dt.

Hence we see that the process given by (1.13) satisfies (1.10).

2. The continuity question is now more intricate than in the previous exercise due to the
presence of the stochastic integral. From stochastic analysis in finance you know that
Z given by

Z(t) :=

∫ t

0

σ(s)dW (s)

is a continuous stochastic process. Thus there is a set Ω′ ∈ F such that P(Ω′) = 1
and for each ω ∈ Ω′ the function t 7→ S(ω, t) is continuous since it’s a composition of
continuous functions.

3. If s 6= 0 then S(t) 6= 0 for all t. We can thus use Itô’s formula

d

(
1

S(t)

)
= − 1

S2(t)
dS(t) +

1

S3(t)
dS(t)dS(t)

= − 1

S(t)
[µ(t)dt+ σ(t)dW (t)] +

1

S(t)
σ2(t)dt

=
1

S(t)

[(
−µ(t) + σ2(t)

)
dt− σ(t)dW (t)

]
.
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4. We calculate this with Itô’s product rule:

d

(
S(t)

B(t)

)
= S(t)d

(
1

B(t)

)
+

1

B(t)
dS(t) + dS(t)d

(
1

B(t)

)
= −r(t) S(t)

B(t)
dt+ µ(t)

S(t)

B(t)
dt+ σ(t)

S(t)

B(t)
dW (t)

=
S(t)

B(t)
[(µ(t)− r(t)) dt+ σ(t)dW (t)] .

Solution (Solution to Exercise 1.11). 1. We Itô’s formula to the function x 7→ ln(x) and
the process Si. We thus obtain, for Xi(t) := ln(Si(t)), that

dXi(t) = d ln(Si(t)) =
1

Si(t)
dSi(t)−

1

2

1

S2
i (t)

dSi(t)dSi(t)

= µi(t)dt+

n∑
j=1

σij(t)dWj(t)−
1

2

n∑
j=1

σ2
ij(t)dt

=

µi(t)− 1

2

n∑
j=1

σ2
ij(t)

 dt+

n∑
j=1

σij(t)dWj(t).

Hence

Xi(t)−Xi(0) = lnSi(t)− lnSi(t)

=

∫ t

0

µi(s)− 1

2

n∑
j=1

σ2
ij(s)

 ds+

n∑
j=1

∫ t

0

σij(s)dWj(s).

And so

Si(t) = Si(0) exp


∫ t

0

µi(s)− 1

2

n∑
j=1

σ2
ij(s)

 ds+

n∑
j=1

∫ t

0

σij(s) dWj(s)

 .

2. Using the same argument as before and in particular noticing that for each j the function
t 7→

∫ t
0
σij(s)dWj(s) is continuous for almost all ω ∈ Ω we get that t 7→ Si(t) is almost

surely continuous.

Solution (to Exercise 1.12). 1. What the hint suggests is sometimes referred to as the
“integrating factor technique.” We see that

d(eatr(t)) = eatdr(t) + aeatr(t)dt = eat [bdt+ σdW (t)] .

Integrating we get

eatr(t) = r(0) +

∫ t

0

easb ds+

∫ t

0

easσdW (s)

and hence

r(t) = e−atr(0) +

∫ t

0

e−a(t−s)b ds+

∫ t

0

e−a(t−s)σdW (s).

2. Yes. The arguments are the same as in previous exercises.

3. We know that stochastic integral of a deterministic integrand is a normally distributed
random variable with mean zero and variance given via the Itô isometry. Hence

Er(t) = e−atr(0) +
b

a

(
1− e−at

)
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and

Er2(t) = (Er(t))2 + e−2atσ2E

[(∫ t

0

easdW (s)

)2
]

= (Er(t))2 + e−2atσ2

∫ t

0

e2asds = (Er(t))2 +
σ2

2a

(
1− e−2at

)
.

Hence

Var [r(t)] =
σ2

2a

(
1− e−2at

)
.

4. Stochastic integral of a deterministic integrand is a normally distributed random vari-
able. Hence for each t we know that r(t) is normally distributed with mean and variance
calculated above.

Solution (to Exercise 1.13). Let Y ∼ N(0, 1). Then

EeX = Eeµ+σY =
1√
2π

∫
R
eµ+σze−

1
2 z

2

dz =
1√
2π

∫
R
e−

1
2 [(z−σ)2−σ2−2µ]dz

= e
1
2σ

2+µ 1√
2π

∫
R
e−

1
2 (z−σ)2dz = e

1
2σ

2+µ,

since z 7→ 1√
2π
e−

1
2 (z−σ)2 is a density of normal random variable with mean σ and variance 1

and thus its integral over the whole of real numbers must be 1.
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2 Stochastic control of diffusion processes

In this section we introduce existence and uniqueness theory for controlled diffusion
processes and building on that formulate properly the stochastic control problem we
want to solve. Finally we explore some properties of the value function associated to
the control problem.

2.1 Equations with random drift and diffusion

Let a probability space (Ω,F ,P) be given. Let W be a d′-dimensional Wiener process
and let ξ be a Rd-valued random variable independent of W . Let Ft := σ(ξ,Ws : s ≤
t). We consider a stochastic differential equation (SDE) of the form,

dXt = bt(Xt) dt+ σt(Xt) dWt , t ∈ [0, T ] , X0 = ξ . (2.1)

Equivalently, we can write this in the integral form as

Xt = ξ +

∫ t

0
bs(Xs) ds+

∫ t

0
σs(Xs) dWs , t ∈ [0, T ] . (2.2)

Here σ : Ω× [0, T ]×Rd×d′ and b : Ω× [0, T ]×Rd → Rd. Written component-wise, the
SDE is

dXi
t = bi(t,Xt) dt+

d′∑
j=1

σij(t,Xt) dW
j
t , t ∈ [0, T ] , Xi

0 = ξi, i ∈ {1, · · · ,m}.

The drift and volatility coefficients

(t, ω, x) 7→
(
bt(ω, x), σt(ω, x)

)
are progressively measurable with respect to Ft ⊗ B(Rd); as usual, we suppress ω in
the notation and will typically write bt(x) instead of bt(ω, x) etc. Note that t = 0
plays no special role in this; we may as well start the SDE at some time t ≥ 0 (even
a stopping time), and we shall write Xt,x = (Xt,x

s )s∈[t,T ] for the solution of the SDE
started at time t with initial value x (assuming it exists and is unique).

Definition 2.1 (Solution of an SDE). We say that a process X is a (strong) solution
to the SDE (2.16) if

i) The process X is continuous on [0, T ] and adapted to (Ft)t∈[0,T ],

ii) we have

P
[∫ T

0
|bs(Xs)| ds <∞

]
= 1 and P

[∫ T

0
|σs(Xs)|2 ds <∞

]
= 1 ,

iii) The process X satisfies (2.11) almost surely for all t ∈ [0, T ] i.e. there is Ω̄ ∈ F
such that P(Ω̄) = 1 and for all ω ∈ Ω̄ it holds that

Xt(ω) = ξ(ω)+

∫ t

0
bs(ω,Xs(ω)) ds+

∫ t

0
σs(ω,Xs(ω)) dWs(ω) , ∀t ∈ [0, T ] . (2.3)
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Given T ≥ 0, and m ∈ N, we write Hm
T for the set of progressively measurable processes

φ such that

‖φ‖HmT := E
[∫ T

0
|φt|m dt

] 1
m

<∞.

Proposition 2.2 (Existence and uniqueness of solutions). Assume that for all x ∈ Rd
the processes (bt(x))t∈[0,T ] and (σt(x))t∈[0,T ] are progressively measurable, that E|ξ|2 <
∞ and that there exists a constant K such that a.s. for all t ∈ [0, T ] and x, y ∈ Rd it
holds that

‖b(0)‖H2
T

+ ‖σ(0)‖H2
T
≤ K,

|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y| .
(2.4)

Then the SDE has a unique (strong) solution X on the interval [0, T ]. Moreover, there
exists a constant C = C(K,T ) such that

E

[
sup

0≤t≤T
|Xt|2

]
≤ C

(
1 + E[ |ξ|2]

)
.

We give an iterative scheme which we will show converges to the solution. To that
end let X0

t = ξ for all t ∈ [0, T ]. For n ∈ N let, for t ∈ [0, T ], the process Xn be given
by

Xn
t = ξ +

∫ t

0
bs(X

n−1
s ) ds+

∫ t

0
σs(X

n−1
s ) dWs . (2.5)

Note that here the superscript on X indicates the iteration index.2 We can see that
X0 is (Ft)t∈[0,T ]-adapted and hence (due to progressive measurability of b and σ) X1

is (Ft)t∈[0,T ]-adapted and repeating this argument we see that each Xn is (Ft)t∈[0,T ]-
adapted.

Before we prove Proposition 2.2 by taking the limit in the above iteration we will need
the following result.

Lemma 2.3. Under the conditions of Proposition 2.2 there is a constant C, depending
on K and T (but independent of n) such that for all n ∈ N and t ∈ [0, T ] it holds that

E|Xn
t |2 < C(1 + E|ξ|2)eCt .

Proof. We see that

E|Xn
t |2 ≤ 4E|ξ|2 + 4E

(∫ t

0
|bs(Xn−1

s )| ds
)2

+ 4E
(∫ t

0
|σs(Xn−1

s )| dWs

)2

.

Using Hölder’s inequality and Itô’s isometry we can see that

E|Xn
t |2 ≤ 4E|ξ|2 + 4tE

∫ t

0
|bs(Xn−1

s )|2 ds+ 4E
∫ t

0
|σs(Xn−1

s )|2 ds .

Using the Lipschitz continuity and growth assumption (2.4) we thus obtain that

E
∫ t

0
|bs(Xn−1

s )|2 ds ≤ 2E
∫ t

0
|bs(0)|2 ds+2K2E

∫ t

0
|Xn−1

s |2 ds ≤ 2K2

(
1 + E

∫ t

0
|Xn−1

s |2 ds
)

2Instead of a power or index in a vector.
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and similarly

E
∫ t

0
|σs(Xn−1

s )|2 ds ≤ 2K2

(
1 + E

∫ t

0
|Xn−1

s |2 ds
)
.

Thus for all t ∈ [0, T ] we have, with L := 16K2(t ∨ 1), that

E|Xn
t |2 ≤ L

(
1 + E|ξ|2

)
+ L

∫ t

0
E|Xn−1

s |2 ds .

Let us iterate this. For n = 1 we have

E|X1
t |2 ≤ L

(
1 + E|ξ|2

)
+LtE|ξ|2 ≤ L

(
1 + E|ξ|2

)
+LtL(1+E|ξ|2) = L

(
1 + E|ξ|2

)
[1 + Lt] .

For n = 2 we have

E|X2
t |2 ≤ L

(
1 + E|ξ|2

)
+ L

∫ t

0
E|X1

s |2 ds ≤ L
(
1 + E|ξ|2

)
+ L · L(1 + E|ξ|2)t+ L · (Lt)2

2

≤ L(1 + E|ξ|2)

[
1 + Lt+

(Lt)2

2

]
.

If we carry on we see that

E|Xn
t |2 ≤ L(1 + E|ξ|2)

[
1 + Lt+

(Lt)2

2!
+ · · ·+ (Lt)n

n!

]
≤ L(1 + E|ξ|2)

 ∞∑
j=0

(Lt)j

j!


and hence for all t ∈ [0, T ] we have that

E|Xn
t |2 ≤ L(1 + E|ξ|2)eLt .

Proof of Proposition 2.2. We start with (2.5), take the difference between iteration
n+1 and n, take the square of the Rd norm, take supremum and take the expectation.
Then we see that

E sup
s≤t
|Xn+1

s −Xn
s |2

≤ 2E sup
s≤t

∣∣∣∣∫ s

0
[br(X

n
r )− br(Xn−1

r )] dr

∣∣∣∣2 + 2E sup
s≤t

∣∣∣∣∫ s

0
[σr(X

n
r )− σr(Xn−1

r )] dWr

∣∣∣∣2
=: 2I1(t) + 2I2(t) .

We note that for all t ∈ [0, T ], having used Hölder’s inequality in the penultimate step
and assumption (2.4) in the final one, it holds that

I1(t) = E sup
s≤t

∣∣∣∣∫ s

0
[br(X

n
r )− br(Xn−1

r )] dr

∣∣∣∣2 ≤ E sup
s≤t

(∫ s

0
|br(Xn

r )− br(Xn−1
r )| dr

)2

≤ E
(∫ t

0
|br(Xn

r )− br(Xn−1
r )| dr

)2

≤ tE
∫ t

0
|br(Xn

r )− br(Xn−1
r )|2 dr

≤ K2tE
∫ t

0
|Xn

r −Xn−1
r |2 dr .
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Moreover Mt =
∫ t

0 [σr(X
n
r ) − σr(X

n−1
r )] dWr is a martingale and so (|Mt|)t∈[0,T ] is

a non-negative sub-martingale. Then Doob’s maximal inequality, see Theorem A.14
with p = 2, followed by Itô’s isometry implies that for all t ∈ [0, T ] it holds that

I2(t) = E sup
s≤t

∣∣∣∣∫ s

0
[σr(X

n
r )− σr(Xn−1

r )] dWr

∣∣∣∣2 ≤ 4E
∣∣∣∣∫ t

0
[σr(X

n
r )− σr(Xn−1

r )] dWr

∣∣∣∣2
= 4E

∫ t

0
|σr(Xn

r )− σr(Xn−1
r )|2 dr ≤ 4K2E

∫ t

0
|Xn

r −Xn−1
r |2 dr .

Hence, with L := 2K2(T + 4) we have for all t ∈ [0, T ] that

E sup
s≤t
|Xn+1

s −Xn
s |2 ≤ L

∫ t

0
E|Xn

r −Xn−1
r |2 dr . (2.6)

Let
C∗ := sup

t∈T
E|X1

t − ξ|2

and note that Lemma 2.3 implies that C∗ < ∞. Using this and iterating the estim-
ate (2.6) we see that for all t ∈ [0, T ] we have that

E sup
s≤t
|Xn+1

s −Xn
s |2 ≤ C∗

Lntn

n!
. (2.7)

For f ∈ C([0, T ];Rd) let us define the norm ‖f‖∞ := sups∈[0,T ] |fs|. Due to Chebychev–
Markov’s inequality we thus have

P
[
‖Xn+1 −Xn‖∞ >

1

2n+1

]
= P

[
‖Xn+1 −Xn‖2∞ >

1

22(n+1)

]
≤ 4n+1C∗

Lntn

n!
= 4C∗

4nLntn

n!
.

Let En := {ω ∈ Ω : ‖Xn+1(ω)−Xn(ω)‖∞ > 1
2n+1 }. Note that clearly3 it holds that

∞∑
n=0

PEn <∞ .

By the Borel–Cantelli Lemma it thus holds that there is Ω̄ ∈ F and a random variable
N : Ω→ N such that P(Ω̄) = 1 and for all ω ∈ Ω̄ we have that

‖Xn+1(ω)−Xn(ω)‖∞ ≤ 2−(n+1) ∀n ≥ N(ω) .

For any ω ∈ Ω̄, any m ∈ N and n ≥ N(ω) we then have, due to the triangle inequality,
that

‖Xn+m(ω)−Xn(ω)‖∞ ≤
m−1∑
j=0

‖Xn+j+1(ω)−Xn+j(ω)‖∞

≤
m−1∑
j=0

2−(n+j+1) = 2−(n+1) 1−
(

1
2

)m
1− 1

2

≤ 2−n .

(2.8)

This means that the sequence Xn(ω) is a Cauchy sequence in the Banach space
C([0, T ];Rd) and thus a limit X(ω) such that Xn(ω) → X(ω) in C([0, T ];Rd) as

3Indeed for any x ∈ R we have
∑∞
n=0

xn

n!
= ex <∞.
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n → ∞. Moreover for each n ∈ N and each t ∈ [0, T ] the random variable Xn
t is Ft

measurable which means that Xt = limn→∞X
n
t is Ft measurable.

Finally we have to show that the limit X satisfies the SDE. On the left hand side the
convergence is trivial. To take the limit in the bounded variation integral we can use
simply that for all ω ∈ Ω we have that ‖X(ω)−Xn(ω)‖∞ < 2−n for n ≥ N(ω). This
follows by taking m→∞ in (2.8) with n ∈ N fixed. Then∣∣∣∣∫ t

0
bs(ω,X

n
s (ω)) ds−

∫ t

0
bs(ω,Xs(ω)) ds

∣∣∣∣ ≤ K ∫ t

0
|Xn

s (ω)−Xs(ω)| ds→ 0

as n→∞ due to Lebesgue’s theorem on dominated convergence.

To deal with the stochastic integral we need to do a bit more work. We see that for
any t ∈ [0, T ] it holds that

E|Xn+m
t −Xn

t |2 = E

∣∣∣∣∣∣
m−1∑
j=0

(Xn+j+1
t −Xn+j

t )2−(n+j)2n+j

∣∣∣∣∣∣
2

.

Using Hölder’s inequality we get that for any t ∈ [0, T ] it holds that

E|Xn+m
t −Xn

t |2 ≤

m−1∑
j=0

4−(n+j)

m−1∑
j=0

E|Xn+j+1
t −Xn+j

t |2 4n+j

 .

We note that
m−1∑
j=0

4−j =
1−

(
1
4

)m
1− 1

4

≤ 4

3

From (2.7) we thus get that for all m ∈ N and for all t ∈ [0, T ] it holds that

E|Xn+m
t −Xn

t |2 ≤
4

3
C∗4−n

m−1∑
j=0

(4Lt)n+j

(n+ j)!
≤ 4

3
C∗e4Lt4−n .

Hence for any t ∈ [0, T ] the sequence (Xn
t )n∈N is Cauchy in L2(Ω) and so Xn

t → Xt in
L2(Ω) as n→∞ for all t ∈ [0, T ]. Finally E|Xt|2 ≤ lim infn→∞ E|Xn

t |2 ≤ C(1+|ξ|2)eLt

due to Lemma 2.3. Thus for each n ∈ N we have

E|Xn
t −Xt|2 ≤ 2E|Xn

t |2 + 2E|Xt|2 ≤ 4C(1 + |ξ|2)eLt =: g(t) .

Noting that g ∈ L1(0, T ) we can conclude, using Lebesgue’s theorem on dominated
convergence that

lim
n→∞

∫ T

0
E|Xn

t −Xt|2 dt =

∫ T

0
lim
n→∞

E|Xn
t −Xt|2 = 0 .

This, together with Itô’s isometry and assumption (2.4) allows us to take the limit in
the stochastic integral term arising in (2.5).

Remark 2.4. In the setup above the coefficients b and σ are random. In applications
we will deal essentially with two settings for b and σ.

i) b and σ are deterministic, measurable, functions, i.e. (t, x) 7→ bt(x) and (t, x) 7→
σt(x) are not random.
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ii) b and σ are effectively random maps, but the randomness has a specific form.
Namely, the random coefficients b(t, ω, x) and σ(t, ω, x) are of the form

bt(ω, x) := b̄
αt(ω)
t (x) and σt(ω, x) := σ̄

αt(ω)
t (x)

where b̄, σ̄ are deterministic measurable functions on [0, T ]×Rd×A , A is a com-
plete separable metric space and (αt)t∈[0,T ] is a progressively measurable process
valued in A.

This case arises in stochastic control problems that we will study later on, an
example of which can already be seen with SDE (1.1).

Some properties of SDEs

In the remainder, we always assume that the coefficients b and σ satisfy the above
conditions.

Proposition 2.5 (Further moment bounds). Let m ∈ N, m ≥ 2. Assume that for
all x ∈ Rd the processes (bt(x))t∈[0,T ] and (σt(x))t∈[0,T ] are progressively measurable,
that E|ξ|m <∞ and that there exists a constant K such that a.s. for all t ∈ [0, T ] and
x, y ∈ Rd it holds that

‖b(0)‖HmT + ‖σ(0)‖HmT ≤ K,
|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y| .

Then there exists a constant C = C(K,T,m) such that

E

[
sup

0≤t≤T
|Xt|m

]
≤ C

(
1 + E[ |ξ|m]

)
.

This can be proved using similar steps to those used in the proof of Lemma 2.3 but
employing the Burkholder–Davis–Gundy inequality when estimating the expectation
of the supremum of the stochastic integral term.

Proposition 2.6 (Stability). Let m ∈ N, m ≥ 2. Assume that for all x ∈ Rd the
processes (bt(x))t∈[0,T ] and (σt(x))t∈[0,T ] are progressively measurable, that E|ξ|m <∞
and that there exists a constant K such that a.s. for all t ∈ [0, T ] and x, y ∈ Rd it
holds that

‖b(0)‖HmT + ‖σ(0)‖HmT ≤ K,
|bt(x)− bt(y)|+ |σt(x)− σt(y)| ≤ K|x− y| .

Let x, x′ ∈ Rd and 0 ≤ t ≤ t′ ≤ T .

i) There exists a constant C = C(K,T,m) such that

E

[
sup
t≤s≤T

|Xt,x
s −Xt,x′

s |m
]
≤ C|x− x′|m.

ii) Suppose in addition that there is a constant K ′ such that

E

[∫ s′

s
|br(0)|2 + |σr(0)|2 dr

]
≤ K ′|s− s′|
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for all 0 ≤ s ≤ s′ ≤ T . Then there exists C = C(K,T ) such that

E

[
sup

t′≤s≤T
|Xt,x

s −Xt′,x
s |2

]
≤ C(K + |x|2)|t− t′|.

To prove the above two propositions one uses often the following inequalities: Cauchy-
Schwartz, Hölder and Young’s inequality; Gronwall’s inequality (see Lemma A.6);
Doob’s maximal inequality (see Theorem A.14) and Burkholder–Davis–Gundy in-
equality.

Proposition 2.7 (Flow property). Let x ∈ Rm and 0 ≤ t ≤ t′ ≤ T . Then

Xt,x
s = X

t′,Xt,x

t′
s , s ∈ [t′, T ].

(This property holds even if t, t′ are stopping times.)

See Exercise 2.17 for proof.

Proposition 2.8 (Markov property). Let x ∈ Rd and 0 ≤ t ≤ t′ ≤ s ≤ T . If b and σ
are deterministic functions, then

Xt,x
s is a function of t, x, s, and

(
Wr −Wt

)
r∈[t,s]

.

Moreover,

E
[
Φ
(
Xt,x
r , t′ ≤ r ≤ s

)
|Ft′
]

= E
[
Φ
(
Xt,x
r , t′ ≤ r ≤ s

)
|Xt,x

t′

]
for all bounded and measurable functions Φ : C0([t′, s];Rm)→ R.

On the left hand side (LHS), the conditional expectation is on Ft′ that contains all
the information from time t = 0 up to time t = t′. On the right hand side (RHS), that
information is replaced by the process Xt,x

t′ at time t = t′. In words, for Markovian
processes the best prediction of the future, given all knowledge of the present and past
(what you see on the LHS), is the present (what you see on the RHS; all information
on the past can be ignored).

2.2 Controlled diffusions

We now introduce controlled SDEs with a finite time horizon T > 0; the infinite-
horizon case is discussed later. Again, (Ω,F ,P) is a probability space with filtration
(Ft) and a d′-dimensional Wiener process W compatible with this filtration.

We are given an action set A (in general separable complete metric space) and let
A0 be the set of all A-valued progressively measurable processes, the controls. The
controlled state is defined through an SDE as follows. Let

b : [0, T ]× Rd ×A→ Rd and σ : [0, T ]× Rd ×A→ Rd×d
′

be measurable functions.
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Assumption 2.9. Assume that for each t ∈ [0, T ] that (x, a) 7→ b(t, x, a) and (x, a) 7→
σ(t, x, a) are continuous, assume that for each t ∈ [0, T ] we have x 7→ b(t, x, a) and
x 7→ σ(t, x, a) continuous in x uniformly in a ∈ A and that there is a constant K such
that for any t, x, y, a we have

|b(t, x, a)− b(t, y, a)|+ |σ(t, x, a)− σ(t, y, a)| ≤ K|x− y|. (2.9)

Moreover for all t, x, a it holds that

|b(t, x, a)|+ |σ(t, x, a)| ≤ K(1 + |x|+ |a|) . (2.10)

We will refer to the set

A := {α ∈ H2
T : ∀ω ∈ Ω, t ∈ [0, T ] αt(ω) ∈ A and α is progressively measurable }

set as admissible controls.

Given a fixed control α ∈ A, we consider the SDE for 0 ≤ t ≤ T ≤ ∞ for s ∈ [t, T ]

dXs = b
(
s,Xs, αs

)
dt+ σ

(
s,Xs, αs

)
dWs, Xt = ξ. (2.11)

With Assumption 2.9 the SDE (2.11) is a special case of an SDE with random coef-
ficients, see (2.1). In particular, if we fix α ∈ A then taking b̃t(x) := b(t, x, αt) and
σ̃t(x) := σ(t, x, αt) we have the progressive measurability of b̃ and σ̃ (since b, σ are
assumed to be measurable and α is progressively measurable. Moreover

‖b̃(0)‖2H2
T

= E
∫ T

0
|b(t, 0, αt)|2 dt ≤ E

∫ T

0
K2(1 + |αt)|)2 dt ≤ 2K2T + 2K2‖α‖2H2

T
<∞

and similarly ‖σ̃(0)‖2H2
T
< ∞. Finally the Lipschitz continuity of the coefficients in

space clearly holds and so due to Proposition 2.2 we have the following result.

Proposition 2.10 (Existence and uniqueness). Let t ∈ [0, T ], ξ ∈ L2(Ft) and α ∈ A0.
Then SDE (2.11) has a unique (strong) Markov solution X = Xα

t,ξ on the interval [t, T ]
such that

sup
α∈A

E sup
s∈[t,T ]

|Xs|2 ≤ c(1 + E|ξ|2) .

Moreover, the solution has the properties listed in Propositions 2.5 and 2.6.

2.3 Stochastic control problem with finite time horizon

In this section we revisit the ideas of the opening one and give a stronger mathematical
meaning to the general setup for optimal control problems. We distinguish the finite
time horizon T <∞ and the infinite time horizon T =∞, the functional to optimize
must differ.

In general, texts either discuss maximization or a minimization problems. Using ana-
lysis results, it is easy to jump between minimization and maximization problems:
maxx f(x) = −minx−f(x) and the x∗ that maximizes f is the same one that minim-
izes −f (draw a picture to convince yourself).
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Finite time horizon

Let

J(t, ξ, α) := E
[∫ T

t
f(s,Xα,t,ξ

s , αs) ds+ g(Xα,t,ξ
T )

]
,

where Xt,ξ solves (2.11) (with initial condition X(t) = ξ). The J here is called the
objective functional. We refer to f as the running gain (or, if minimizing, running
cost) and to g as the terminal gain (or terminal cost).

We will ensure the good behavior of J through the following assumption.

Assumption 2.11. There is K > 0, m ∈ {0, 1, . . .} such that for all t, x, y, a we have

|g(x)− g(y)|+ |f(t, x, a)− f(t, y, a)| ≤ K(1 + |x|m + |y|m)|x− y|,

|f(t, 0, a)| ≤ K(1 + |a|2) .

Note that this assumption is not the most general. For bigger generality consult
e.g. [9].

The optimal control problem formulation We will focus on the following stochastic
control problem. Let t ∈ [0, T ] and x ∈ Rd. Let

(P )

 v(t, x) := sup
α∈A[t,T ]

J(t, x, α) = sup
α∈A[t,T ]

E
[∫ T

t
f
(
s,Xα,t,x

s , αs
)
ds+ g

(
Xα,t,x
T

)]
and Xα,t,x solves (2.11) with Xα,t,x

t = x.

The solution to the problem (P), is the value function, denoted by v. One of the
mathematical difficulties in stochastic control theory is that we don’t even know at
this point whether v is measurable or not.

In many cases there is no optimal control process α∗ for which we would have v(t, x) =
J(t, x, α∗). Recall that v is the value function of the problem (P). However there is
always an ε-optimal control (simply by definition of supremum).

Definition 2.12 (ε-optimal controls). Take t ∈ [0, T ] and x ∈ Rm. Let ε ≥ 0. A
control αε ∈ A[t, T ] is said to be ε-optimal if

v(t, x) ≤ ε+ J(t, x, αε) . (2.12)

Lemma 2.13 (Lipschitz continuity in x of the value function). If Assumptions 2.9
and 2.11 hold then there exists C = CT,K,m > 0 such that for all t ∈ [0, T ] and
x, y ∈ Rd we have

|J(t, x, α)− J(t, y, α)| ≤ C(1 + |x|m + |y|m)|x− y| .

and
|v(t, x)− v(t, y)| ≤ C(1 + |x|m + |y|m)|x− y| .

Proof. The first step is to show that there is CT,K,m > 0 such that for any α ∈ U we
have

I := |J(t, x, α)− J(t, y, α)| ≤ CT (1 + |x|m + |y|m)|x− y| .
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Using Assumption 2.11 (local Lipschitz continuity in x of f and g) we get

I ≤ E
[∫ T

t
|f(s,Xt,x,α

s , αs)− f(s,Xt,y,α
s , αs)| ds+

∣∣g(Xt,x,α
T )− g(Xt,x,α

T )
∣∣]

≤ KE
[ ∫ T

t
(1 + |Xt,x,α

s |m + |Xt,y,α
s |m)|Xt,x,α

s −Xt,y,α
s | ds

+ (1 + |Xt,x,α
T |m + |Xt,y,α

T |m)|Xt,x,α
T −Xt,y,α

T |
]
.

We note that due to Hölder’s and Young’s inequalities

I ≤CK,m
(
E
∫ T

t
(1 + |Xt,x,α

s |m+1 + |Xt,y,α
s |m+1) ds

) m
m+1

(
E
∫ T

t
|Xt,x,α

s −Xt,y,α
s |m+1 ds

) 1
m+1

+ CK,m

(
E(1 + |Xt,x,α

T |m+1 + |Xt,y,α
T |m+1)

) m
m+1

(
E|Xt,x,α

T −Xt,y,α
T |m+1

) 1
m+1

.

Then, using Proposition 2.6, we get

I ≤ CT,K,m

(
sup
t≤s≤T

E
[
|Xt,x,α

s |m+1 + |Xt,y,α
s |m+1

]) m
m+1

(
sup
t≤s≤T

E|Xt,x,α
s −Xt,y,α

s |m+1

) 1
m+1

≤ CT,K,m(1 + |x|m + |y|m)|x− y| .

We now need to apply this property of J to the value function v. Let ε > 0 be
arbitrary and fixed. Then there is αε ∈ U such that v(t, x) ≤ ε+J(t, x, αε). Moreover
v(t, y) ≥ J(t, y, αε). Thus

v(t, x)− v(t, y) ≤ ε+ J(t, x, αε)− J(t, y, αε) ≤ ε+ C(1 + |x|m + |y|m)|x− y| .

With ε > 0 still the same and fixed there would be βε ∈ U such that v(t, y) ≤
ε+ J(t, y, βε). Moreover v(t, x) ≥ J(t, x, βε) and so

v(t, y)− v(t, x) ≤ ε+ J(t, y, βε)− J(t, x, βε) ≤ ε+ C(1 + |x|m + |y|m)|x− y| .

Hence

−ε− C(1 + |x|m + |y|m)|x− y| ≤ v(t, x)− v(t, y) ≤ ε+ C(1 + |x|m + |y|m)|x− y| .

Letting ε→ 0 concludes the proof.

An important consequence of this is that if we fix t then x 7→ v(t, x) is measurable (as
continuous functions are measurable).

2.4 Exercises

Exercise 2.14 (Non-existence of solution).

1. Let I =
[
0, 1

2

]
. Find a solution X for

dXt

dt
= X2

t , t ∈ I , X0 = 1 .
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2. Does a solution to the above equation exist on I = [0, 1]? If yes, show that it
satisfies Definition 2.1. In not, which property is violated?

Exercise 2.15 (Non-uniqueness of solution). Fix T > 0. Consider

dXt

dt
= 2
√
|Xt| , t ∈ [0, T ] , X0 = 0 .

1. Show that X̄t := 0 for all t ∈ [0, T ] is a solution to the above ODE.

2. Show that Xt := t2 for all t ∈ [0, T ] is also a solution.

3. Find at least two more solutions different from X̄ and X.

Exercise 2.16. Consider the SDE

Xt = ξ +

∫ t

0
bs(Xs) ds+

∫ t

0
σs(Xs) dWs , t ∈ [0, T ] .

and assume that the conditions of Proposition 2.2 hold. Show that the solution to the
SDE is unique in the sense that if X and Y are two solutions with X0 = ξ = Y0 then

P

[
sup

0≤t≤T
|Xt − Yt| > 0

]
= 0 .

Exercise 2.17. Consider the SDE

dXt,x
s = b(Xt,x

s ) ds+ σ(Xt,x
s ) dWs, t ≤ s ≤ T, Xt,x

t = x .

Assume it has a pathwise unique solution i.e. if Y t,x
s is another process that satisfies

the SDE then

P

[
sup
t≤s≤T

|Xt,x
s − Y t,x

s | > 0

]
= 0 .

Show that then the flow property holds i.e. for 0 ≤ t ≤ t′ ≤ T we have almost surely
that

Xt,x
s = X

t′,Xt,x

t′
s , ∀s ∈ [t′, T ].
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2.5 Solutions to Exercises

Solution (to Exercise 2.14).

1. We can use the following method to get a guess: from the ODE we get X−2dX = dt
which means that, after integrating, we get −X−1 = t+C. So Xt = −(t+C)−1. Since
X0 = 1 we get C = −1. Thus

Xt =
1

1− t
, t ∈

[
0, 1

2

]
.

We check by calculating that dXt

dt = (1− t)−2 = X2
t so the equation holds in [0, 1/2].

2. We can see that limt↗1Xt =∞ and so the t 7→ Xt is not continuous on [0, 1].

Solution (to Exercise 2.15).

1. Clearly X̄0 = 0 and for t ∈ [0, T ] we have dX̄t

dt = 0 = 2
√
|X̄t|.

2. Clearly X0 = 0 and for t ∈ [0, T ] we have dXt

dt = 2t = 2
√
t2 = 2

√
|Xt|.

3. Fix any τ ∈ (0, T ) and define

X
(τ)
t :=

{
0 for t ∈ [0, τ) ,

(t− τ)2 for t ∈ [τ, T ] .

Then, clearly, dX
(τ)
0 = 0 and moreover if t ∈ [0, τ) then we have

dX
(τ)
t

dt
= 0 = 2

√
|X(τ)

t | ,

while if t ∈ [τ, T ] then we have

dX
(τ)
t

dt
= 2(t− τ) = 2

√
|(t− τ)2| = 2

√
X

(τ)
t .

So, in fact, there are uncountably many different solutions.

Solution (to Exercise 2.16). Using the same estimates as in the proof of Proposition 2.2,
see (2.6), we get that for some constant L > 0

E sup
s≤t
|Xs − Ys|2 ≤ L

∫ t

0

E|Xr − Yr|2 dr .

Hence

E sup
s≤t
|Xs − Ys|2 ≤ L

∫ t

0

E sup
s≤r
|Xs − Ys|2 dr .

From Gronwall’s lemma (applied with y(t) := E sups≤t |Xs − Ys|2, a(t) = 0, b(t) = 0 and
λ(t) = L) we get that for all t ∈ [0, T ] we have

E sup
s≤t
|Xs − Ys|2 ≤ 0 .

But this means that

P
[
sup
t≤T
|Xs − Ys|2 = 0

]
= 1 .

Solution (to Exercise 2.17). Let Ys := X
t′,Xt,x

t′
s for s ∈ [t′, T ] and note that the process Y

solves the SDE for s ∈ [t′, T ] with Yt′ = X
t′,Xt,x

t′
t′ = Xt,x

t′ . Let Xs := Xt,x
s for s ∈ [t′, T ] and

note that this also solves the SDE for s ∈ [t′, T ] with

Xt′ = Xt,x
t′ = Yt′ .
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Hence both Y and X solve the same SDE with the same starting point. By the pathwise
uniqueness property of the solutions of this SDE we then have

P
[

sup
t≤s≤T

|Xs − Ys| = 0

]
= 1

but this means that almost surely it holds that for all s ∈ [t′, T ] it holds that

X
t′,Xt,x

t′
s = Ys = Xs = Xt,x

s .
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3 Dynamic programming and the Hamilton–Jacobi–Bellman
equation

3.1 Dynamic programming principle

Dynamic programming (DP) is one of the most popular approaches to study the
stochastic control problem (P). The main idea was originated from the so-called Bell-
man’s principle, which states

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

The following is the statement of Bellman’s principle / dynamic programming.

Theorem 3.1 (Bellman’s principle / Dynamic programming). For any 0 ≤ t ≤ t̂ ≤ T ,
for any x ∈ Rm, we have

v(t, x) = sup
α∈A[t,t̂]

E

[∫ t̂

t
f
(
s,Xα,t,x

s , αs
)
ds+ v

(
t̂, Xα,t,x

t̂

)∣∣∣Xα,t,x
s = x

]
. (3.1)

The idea behind the dynamic programming principle is as follows. The expectation on
the RHS of (3.1) represents the gain if we implement the time t until time t̂ optimal
strategy and then implement the time t̂ until T optimal strategy. Clearly, this gain
will be no larger than the gain associated with using the overall optimal strategy from
the start (since we can apply the overall optimal control in both scenarios and obtain
the LHS).

What equation (3.1) says is that if we determine the optimal strategy separately on
each of the time intervals [t, t̂] and [t̂, T ] we get the same answer as when we consider
the whole time interval [t, T ] at once. Underlying this statement, hides a deeper one:
that if one puts the optimal stategy over [t, t̂ ) together with the optimal stategy over
[t̂, T ] this is still an optimal strategy.

Note that without Lemma 2.13 we would not even be allowed to write (3.1) since
we need v(t̂, Xα,t,x

t̂
) to be a random variable (so that we are allowed to take the

expectation).

Let us now prove the Bellman principle.

Proof of Theorem 3.1. We will start by showing that v(t, x) ≤ RHS of (3.1). We note
that with α ∈ A[t, T ] we have

J(t, x, α) = E

[∫ t̂

t
f(s,Xα

s , αs)ds+

∫ T

t̂
f(s,Xα

s , αs)ds+ g(Xα
T )

∣∣∣∣Xα
t = x

]
.

We will use the tower property of conditional expectation and use the Markov property
of the process. Let FXα

t̂
:= σ(Xα

s : t ≤ s ≤ t̂). Then

J(t, x, α)

= E

[∫ t̂

t
f(s,Xα

s , αs)ds+ E
[∫ T

t̂
f(s,Xα

s , αs)ds+ g(Xα
T )

∣∣∣∣FXα

t̂

] ∣∣∣∣Xα
t = x

]

= E

[∫ t̂

t
f(s,Xα

s , αs)ds+ E
[∫ T

t̂
f(s,Xα

s , αs)ds+ g(Xα
T )

∣∣∣∣Xα
t̂

] ∣∣∣∣Xα
t = x

]
.
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Now, because of the flow property of SDEs,

E
[∫ T

t̂
f(s,Xα,t,x

s , αs)ds+ g(Xα,t,x
T )

∣∣∣∣Xα,t,x

t̂

]
= J

(
t̂, Xα,t,x

t̂
, (αs)s∈[t̂,T ]

)
≤ v

(
t̂, Xα,t,x

t̂

)
.

Hence

J(t, x, α) ≤ sup
α∈U

E

[∫ t̂

t
f(s,Xα

s , αs)ds+ v
(
t̂, Xα,t,x

t̂

) ∣∣∣∣Xα
t = x

]
.

Taking supremum over control processes α on the left shows that v(t, x) ≤ RHS of (3.1).

We now need to show that RHS of (3.1) ≤ v(t, x). Fix ε > 0. Then there is αε ∈ A[t, t̂]
such that

RHS of (3.1) ≤ ε+ E

[∫ t̂

t
f
(
s,Xαε,t,x

s , αεs
)
ds+ v

(
t̂, Xαε,t,x

t̂

)∣∣∣Xαε,t,x
t = x

]
.

Let us write Xs := Xαε,t,x
s for brevity from now on. We now have to be careful so

that we can construct an ε-optimal control which is progressively measurable on the
whole [t, T ]. To that end let δ = δ(ω) > 0 be such that

2mC(1 + |Xt̂(ω)|m)δ(ω) < ε and 2m−1δ(ω)m < 1.

where C is the constant from Lemma 2.13. Take (xi)i∈N dense in Rd. By density of
(xi)i we know that for each δ(ω) there exists i(ω) such that |xi(ω) − Xt̂(ω)| ≤ δ(ω).
Moreover

C(1 + |xi|m)δ ≤ C(1 + 2m−1|xi −Xt̂|
m + 2m−1|Xt̂|

m)δ ≤ 2mC(1 + |Xt̂|
m)δ < ε .

The open covering of Rd given by
⋃
ω∈ΩBδ(ω)(xi(ω)) has a countable sub-cover

⋃
k∈NBδk(xk).

Let (Qk) be constructed as follows:

Q1 = Bδ1(x1) and Qk = Bδk(xk) \
k−1⋃
k′=1

Qk′ .

Then for each xi there is αε,i ∈ A(t̂, T ] such that v(t̂, xi) ≤ ε+J(t̂, xi, α
ε,i). Moreover

if Xt̂ ∈ Qi then |Xt̂|m ≤ 2m−1|Xt̂−xi|m+2m−1|xi|m and due to Lemma 2.13 we have,

|v(t̂, Xt̂)− v(t̂, xi)| ≤ C(1 + |Xt̂|
m + |xi|m)|Xt̂ − xi|

≤ C(1 + 2m−1|Xt̂ − xi|
m + 2m−1|xi|m)|Xt̂ − xi|

≤ C(1 + 2m−1δm + 2m−1|xi|m)δ

≤ C(2 + 2m−1|xi|m)δ ≤ 2mC(1 + |xi|m)δ < ε .

Similarly we have
|J(t̂, xi, α

ε,i)− J(t̂, Xt̂, α
ε,i)| ≤ ε.

Hence we get

v(t̂, Xt̂) ≤ v(t̂, xi) + ε ≤ ε+ J(t̂, xi, α
ε,i) + ε ≤ ε+ J(t̂, Xt̂, α

ε,i) + 2ε .

And so
v(t̂, Xt̂) ≤ 3ε+ J(t̂, Xt̂, α

ε,i) .
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Therefore RHS of (3.1)

≤ 3ε+E

[∫ t̂

t
f
(
s,Xαε,t,x

s , αεs
)
ds

+ E
[∫ T

t̂
f(s, Y αε,i

s , αε,is ) ds+ g
(
Y αε,i

T

) ∣∣∣∣Y αε,i

t̂
= Xαε,t,x

t̂

] ∣∣∣Xαε,t,x
s = x

]
.

Regarding controls we now have the following: αε ∈ A[t, t̂] and for each i we have
αε,i ∈ U(t̂, T ]. From these we build one control process βε as follows:

βεs :=

{
αεs s ∈ [t, t̂]

αε,is s ∈ (t̂, T ] and Xαε,t,x

t̂
∈ Qi.

This process is progressively measurable with values in A and so βε ∈ A[t, T ]. Due to
the flow property we may write that RHS of (3.1)

≤ 3ε+ E

[∫ t̂

t
f
(
s,Xβε,t,x

s , βεs
)
ds+

∫ T

t̂
f(s,Xβε

s , βεs) ds+ g
(
Xβε

T

) ∣∣∣Xβε,t,x
s = x

]
.

Finally taking supremum over all possible control strategies we see that RHS of (3.1) ≤
3ε+ v(t, x). Letting ε→ 0 completes the proof.

Lemma 3.2 (1
2 -Hölder continuity of value function in time). Let Assumptions 2.9

and 2.11 hold. Then there is a constant C = CT,K,m > 0 such that for any x ∈ Rd,
0 ≤ t, t̂ ≤ T we have

|v(t, x)− v(t̂, x)| ≤ C(1 + |x|m+1)|t− t̂|1/2 .

Proof. Still needs to be written down.

Corollary 3.3. Let Assumptions 2.9 and 2.11 hold. Then there is a constant C =
CT,K,m > 0 such that for any x, y ∈ Rd, 0 ≤ s, t ≤ T we have

|v(s, x)− v(t, y)| ≤ C(1 + |x|m + |x|1/2)
(
|t− t̂|1/2 + |x− y|

)
.

This means that the value function v is jointly measurable in (t, x). With this we get
the following.

Theorem 3.4 (Bellman’s principle / Dynamic programming with stopping time).
For any stopping times t, t̂ such that 0 ≤ t ≤ t̂ ≤ T , for any x ∈ Rm, we have (3.1).

The proof uses the same arguments as before except that now have to cover the whole
[0, T ]× Rd and we need to use the 1

2 -Hölder continuity in time as well.

Corollary 3.5 (Global optimality implies optimality from any time). Take x ∈ R. A

control β ∈ U [0, T ] is optimal for (P) with the state process Xs = Xβ,0,x
s for s ∈ [0, T ]

if and only if for any t̂ ∈ [0, T ] we have

v(t̂, Xt̂) = J(t̂, Xt̂, β) .
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Proof. To ease the notation we will take f = 0. The reader is encouraged to prove
the general case.

Due to the Bellman principle, Theorem 3.4, we have

v(0, x) = sup
α∈U [0,t̂]

E
[
v
(
t̂, Xα,0,x

t̂

)]
≥ E

[
v
(
t̂, Xβ,0,x

t̂

)]
.

If β is an optimal control

E
[
v
(
t̂, Xt̂

)]
≤ v(0, x) = J(0, x, β) = E [g (XT )] .

Using the tower property of conditional expectation

v(0, x) ≤ E
[
E
[
g (XT )

∣∣FX
t̂

]]
= E

[
J
(
t̂, Xt̂, β

)]
≤ E

[
v
(
t̂, Xt̂

)]
≤ v(0, x) .

Since the very left and very right of these inequalities are equal we get that

E
[
J
(
t̂, Xt̂, β

)]
= E

[
v
(
t̂, Xt̂

)]
Moreover v ≥ J and so we can conclude that v

(
t̂, Xt̂

)
= J

(
t̂, Xt̂, β

)
a.s. The completes

the first part of the proof. The “only if” part of the proof is clear because we can take
t̂ = 0 and get v(0, x) = J(0, x, β) which means that β is an optimal control.

From this observation we can prove the following description of optimality.

Theorem 3.6 (Martingale optimality). Let the assumptions required for Bellman’s
principle hold. Fix any (t, x) and let

Ms :=

∫ s

t
fαrr
(
Xα,t,x
r

)
dr + v

(
s,Xα,t,x

s

)
. (3.2)

Then for any control α ∈ A the process (Ms)s∈[t,T ] is an FXs := σ(Xα,t,x
r ; t ≤ r ≤ s)

super-martingale. Moreover α is optimal if and only if it is a martingale.

When comparing the subsequent argument to the deterministic case, note how “super-
martingale” and “martingale” arise, respectively, as the stochastic analogues of “de-
creasing” and “constant” of the deterministic problem.

Proof. We have by, Theorem 3.1 (the Bellman principle) that for any 0 ≤ t ≤ s ≤ ŝ ≤
T that

v
(
s,Xα,t,x

s

)
= sup

α̂∈A
E
[∫ ŝ

s
f α̂rr
(
Xr

)
dr + v

(
ŝ, Xŝ

)∣∣∣Xs = Xα,t,x

]
.

From the Markov property we get that

v
(
s,Xα,t,x

s

)
= sup

α̂∈A
E
[∫ ŝ

s
f α̂rr
(
Xr

)
dr + v

(
ŝ, Xŝ

)∣∣∣FXs ] .
Hence

v
(
s,Xα,t,x

s

)
≥ E

[∫ ŝ

s
fαrr
(
Xr

)
dr + v

(
ŝ, Xŝ

)∣∣∣FXs ]
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and so

Ms ≥
∫ s

t
fαrr
(
Xα,t,x
r

)
dr + E

[∫ ŝ

s
fαrr
(
Xr

)
dr + v

(
ŝ, Xŝ

)∣∣∣FXs ]
= E

[
Mŝ|FXs

]
.

This means that M is a super-martingale. Moreover we see that if α is optimal then
the inequalities above are equalities and hence M is a martingale.

Now assume that Ms = E[Mŝ|FXs ]. We want to ascertain that the control α driving
M is an optimal one. But the martingale property implies that J(t, x, α) = E[MT ] =
E[Mt] = v(t, x) and so α is indeed an optimal control.

One question you may ask yourself is: How can we use the dynamic programming
principle to compute an optimal control? Remember that the idea behind the DPP is
that it is not necessary to optimize the control α over the entire time interval [0, T ] at
once; we can partition the time interval into smaller sub-intervals and optimize over
each individually. We will see below that this idea becomes particularly powerful if we
let the partition size go to zero: the calculation of the optimal control then becomes a
pointwise minimization linked to certain PDEs (see Theorem A.27). That is, for each
fixed state x we compute the optimal value of control, say a ∈ A, to apply whenever
X(t) = x.

3.2 Hamilton-Jacobi-Bellman (HJB) and verification

If the value function v = v(t, x) is smooth enough, then we can apply Itô’s formula
to v and X in (3.2). Thus we get the Hamilton-Jacobi-Bellman (HJB) equation (also
know and the Dynamic Programming equation or Bellman equation).

For notational convenience we will write σa(t, x) := σ(t, x, a), ba(t, x) := b(t, x, a) and
fa(t, x) := f(t, x, a). We then define

Lav :=
1

2
tr [σa(σa)∗∂xxv] + ba∂xv .

Recall that trace is the sum of all the elements on the diagonal of a square matrix i.e.
for a matrix (aij)di,j=1 we get tr[a] =

∑d
i=1 a

ii , that ∂xxv denotes the Jacobian matrix
i.e. (∂xxv)ij = ∂xi∂xjv whilst ∂xv denotes the gradient vector i.e. (∂xv)i = ∂xiv. This
means that

tr [σa(σa)∗∂xxv] =

d∑
i,j=1

[σa(σa)∗]ij∂xixjv and ba∂xv =

d∑
i=1

(ba)i∂xiv .

Theorem 3.7 (Hamilton-Jacobi-Bellman (HJB)). If the value function v for (P) is
C1,2([0, T )× Rd), then it satisfies

∂tv + sup
a∈A

(
Lav + fa

)
= 0 on [0, T )× Rd

v(T, x) = g(x) ∀x ∈ Rd .
(3.3)

Proof. Let x ∈ R and t ∈ [0, T ]. Then the condition v(T, x) = g(x) follows directly
from the definition of v. Fix α ∈ A[t, T ] and let M be given by (3.2) i.e.

Ms :=

∫ s

t
fαrr
(
Xt,x,α
r

)
dr + v

(
s,Xt,x,α

s

)
.
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Then, Itô’s formula applied to v and X = (Xt,x,α
s )s∈[t,T ] yields

dMs =
[(
∂tv + Lαsv + fαs

)(
s,Xα,t,x

s

)]
ds+

[
(∂xv σ

αs)
(
s,Xα,t,x

s )
)]
dWs.

For any (t, x) ∈ [0, T ]× R take the stopping time τ = τα,t,x given by

τ := inf
{
t′ ≥ t :

∫ t′

t
(∂xv σ

αs)
(
s,Xα,t,x

s )
)2
ds ≥ 1

}
.

We know from Theorem 3.6 that M must be a supermartingale. On the other hand
the term given by the stochastic integral is a martingale (when cosidered stopped at
τ). So (Mt∧τ )t can only be a supermartingale if

fαs(s,Xs) + (∂tv + Lαsv)(s,Xs) ≤ 0 .

Since the starting point (t, x) and control α were arbitrary we get4

(∂tv + Lav + fa)(t, x) ≤ 0 ∀t, x, a .

Taking the supremum over a ∈ A we get

∂tv(t, x) + sup
a∈A

[(Lav + fa)(t, x)] ≤ 0 ∀t, x .

We now need to show that in fact the inequality cannot be strict. We proceed by
setting up a contradiction. Assume that there is (t, x) such that

∂tv(t0, x0) + sup
a∈A

[(Lav + fa)(t, x)] < 0 .

We will show that this contradicts the Bellman principle and hence we must have
equality, thus completing the proof.

We must further assume that b and σ are right-continuous in t uniformly in the x
variable5. Now by continuity (recall that v ∈ C1,2([0, T )×Rd) we get that there must
be ε > 0 and an associated δ > 0 such that

∂tv + sup
a∈A

[(Lav + fa)] ≤ −ε < 0 on [t, t+ δ)×Bδ(x).

Let us fix α ∈ A[t, T ] and let Xs := Xt,x,α
s . We define the stopping time

τ := {s > t : |Xs − x| > δ} ∧ (t+ δ) .

Since the process Xs has a.s. continuous sample paths we get E[τ − t] > 0. Then∫ τ

t
fαr(r,Xr) dr + v(τ,Xτ )

= v(t, x) +

∫ τ

t
fαr(r,Xr) dr + v(τ,Xτ )− v(t, x)

= v(t, x) +

∫ τ

t

[(
∂tv + Lαrv + fαr

)(
r,Xr

)]
dr +

∫ τ

t

[
(∂xv)σαr

](
r,Xr

)
dWr

≤ v(t, x)− ε(τ − t) +

∫ τ

t

[
(∂xv)σαr

](
r,Xr

)
dWr .

4This is not a sufficient argument as the time integral “ignores” what happens at a single point
and the lecture notes should provide details in future update.

5Does this lead to loss of generality?
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Now we take conditional expectation Et,x := E[·|FXt ] on both sides of the last inequal-
ity, to get

Et,x
[∫ τ

t
fαr(r,Xr) dr + v(τ,Xτ )

]
≤ v(t, x)− εEt,x [τ − t] .

We now can take the supremum over all controls α ∈ A[t, τ ] to get

sup
α∈A

Et,x
[∫ τ

t
fαs(s,Xs)ds+ v(τ,Xτ )

]
≤ v(t, x)− εEt,x [τ − t] < 0 .

But the Bellman principle states that:

v(t, x) = sup
α∈U

Et,x
[∫ τ

t
fαs(s,Xs) ds+ v(τ,Xτ )

]
.

Hence we’ve obtained a contradiction and completed the proof.

Theorem 3.8 (HJB verification). If, on the other hand, some u in C1,2([0, T )×Rd)
satisfies (3.3) and we have that for all (t, x) ∈ [0, T ] × Rd there is some measurable
function a : [0, T ]× Rd → A such that

a(t, x) ∈ arg max
a∈A

(
(Lau)(t, x) + fa(t, x)

)
, (3.4)

and if

dX∗s = b
(
s,X∗s , a(s,X∗s

)
ds+ σ

(
s,X∗s , a(s,X∗s

)
dWs, X∗t = x

admits a unique solution, and if the process

t′ 7→
∫ t′

t
∂xu

(
s,X∗s

)
σ
(
s,X∗s , a(s,X∗s

)
dWs (3.5)

is a martingale in t′ ∈ [t, T ], then

α∗s := a
(
s,X∗s

)
s ∈ [t, T ]

is optimal for problem (P) and v(t, x) = u(t, x).

Proof. Let α∗s = a(s,X∗s ). Apply Itô’s formula to u and X∗ to see that∫ T

t
fα
∗
s

s

(
X∗s
)
ds+ g(X∗T )− u(t, x) =

∫ T

t
fα
∗
s

s

(
X∗s
)
ds+ u(T,X∗T )− u(t, x)

=

∫ T

t

[
∂tu(s,X∗s ) + Lα

∗
s (s,X∗s )u(s,X∗s ) + fα

∗
s

s

(
X∗s
)]
ds

+

∫ T

t
∂xu

(
s,X∗s

)
σ
(
s,X∗s , a(s,X∗s

)
dWs

=

∫ T

t
∂xu

(
s,X∗s

)
σ
(
s,X∗s , a(s,X∗s

)
dWs ,

since for all (t, x) it holds that

sup
a∈A

[La(t, x)u(t, x) + fa(t, x)] = La(t,x)(t, x)u(t, x) + fa(t,x)(t, x) .
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Hence, as the stochastic integral is a martingale by assumption,

E
[ ∫ T

t
fα
∗
s

s

(
X∗s
)
ds+ g(X∗T )− u(t, x)

]
= 0 .

So

u(t, x) = E
[ ∫ T

t
fα
∗
s

s

(
X∗s
)
ds+g(X∗T )

]
≤ sup

α∈A
E
[ ∫ T

t
fαss
(
Xt,x,α

)
ds+g(Xt,x,α)

]
= v(t, x) .

(3.6)
The same calculation with an arbitrary α ∈ A and Itô formula applied to u and Xt,x,α

leads to

E
[ ∫ T

t
fαss
(
Xt,x,α
s

)
ds+ g(Xt,x,α

T )− u(t, x)

]
≤ 0 .

Hence for any ε > 0 we have

v(t, x) ≤ ε+ E
[∫ T

t
fα

ε
s

s

(
Xt,x,αε

s

)
ds+ g(Xt,x,αε

T )

]
≤ u(t, x) .

Hence v(t, x) ≤ u(t, x) and with (3.6) we can conclude that v = u.

Let

Ms :=

∫ s

t
fα
∗
r

r

(
X∗r
)
dr + u

(
s,X∗s

)
.

We would first like to see that this is a martingale. To that end, let us apply Itô’s
formula to v and X∗ to see that

dMs = fα
∗
s

s

(
X∗s
)
ds+ dv

(
s,X∗s

)
=
[
∂tv(s,X∗s ) + Lα

∗
s (s,X∗s )v(s,X∗s ) + fα

∗
s

s

(
X∗s
)]
ds+ ∂xv

(
s,X∗s

)
σ
(
s,X∗s , a(s,X∗s

)
dWs

= ∂xv
(
s,X∗s

)
σ
(
s,X∗s , a(s,X∗s

)
dWs

since v = u satisfies (3.3). By assumption this stochastic integral is a martingale
and hence M is also a martingale. By Theorem 3.6 α∗ must be an optimal control
process.

Theorem 3.8 is referred as the verification theorem. This is key for solving the control
problem: if we know the value function v, then the dynamic optimization problem
turns into a of static optimization problems at each point (t, x). Recall that (3.4) is
calculated pointwise over (t, x).

Exercise 3.9. Find the HJB equation for the following problem. Let d = 1, U =
[σ0, σ

1] ⊂ (0,∞), and k ∈ R. The dynamics of X are given by

dXα
s

Xα
s

= k ds+ αs dWs,

and the value function is

v(t, x) = sup
α∈A[t,T ]

E[ek(t−T )g
(
Xα,t,x
T

)
] = − inf

α∈A[t,T ]
E[−ek(t−T )g

(
Xα,t,x
T

)
].

This can be interpreted as the pricing equation for an uncertain volatility model with
constant interest rate k. The equation is called Black–Scholes–Barenblatt equation
and the usual way to present this problem is through a maximization problem.
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3.3 Solving control problems using the HJB equation and verifica-
tion theorem

Theorem 3.7 provides an approach to find optimal solutions:

1. Solve the HJB equation (3.3) (this is typically done by taking a lucky guess and
in fact is rarely possible with pen and paper).

2. Find the optimal Markovian control rule a(t, x) calculating (3.4).

3. Solve the optimal control and its state process (u∗, X∗).

4. Verify the martingale condition.

This approach may end up with failures. Step one is to solve a fully non-linear
second order PDE, that may not have a solution, may have a unique solution or many
solutions. If we can prove before hand that the value function for (P) is v is C1,2,
then the HJB equation admits at least one solution according to Theorem 3.7. The
question of uniqueness remains.

In step two, given u that solves (3.3), the problem is a static optimization problem.
This is generally much easier to solve.

If we can reach step three, then this step heavily depends on functions b and σ, for
which we usually check case by case.

Example 3.10 (Merton problem with power utility and no consumption). This is the
classic finance application. The problem can be considered with multiple risky assets
but we focus on the situation from Section 1.1.

Recall that we have risk-free asset Bt, risky asset St and that our portfolio has wealth
given by

dXs = Xs(νs(µ− r) + r) ds+Xsνsσ dWs , s ∈ [t, T ] , Xt = x > 0 .

Here νs is the control and it describes the fraction of our wealth invested in the risky
asset. This can be negative (we short the stock) and it can be more than one (we
borrow money from the bank and invest more than we have in the stock).

We take g(x) := xγ with γ ∈ (0, 1) a constant. Our aim is to maximize Jν(t, x) :=
Et,x [g(Xν

T )]. Thus our value function is

v(t, x) = sup
ν∈U

Jν(t, x) = sup
ν∈U

Et,x [g(Xν
T )] .

This should satisfy the HJB equation (Bellman PDE)

∂tv + sup
u

[
1

2
σ2u2x2∂xxv + x[(µ− r)u+ r]∂xv

]
= 0 on [0, T )× (0,∞)

v(T, x) = g(x) = xγ ∀x > 0 .

At this point our best chance is to guess what form the solution may have. We try
v(t, x) = λ(t)xγ with λ = λ(t) > 0 differentiable and λ(T ) = 1. This way at least the
terminal condition holds. If this is indeed a solution then (using it in HJB) we have

λ′(t) + sup
u

[
1

2
σ2u2γ(γ − 1) + (µ− r)γu+ rγ

]
λ(t) = 0 ∀t ∈ [0, T ) , λ(T ) = 1 .
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since xγ > 0 for x > 0 and thus we were allowed to divide by this. Moreover we can
calculate the supremum by observing that it is quadratic in u with negative leading
term (γ − 1)γ < 0. Thus it is maximized when u∗ = µ−r

σ2(1−γ)γ
. The maximum itself is

β(t) :=
1

2
σ2(u∗)2γ(γ − 1) + (µ− r)γu∗ + rγ .

Thus

λ′(t) = −β(t)λ(t) , λ(T ) = 1 =⇒ λ(t) = exp

(∫ T

t
β(s) ds

)
.

Thus we think that the value function and the optimal control are

v(t, x) = exp

(∫ T

t
β(s) ds

)
xγ and u∗ =

µ− r
σ2(1− γ)γ

.

This now needs to be verified using Theorem 3.8. First we note that the SDE for X∗

always has a solution if u∗ is a constant.

Next we note that ∂xv(s,X∗s ) = γλ(s)(X∗s )γ−1. From Itô’s formula

dXγ−1
s = (γ − 1)Xγ−2

s dXs +
1

2
(γ − 1)(γ − 2)Xγ−3

s dXsdXs

= Xγ−1
s

[
(γ − 1)[u∗(µ− r) + r] ds+

1

2
(γ − 1)(γ − 2)u∗σ dWs

]
.

We can either solve this (like for geometric brownian motion) or appeal to Proposi-
tion 2.6 to see that a solution will have all moments uniformly bounded in time on
[0, T ]. Moreover λ = λ(t) is continuous on [0, T ] and thus bounded and so∫ T

0
E
[
λ2(t)|(X∗s )γ−1|2

]
ds <∞

which means that the required expression is a true martingale. This completes veri-
fication and Theorem 3.8 gives the conclusion that v is indeed the value function and
u∗ is indeed the optimal control.

Example 3.11 (Linear-quadratic control problem). This example is a classic engin-
eering application. Note that it can be considered in multiple spatial dimensions
but here we focus on the one-dimensional case for simplicity. The multi-dimensional
version is e.g. in [10, Ch. 11].

We consider

dXs = [H(s)Xs +M(s)αs] ds+ σ(s)dWs , s ∈ [t, T ] , Xt = x .

Our aim is to maximize

Jα(t, x) := Et,x
[∫ T

t
(C(s)X2

s +D(s)α2
s) ds+RX2

T

]
,

where C = C(t) ≤ 0, R ≤ 0 and D = D(t) − δ < 0 are given and deterministic and
bounded in t. The interpretation is the following: since we are losing money at rate
C proportionally to X2, our aim is to make X2 as small as possible as fast as we can.
However controlling X costs us at a rate D proportionally to the strength of control
we apply.
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The value function is v(t, x) := supα J
α(t, x).

Let us write down the Bellman PDE (HJB equation) we would expect the value
function to satisfy:

∂tv + sup
a

[
1

2
σ2∂2

xv + [H x+M a]∂xv + C x2 +Da2

]
= 0 on [0, T )× R ,

v(T, x) = Rx2 ∀x ∈ R .

Since the terminal condition is g(x) = Rx2 let us try v(t, x) = S(t)x2 + b(t) for some
differentiable S and b. We re-write the HJB equation in terms of S and b: (omitting
time dependence in H,M, σ,C and D), for (t, x) ∈ [0, T )× R,

S′(t)x2 + b′(t) + σ2S(t) + 2H S(t)x2 + C x2 + sup
a

[
2M aS(t)x+Da2

]
= 0 ,

S(T ) = R and b(T ) = 0 .

For fixed t and x we can calculate supa[2M(t)aS(t)x+D(t)a2] and hence write down
the optimal control function a∗ = a∗(t, x). Indeed since D < 0 and since the ex-
pression is quadratic in a we know that the maximum is reached with a∗(t, x) =
−(D−1M S)(t)x.

We substitute a∗ back in to obtain ODEs for S = S(t) and b = b(t) from the HJB
equation. Hence[

S′(t) + 2H S(t) + C −D−1M2S2(t)
]
x2 + b′(t) + σ2S(t) = 0 ,

S(T ) = R and b(T ) = 0 .

We collect terms in x2 and terms independent of x and conclude that this can hold
only if

S′(t) = D−1M2S2(t)− 2H S(t)− C , S(T ) = R

and
b′(t) = −σ2S(t) , b(T ) = 0 .

The ODE for S is the Riccati equation which has unique solution for S(T ) = R. We
can obtain the expression for b = b(t) by simply integrating:

b(T )− b(t) = −
∫ T

t
σ2(r)S(r) dr .

Then

α∗(t, x) = −(D−1MS)(t)x and v(t, x) = S(t)x2 +

∫ T

t
σ2(r)S(r) dr (3.7)

and we see that the control function is measurable. We will now check conditions of
Theorem 3.8. The SDE with the optimal control is

dX∗s = ρ(s)X∗s ds+ σ(s)dWs , s ∈ [t, T ] , X∗t = x ,

where ρ := H+D−1M2 S. This is deterministic and bounded in time. The SDE thus
satisfies the Lipschitz conditions and it has a unique strong solution for any t, x.
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Since ∂xv(r,X∗r ) = 2S(r)X∗s , since supr∈[t,T ] S
2(r) is bounded (continuous function on

a closed interval) and since supr∈[t,T ] E[|X∗r |2] < ∞ (moment estimate for SDEs with
Lipschitz coefficients) we get

E
∫ T

t
|S(r)|2|X∗s |2 dr <∞

and thus conclude that s 7→
∫ s
t S(r)X∗rσ(r) dWr is a martingale. Thus Theorem 3.8

tells us that the value function and control given by (3.7) are indeed optimal.

3.4 Exercises

Exercise 3.12 (Optimal liquidation with no permanent market impact). Solve the
optimal liquidation problem of Section 1.2 in the case λ = 0 (i.e. there is no permanent
price impact of our trading on the market price).

Exercise 3.13 (Unattainable optimizer). Here is a simple example in which no op-
timal control exists, in a finite horizon setting, T ∈ (0,∞). Suppose that the state
equation is

dXs = αs ds+ dWs s ∈ [t, T ] , Xt = x ∈ R.

A control α is admissible (α ∈ A) if: α takes values in R, is (Ft)t∈[0,T ]-adapted, and

E
∫ T

0 α2
s ds <∞ .

Let J(t, x, α) := E[|Xt,x,α
T |2]. The value function is v(t, x) := infα∈A J(t, x, α). Clearly

v(t, x) ≥ 0.

i) Show that for any t ∈ [0, T ], x ∈ R, α ∈ A we have E[|Xt,x,α
T |2] <∞.

ii) Show that if αt := −cXt for some constant c ∈ (0,∞) then α ∈ A and

Jα(t, x) = JcX(t, x) =
1

2c
− 1− 2cx2

2c
e−2c(T−t).

Hint: with such an α, the process X is an Ornstein-Uhlenbeck process, see Exer-
cise 1.12.

iii) Conclude that v(t, x) = 0 for all t ∈ [0, T ), x ∈ R.

iv) Show that there is no α ∈ A such that J(t, x, α) = 0. Hint: Suppose that there
is such a α and show that this leads to a contradiction.

v) The associated HJB equation is

∂tv + inf
a∈R

{1

2
∂xxv + a∂xv

}
= 0, on [0, T )× R.

v(T, x) = x2 .

Show that there is no value α ∈ R for which the infimum is attained.

Conclusions from Exercise 3.13: The value function v(t, x) = infα∈A J(t, x, α) sat-
isfies v(t, x) = 0 for all (t, x) ∈ [0, T ] × R but there is no admissible control α which
attains the v (i.e. there is no α∗ ∈ A such that v(t, x) = J(t, x, α∗)).
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The goal in this problem is to bring the state process as close as possible to zero at the
terminal time T . However, as defined above, there is no cost of actually controlling
the system. We can set α arbitrarily large without any negative consequences. From
a modelling standpoint, there is often a trade-off between costs incurred in applying
control and our overall objective. Compare this with Example 3.11.

Exercise 3.14 (Merton problem with exponential utility and no consumption). We
return to the portfolio optimization problem, see Section 1.1. Unlike in Example 3.10
we consider the utility function g(x) := −e−γx, γ > 0 a constant. We will also take
r = 0 for simplicity and assume there is no consumption (C = 0). With Xt denoting
the wealth at time time t we have the value function given by

v(t, x) = sup
π∈U

E
[
g
(
Xπ,t,x,
T

)]
.

i) Write down the expression for the wealth process in terms of π, the amount of
wealth invested in the risky asset and with r = 0, C = 0.

ii) Write down the HJB equation associated to the optimal control problem. Solve
the HJB equation by inspecting the terminal condition and thus suggesting a
possible form for the solution. Write down the optimal control explicitly.

iii) Use verification theorem to show that the solution and control obtained in previ-
ous step are indeed the value function and optimal control.

Exercise 3.15 ([12]*p252, Prob. 4.8). Solve the problem

max
ν

E
[
−
∫ T

0
ν2(t)

e−X(t)

2
dt+ eX(T )

]
,

where ν takes values in R, subject to dX(t) = ν(t)e−X(t) dt+σ dW (t), X(0) = x0 ∈ R,
σ ∈ (0,∞), σ, x0 are fixed numbers.

Hint: Try a solution of the HJB equation of the form v(t, x) = φ(t)ex + ψ(t).

For more exercises, see [12, Exercise 4.13, 4.14, 4.15].
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3.5 Solutions to Exercises

Solution (to Exercise 3.12). From Theorem 3.7 we can write down the HJB equation for V =
V (t, S, q):

∂Vt +
1

2
σ2∂SSV + sup

a∈A
{(S − κa)a− a∂qV } = 0 on [0, T )× R× R , (3.8)

with the terminal condition

V (T, q, S) = qS − θq2 ∀(q, S) ∈ R× R . (3.9)

Next we note that

a 7→ (S − ∂qV )a− κa2 attains its maximum with a∗ =
S − ∂qV

2κ
.

Hence the HJB equation (3.8) becomes

∂Vt +
1

2
σ2∂SSV +

1

4κ
(S − ∂qV )2 = 0 on [0, T )× R× R . (3.10)

We now have to “guess” an ansatz for V and, observing the similarities here with the linear-quadratic
case of Example 3.11, we try

V (t, q, S) = β(t)qS + γ(t)q2 .

With β(T ) = 1 and γ(T ) = −θ we have the terminal condition (3.9) satisfied. To proceed we calculate
the partial derivatives of V and substitute those into the HJB (3.10) to obtain

β′(t)qS + γ′(t)q2 +
1

4κ

[
S − β(t)S + 2γ(t)q

]2
= 0 ∀(t, q, S) ∈ [0, T )× R× R . (3.11)

This is equivalently

β′(t)qS + γ′(t)q2

+
1

4κ

[
S2 − 2β(t)S2 + 2γ(t)qS + β(t)2S2 − 4β(t)γ(t)qS + 2γ(t)qS + 4γ(t)2q2]2

=0 ∀(t, q, S) ∈ [0, T )× R× R .

This has to hold for all S2, q2 and qS. Starting with S2 terms we get that

1− 2β(t) + β(t)2 = 0 ∀t ∈ [0, T )

which can only be true if β(t) = 1 (since β(T ) must be 1 and we need β differentiable). Considering
now the qS term we have (β′(t) = 0 since we now have β(t) = 1):

2γ(t)− 4γ(t) + 2γ(t) = 0 ∀t ∈ [0, T )

which holds regardless of choice of γ. Finally we have the q2 terms which lead to

γ′(t) +
1

κ
γ(t)2 = 0 ∀t ∈ [0, T ) .

We recall the terminal condition γ(T ) = −θ and solve this ODE6 thus obtaining

γ(t) = −
(

1

θ
+

1

κ
(T − t)

)−1

.

This fully determines the value function

V (t, q, S) = qS + γ(t)q2

and the optimal control

a∗(t, q, S) = − 1

κ
γ(t)q .

We note that the optimal control is independent of S and in fact the entire control problem does not
depend on the volatility parameter σ.

Solution (to Exercise 3.13).

6 You can for instance recall that if f(t) = − 1
t

then f ′(t) = 1
t2

and so f ′(t) = f(t)2. Manipulating
expressions of this type can lead you to the correct solution.
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i) We use the fact that E
∫ T

0
α2
r dr <∞ for admissible control. We also use that (a+b)2 ≤ 2a2 +2b2.

Then for, any s ∈ [t, T ],

E[X2
s ] ≤ 4x2 + 4E

(∫ s

t

αr dr

)2

+ 2E(Ws −Wt)
2 .

With Hölder’s inequality we get

E[X2
s ] ≤ 4x2 + 4(s− t)1/2E

∫ s

t

α2
r dr + 2(s− t) ≤ cT

(
1 + x2 + E

∫ T

0

α2
r dr

)
<∞ . (3.12)

ii) Substitute αs = −cXs. The Ornstein-Uhlenbeck SDE, see Exercise 1.12, has solution

XT = e−c(T−t)x+

∫ T

t

e−c(T−t) dWr .

We square this, take expectation (noting that the integrand in the stochastic integral is determ-
inistic and square integrable):

EX2
T = e−2c(T−t)x2 + E

(∫ T

t

e−c(T−t) dWr

)2

.

With Itô’s isometry we get

EX2
T = e−2c(T−t)x2 +

∫ T

t

e−2c(T−t) dr .

Now we just need to integrate to obtain Jα(t, x) = JcX(t, x) = EX2
T .

iii) We know that v(t, x) ≥ 0 already. Moreover

v(t, x) = inf
α∈U

Jα(t, x) ≤ lim
c↗∞

JcX(t, x) = lim
c↗∞

[
1

2c
− 1− 2cx2

2c
e−2c(T−t)

]
= 0 .

iv) Assume that an optimal α∗ ∈ U exists so that E[Xα∗,t,x
T ] = Jα

∗
(t, x) = 0 for any t < T and any

x. We will show this leads to contradiction.

First of all, we can calculate using Itô formula that

dX∗s = 2X∗sα
∗
s ds+ 2X∗s dWs + ds .

Hence

0 = E[(X∗T )2] = x2 + 2E
∫ T

t

(X∗sα
∗
s + 1) ds+ E

∫ T

t

X∗s dWs .

But since α∗ is admissible we have
∫ T
t

E(X∗s )2 ds < ∞ due to (3.12). This means that the
stochastic integral is a martingale and hence its expectation is zero. We now use Fatou’s lemma
and take the limit as t↗ T . Then

−x2 = 2 lim inf
t↗T

E
∫ T

t

(X∗sα
∗
s + 1) ds ≥ 2E

[
lim inf
t↗T

∫ T

t

(X∗sα
∗
s + 1) ds

]
= 0 .

So −x2 ≥ 0. This cannot hold for all x ∈ R and so we have contradiction.

v) If ∂xv(t, x) 6= 0, then a = ±∞. If ∂xV (t, x) = 0, then a is undefined. One way or another there
is no real number attaining the infimum.

Solution (to Exercise 3.14). The wealth process (with the control expressed as π, the amount of
wealth invested in the risky asset and with r = 0, C = 0), is given by

dXs = πsµds+ πsσ dWs , s ∈ [t, T ] , Xt = x > 0 . (3.13)

The associated HJB equation is

∂tv + sup
p∈R

[
1

2
p2σ2∂xxv + p µ ∂xv

]
= 0 on [0, T )× R,

v(T, x) = g(x) ∀x ∈ R .
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We make a guess that v(t, x) = λ(t)g(x) = −λ(t)e−γx for some differentiable function λ = λ(t) ≥ 0.
Then, since we can divide by −e−γx 6= 0 and since we can factor out the non-negative λ(t), the HJB
equation will hold provided that

λ′(t) + sup
p∈R

[
−1

2
p2σ2γ2 + p µ γ

]
λ(t) = 0 on [0, T ), λ(T ) = 1.

The supremum is attained for p∗ = µ
σ2γ

since the expression we are maximizing is quadratic in p with

negative leading order term. Thus λ′(t) + β(t)λ(t) = 0 and λ(T ) = 1 with

β(t) := −1

2
(p∗)2σ2γ2 + p∗ µγ = −1

2
µγ +

µ2

σ2
.

We can solve the ODE for λ to obtain

λ(t) = e
∫ T
t β(r) dr

and hence our candidate value function and control are

v(t, x) = e
∫ T
t β(r) drg(x) and p∗ =

µ

σ2γ
.

We now need to use Theorem 3.8 to be able to confirm that these are indeed the value function and
optimal control.

First of all the solution for optimal X∗ always exists since we just need to integrate in the expres-
sion (3.13) taking πt := p∗. We note that the resulting process is Gaussian.

Now ∂xv(s,X∗s ) = λ(t) γe−γX
∗
s . We can now use what we know about moment generating functions

of normal random variables to conclude that∫ T

t

λ(s)2 e−2γX∗s ds <∞.

The process

t̄ 7→
∫ t̄

t

λ(s) e−γX
∗
s dWs

is thus a true martingale and the verification is complete.

Solution (to Exercise 3.15).

ψ(t) = 0, φ(t) =
σ2

Ceσ2t/2 − 1
, C = (1 + σ2)e−σ

2T/2.
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4 Pontryagin maximum principle and backward stochastic
differential equations

In the previous part, we developed the dynamic programming theory for the stochastic
control problem with Markovian system.

We introduce another approach called maximum principle, originally due to Pontry-
agin in the deterministic case. We will also study this approach to study the control
problem (P).

4.1 Backward Stochastic Differential Equations (BSDEs)

For a deterministic differential equation

dx(t)

dt
= b(t, x(t)) t ∈ [0, T ] , x(T ) = a

we can reverse the time by changing variables. Let τ := T − t and y(τ) = x(t). Then
we have

dy(τ)

dτ
= −b(T − τ, y(τ)) τ ∈ [0, T ] , y(0) = a .

So the backward ODE is equivalent to a forward ODE.

The same argument would fail for SDEs since the time-reversed SDE would not be
adapted to the appropriate filtration and the stochastic integrals will not be well
defined.

Recall the martingale representation theorem (see Theorem A.24), which says any
ξ ∈ L2

FT can be uniquely represented by

ξ = E[ξ] +

∫ T

0
φt dWt .

If we define Mt = E[ξ] +
∫ t

0 φsdWs, then Mt satisfies

dMt = φt dWt , MT = ξ .

This leads to the idea that a solution to a backward SDE must consist of two processes
(in the case above M and φ).

Consider the backward SDE (BSDE)

dYt = gt
(
Yt, Zt

)
dt+ Zt dWt, Y (T ) = ξ .

We shall give a few examples when this has explicit solution.

Example 4.1. Assume that g = 0. In this case, Yt = E[ξ|Ft] and Z is the process
given by the martingale representation theorem.

Example 4.2. Assume that gt(y, z) = γt. In this case, take ξ̂ := ξ−
∫ T

0 γt dt. We get

the solution (Ŷ , Ẑ) to
dŶt = Ẑt dWt , ŶT = ξ̂

as

Ŷt = E
[
ξ̂|Ft

]
= E

[
ξ −

∫ T

0
γt dt

∣∣∣∣Ft]
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and we get Z from the martingale representation theorem. Then with Yt := Ŷt +∫ t
0 γs ds, Zt := Ẑt we have a solution (Y,Z) so in particular

Yt = E
[
ξ −

∫ T

0
γt dt

∣∣∣∣Ft]+

∫ t

0
γs ds = E

[
ξ −

∫ T

t
γs ds

∣∣∣∣Ft] .
Example 4.3. Assume that gt(y, z) = αty + βtz + γt and α = αt, β = βt, γ = γt
are adapted processes that satisfy certain integrability conditions (those will become
clear). We will construct a solution using an exponential transform and a change of
measure.

Consider a new measure Q given by the Radon–Nikodym derivative

dQ
dP

= exp

(
−1

2

∫ T

0
β2
s ds−

∫ T

0
βs dWs

)
and assume that E

[
dQ
dP
]

= 1. Then, due to Girsanov’s Theorem A.23, the process

given by WQ
t = Wt +

∫ t
0 βs ds is a Q-Wiener process. Consider the BSDE

dȲt = γ̄t dt+ Z̄t dW
Q
t , ȲT = ξ̄ , (4.1)

where γ̄t := γt exp
(
−
∫ t

0 αs ds
)

and ξ̄ := ξ exp
(
−
∫ T

0 αs ds
)

. We know from Ex-

ample 4.2 that this BSDE has a solution (Ȳ , Z̄) and in fact we know that

Ȳt = EQ
[
ξe−

∫ T
0 αs ds −

∫ T

t
γse
−
∫ s
0 αr dr ds

∣∣∣∣Ft] .
We let Yt := Ȳt exp

(∫ t
0 αs ds

)
and Zt := Z̄t exp

(∫ t
0 αs ds

)
. Now using the Itô product

rule with (4.1) and the equation for WQ we can check that

dYt = d
(
Ȳte

∫ t
0 αs ds

)
= αtYt dt+ e

∫ t
0 αs ds dȲt = αtYt dt+ γt dt+ Zt dW

Q
t

= (αtYt + βtZt + γt) dt+ Zt dWt

and moreover YT = ξ. In particular we get

Yt = EQ
[
ξe−

∫ T
t αs ds −

∫ T

t
γse
−
∫ s
t αr dr ds

∣∣∣∣Ft] . (4.2)

To get the solution as an expression in the original measure we need to use the Bayes
formula for conditional expectation, see Proposition A.41. We obtain

Yt =

E
[(
ξe−

∫ T
t αs ds −

∫ T
t γse

−
∫ s
t αr dr ds

)
e−

1
2

∫ T
0 β2

s ds−
∫ T
0 βs dWs

∣∣∣∣Ft]
E
[
e−

1
2

∫ T
0 β2

s ds−
∫ T
0 βs dWs

∣∣∣∣Ft] .

Proposition 4.4 (Boundedness of solutions to linear BSDEs). Consider the linear
backward SDE with gt(y, z) = αty+ βtz+ γt. If α, β, γ and ξ are all bounded then the
process Y in the solution pair (Y, Z) is bounded.

Proof. This proof is left as exercise.
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Example 4.5 (BSDE and replication in the Black-Scholes market). In a standard
Black-Scholes market model we have a risk-free asset dBt = rBt dt and risky assets

dSt = diag(µ)St dt+ σSt dWt .

Here µ is the drift vector of the risky asset rate, σ is the volatility matrix.

Let π denote the cash amount invested in the risky asset andX the replicating portfolio
value (so X − π is invested in the risk-free asset). Then the self-financing property
says that (interpreting 1/S to be diag(1/S1, . . . , 1/Sm))

dXt = πt
1

St
dSt +

Xt −
∑m

i=1 π
(i)
t

Bt
dBt

i.e.

dXt =
[
rXt + πt(µ− r)

]
dt+ π>t σ dWt .

We can define Zt = σ>t πt and if σ−1 exists then πt = (σ>)−1Zt = (σ−1)>Zt

dXt =
[
rXt + (µ> − r)(σ−1)>Zt

]
dt+ Zt dWt.

For any payoff ξ at time T , the replication problem is to solve the BSDE given by this
differential coupled with XT = ξ. If ξ ∈ L2

FT the equation admits a unique square-
integrable solution (X,Z). Hence the cash amount invested in the risky asset, required
in the replicating portfolio is πt = (σ−1)>Zt, and the replication cost (contingent claim
price) at time t is Xt.

We see that this is a BSDE with linear driver and so from Example 4.3 we have,
see (4.2) that

Xt = EQ
[
ξe−r(T−t)

∣∣Ft] ,
where

dQ
dP

= e−
1
2
|σ−1(µ−r)|2T−(µ>−r)(σ−1)>WT .

In other words we see that Q is the usual risk-neutral measure we get in Black–Scholes
pricing.

A standard backward SDE (BSDE) is formulated as

dYt = gt
(
Yt, Zt

)
dt+ Zt dWt, Y (T ) = ξ, (4.3)

where g = gt(ω, y, z) must be such that gt(y, z) is at least Ft-measurable for any fixed
t, y, z. We will refer to g is called as the generator or driver of the Backward SDE.

Definition 4.6. Given ξ ∈ L2(FT ) and a generator g, a pair of (Ft)t∈[0,T ]-adapted
processes (Y, Z) is called as a solution for (4.3) if

Yt = ξ −
∫ T

t
gs
(
Ys, Zs

)
ds−

∫ T

t
Zs dWs, ∀t ∈ [0, T ].

Theorem 4.7 (Existence and uniqueness for BSDEs). Suppose g = gt(y, z) satisfies

(i) We have g(0, 0) ∈ H.
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(ii) There exists a constant L > 0 such that

|gt(y, z)− gt(y, z)| ≤ L(|y − y|+ |z − z|) , a.s. ∀t ∈ [0, T ] ,∀y, z, ȳ, z̄ .

Then for any ξ ∈ L2
FT , there exists a unique (Y,Z) ∈ H×H solving the BSDE (4.3).

Recall that H is the space introduced in Definition A.18.

Proof. We consider the map Φ = Φ(U, V ) for (U, V ) in H×H. Given (U, V ) we define

(Y, Z) = Φ(U, V ) as follows. Let ξ̂ := ξ −
∫ T

0 gs(Us, Vs) ds. Then

E
∫ T

0
|gs(Us, Vs)|2 ds ≤ E

∫ T

0
[2|gs(Us, Vs)− gs(0, 0)|2 + 2|gs(0, 0)|2] ds

≤ E
∫ T

0
[2L2(|Us|2 + |Vs|2) + 2|gs(0, 0)|2] ds <∞,

(4.4)

since U and V and g(0, 0) are in H. So ξ̂ ∈ L2(FT ) and we know that for Ŷt := E[ξ̂|Ft]
there is Z such that

dŶt = Zt dWt , ŶT = ξ̂ .

Take Yt := Ŷt +
∫ t

0 gs(Us, Vs) ds. Then

Yt = ξ −
∫ T

t
gs(Us, Vs) ds−

∫ T

t
Zs dWs . (4.5)

The next step is to show that (U, V ) 7→ Φ(U, V ) = (Y,Z) described above is a con-
traction on an appropriate Banach space.

We will assume, for now, that |ξ| ≤ N and that |g| ≤ N . We consider (U, V ) and
(U ′, V ′). From these we obtain (Y,Z) = Φ(U, V ) and (Y ′, Z ′) = Φ(U ′, V ′). We will
write

(Ū , V̄ ) := (U − U ′, V − V ′) , (Ȳ , Z̄) := (Y − Y ′, Z − Z ′) , ḡ := g(U, V )− g(U ′, V ′) .

Then
dȲs = ḡs ds+ Z̄sdWs

and with Itô formula we see that

dȲ 2
s = 2Ȳsḡs ds+ 2ȲsZ̄s dWs + Z̄2

sds .

Hence, for some β > 0,

d(eβsȲ 2
s ) = eβs

[
2Ȳsḡs ds+ 2ȲsZ̄s dWs + Z̄2

s ds+ βȲ 2
s ds

]
.

Noting that, due to (4.5), we have ȲT = YT − Y ′T = 0, we get

0 = Ȳ 2
0 +

∫ T

0
eβs
[
2Ȳsḡs + Z̄2

s + βȲ 2
s

]
ds+

∫ T

0
2eβsȲsZ̄s dWs .

Since Z ∈ H we have

E
∫ T

0
4e2βs|Ȳs|2|Z̄s|2 ds ≤ e2βT 4N2(1 + T )2E

∫ T

0
|Z̄s|2 ds <∞
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and so, the stochastic integral being a martingale, we get

E
∫ T

0
eβs
[
Z̄2
s + βȲ 2

s

]
ds = −EȲ 2

0 − E
∫ T

0
eβs2Ȳsḡs ds ≤ 2E

∫ T

0
eβs|Ȳs||ḡs| ds .

Using the Lipschitz continuity of g and Young’s inequality (with ε = 1/4) we have

eβs|Ȳs||ḡs| ≤ eβs|Ȳs|L(|Ūs|+ |V̄s|) ≤ 2L2eβs|Ȳs|2 +
1

8
eβs(|Ūs|+ |V̄s|)2

≤ 2L2eβs|Ȳs|2 +
1

4
eβs(|Ūs|2 + |V̄s|2) .

We can now take β = 1 + 4L2 and we obtain

E
∫ T

0
eβs
[
Z̄2
s + Ȳ 2

s

]
ds ≤ 1

2
E
∫ T

0
eβs(|Ūs|2 + |V̄s|2) ds . (4.6)

We now need to remove the assumption that |ξ| ≤ N and |g| ≤ N . To that end
consider ξN := −N ∧ ξ ∨N and gN := −N ∧ g ∨N (so |ξN | ≤ N and |gN | ≤ N). We
obtain Y N , ZN as before. Note that

Yt = E[ξ|Ft] = E
[

lim
N→∞

ξ̂N
∣∣Ft] = lim

N→∞
Y N
t

due to Lebesgue’s dominated convergence for conditional expectations. Indeed, we
have |ξ̂N | ≤ |ξ|+

∫ T
0 |gs(Us, Vs)| ds and this is in L2 due to (4.4). Moreover

E
∫ T

0
|ZNt − Zt|2 dt = E

(∫ T

0
(ZNt − Zt) dWt

)2

= E
(
Y N
T − YT + Y0 − Y N

0

)2
≤ 2E|Y N

T − YT |2 + 2E|Y0 − Y N
0 |2 → 0 as N →∞

due to Lebesgue’s dominated convergence theorem. Then from (4.6) be have, for each
N ,

E
∫ T

0
eβs
[̄
|ZNs |2 + |̄Y N

s |2
]
ds ≤ 1

2
E
∫ T

0
eβs(|Ūs|2 + |V̄s|2) ds .

But since the RHS is independent of N , we obtain (4.6) but now without the as-
sumption that |ξ| ≤ N and |g| ≤ N . Consider now the Banach space (H ×H, ‖ · ‖),
with

‖(Y,Z)‖ := E
∫ T

0
eβs
[
Z2
s + Y 2

s

]
ds .

From (4.6) we have

‖Φ(U, V )− Φ(U ′, V ′)‖ ≤ 1

2
‖(U, V )− (U ′, V ′)‖ .

So the map Φ : H × H → H × H is a contraction and due to Banach’s Fixed Point
Theorem there is a unique (Y ∗, Z∗) which solves the equation Φ(Y ∗, Z∗) = (Y ∗, Z∗).
Hence

Y ∗t = ξ −
∫ T

t
gs(Y

∗
s , Z

∗
s ) ds−

∫ T

t
Z∗s dWs

due to (4.5).
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Theorem 4.8. Let (Y 1, Z1) and (Y 2, Z2) be solutions to BSDEs with generators and
terminal conditions g1, ξ1 and g2, ξ2 respectively. Assume that ξ1 ≤ ξ2 a.s. and that
g2
t (Y

2
t , Z

2
t ) ≤ g1

t (Y
1
t , Z

1
t ) a.e. on Ω× (0, T ). Assume finally that the generators satisfy

the assumption of Theorem 4.7 and ξ1, ξ2 ∈ L2(FT ). Then Y 1 ≤ Y 2.

Proof. We note that the BSDE satisfied by Ȳ := Y 2 − Y 1, Z̄ := Z2 − Z1 is

dȲt = [g2
t (Y

2
t , Z

2
t )− g1

t (Y
1
t , Z

1
t )] dt+ Z̄t dWt , ȲT = ξ̄ := ξ2 − ξ1 .

This is

dȲt =[g2
t (Y

2
t , Z

2
t )− g2

t (Y
1
t , Z

2
t ) + g2

t (Y
1
t , Z

2
t )− g2

t (Y
1
t , Z

1
t ) + g2

t (Y
1
t , Z

1
t )− g1

t (Y
1
t , Z

1
t )] dt

+ Z̄t dWt , ȲT = ξ̄

which we can re-write as

dȲt = [αtȲt + βtZ̄t + γt] dt+ Z̄t dWt , ȲT = ξ̄ ,

where

αt :=
g2
t (Y

2
t , Z

2
t )− g2

t (Y
1
t , Z

2
t )

Y 2
t − Y 1

t

1Y 1
t 6=Y 2

t
, βt :=

g2
t (Y

1
t , Z

2
t )− g2

t (Y
1
t , Z

1
t )

Z2
t − Z1

t

1Z1
t 6=Z2

t

and where
γt := g2

t (Y
1
t , Z

1
t )− g1

t (Y
1
t , Z

1
t ) .

Due to the Lipschitz assumption on g2 we get that α and β are bounded and since
Y i, Zi are in H we get that γ ∈ H. Thus we have an affine BSDE for (Ȳ , Z̄) and the
conclusion follows from (4.2) since we get

Ȳt = EQ

[
ξ̄e−

∫ T
t αs ds︸ ︷︷ ︸
≥0

−
∫ T

t
γse
−
∫ s
t αr dr ds︸ ︷︷ ︸

≤0

∣∣∣∣Ft
]
≥ 0

from the assumptions that ξ1 ≤ ξ2 a.s. and that g2
t (Y

2
t , Z

2
t ) ≤ g1

t (Y
1
t , Z

1
t ) a.e.

4.2 Pontryagin’s Maximum Principle

We now return to the optimal control problem (P). Recall that given running gain f
and terminal gain g our aim is to optimally control

dXα
t = bt(Xt, αt) dt+ σt(Xt, αt) dWt, t ∈ [0, T ] , Xα

0 = x,

where α ∈ U and we assume that Assumption 2.9 holds. Recall that by optimally
controlling the process we mean a control which will maximize

J(α) := E
[∫ T

0
f(t,Xα

t , αt) dt+ g(Xα
T )

]
over α ∈ U . Unlike in Chapter 3 we can consider the process starting from time
0 (because we won’t be exploiting the Markov property of the SDE) and unlike in
Chapter 3 we will assume that A is a subset of Rm.

We define the Hamiltonian H : [0, T ]× Rd ×A× Rd × Rd×d′ → R of the system as

Ht(x, a, y, z) := bt(x, a) y + tr[σ>t (x, a) z] + ft(x, a) .

51



Assumption 4.9. Assume that x 7→ Ht(x, a, y, z) is differentiable for all a, t, y, z with
derivative bounded uniformly in a, t, y, z. Assume that g is differentiable in x with
the derivative having at most linear growth (in x).

Consider the adjoint BSDEs (one for each α ∈ U)

dY α
t = −∂xHt(t,Xt, αt, Y

α
t , Z

α
t ) dt+ Zt dWt , Y

α
T = ∂xg(Xα

T ) .

Note that under Assumption 4.9 and 2.9

E[|∂xg(Xα
T )|2] ≤ E[(K(1 + |Xα

T |)2] <∞,

Hence, due to Theorem 4.7, the adjoint BSDEs have unique solutions (Y α, Zα).

We will now see that it is possible to formulate a sufficient optimality criteria based
on the properties of the Hamiltonian and based on the adjoint BSDEs. This is what
is known as the Pontryagin’s Maximum Principle. Consider two control processes,
α, β ∈ U and the two associated controlled diffusions, both starting from the same
initial value, labelled Xα, Xβ. Then

J(β)− J(α) = E
[∫ T

0

[
f(t,Xβ

t , βt)− f(t,Xα
t , αt)

]
dt+ g(Xβ

T )− g(Xα
T )

]
.

We will need to assume that g is concave (equivalently assume −g is convex). Then
g(x) − g(y) ≥ ∂xg(x)(x − y) and so (recalling what the terminal condition in our
adjoint equation is)

E
[
g(Xβ

T )− g(Xα
T )
]
≥ E

[
(Xβ

T −X
α
T )∂xg(Xβ

T )
]

= E
[
(Xβ

T −X
α
T )Y β

T

]
.

We use Itô’s product rule and the fact that Xα
0 = Xβ

0 . Let us write ∆bt := bt(X
β
t , βt)−

bt(X
α
t , αt) and ∆σt := σt(X

β
t , βt)− σt(Xα

t , αt). Then we see that

E
[
(Xβ

T −X
α
T )Y β

T

]
≥ E

[ ∫ T

0
−(Xβ

t −Xα
t )∂xHt(X

β
t , βt, Y

β
t , Z

β
t ) dt

+

∫ T

0
∆bt Y

β
t dt+

∫ T

0
tr
[
∆σ>t Z

β
t

]
dt

]
.

Note that we are missing some details here, because the second stochastic integral
term that we dropped isn’t necessarily a martingale. However with a stopping time
argument and Fatou’s Lemma the details can be filled in (and this is why we have an
inequality). We also have that for all y, z,

f(t,Xβ
t , βt) = Ht(X

β
t , βt, y, z)− bt(X

β
t , βt)y − tr[σ>t (Xβ

t , βt)z] ,

f(t,Xα
t , αt) = Ht(X

α
t , αt, y, z)− bt(Xα

t , αt)y − tr[σ>t (Xα
t , αt)z]

and so
f(t,Xβ

t , βt)− f(t,Xα
t , αt) = ∆Ht −∆btY

β
t − tr(∆σ>t Z

β
t )

where
∆Ht := Ht(X

β
t , βt, Y

β
t , Z

β
t )−Ht(X

α
t , αt, Y

β
t , Z

β
t ) .

Thus

E
[∫ T

0

[
f(t,Xβ

t , βt)− f(t,Xα
t , αt)

]
dt

]
= E

[∫ T

0

[
∆Ht −∆btY

β
t − tr(∆σ>t Z

β
t )
]
dt

]
.
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Altogether

J(β)− J(α) ≥ E
[∫ T

0

[
∆Ht − (Xβ

t −Xα
t )∂xHt(X

β
t , βt, Y

β
t , Z

β
t )
]
dt

]
If we now assume that (x, a) 7→ Ht(x, a, Y

β
t , Z

β
t ) is differentiable and concave for any

t, y, z then

∆Ht ≥ (Xβ
t −Xα

t )∂xHt(X
β
t , βt, Y

β
t , Z

β
t ) + (βt − αt)∂aHt(X

β
t , βt, Y

β
t , Z

β
t )

and so

J(β)− J(α) ≥ E
[∫ T

0
(βt − αt)∂aHt(X

β
t , βt, Y

β
t , Z

β
t ) dt

]
.

Finally we assume that βt is a control process which satisfies

Ht(X
β
t , βt, Y

β
t , Z

β
t ) = max

a∈A
Ht(X

β
t , a, Y

β
t , Z

β
t ) <∞ a.s. for almost all t.

Then J(β) ≥ J(α) for arbitrary α. In other words, such control β is optimal. Hence
we have proved the following theorem.

Theorem 4.10 (Pontryagin’s Maximum Principle). Let Assumptions 2.9 and 4.9
holds, let ⊂ Rm. Let g be concave. Let β ∈ U and let Xβ be the associated controlled
diffusion and (Y β, Zβ) the solution of the adjoint BDSE. If β ∈ U is such that

Ht(X
β
t , βt, Y

β
t , Z

β
t ) = max

a∈A
Ht(X

β
t , a, Y

β
t , Z

β
t ) <∞ a.s. for almost all t. (4.7)

holds and if
(x, a) 7→ Ht(x, a, Y

β
t , Z

β
t )

is differentiable and concave then J(β) = supα J(α) i.e. β is an optimal control.

We can see that the Pontryagin maximum principle gives us a sufficient condition for
optimality.

Example 4.11 (Linear–quadratic control revisited). Take W to be Rd′-valued Wiener
process and let the space where controls take values to be A = Rm. Consider Xt =
Xα,x
t taking values in Rd given by

dXt = [L(t)Xt +M(t)αt] dt+ σ(t) dWt for t ∈ [0, T ] , X0 = x ,

where L = L(t) ∈ Rd×d,M = M(t) ∈ Rd×m and σ = σ(t) ∈ Rd×d′ are bounded,
measurable, deterministic functions of t.

Further let C = C(t) ∈ Rd×d, D = D(t) ∈ Rm×m, F = F (t) ∈ Rd×m be deterministic,
integrable functions of t and R ∈ Rd×d be such that C,D and R are symmetric,
C = C(t) ≤ 0, R ≤ 0 and D = D(t) ≤ −δ < 0 with some constant δ > 0. The aim
will be to maximize

Jα(x) := Ex,α
[∫ T

0

[
X>t C(t)Xt + α>t D(t)αt + 2X>t F (t)αt

]
dt+X>T RXT

]
over all adapted processes α such that E

∫ T
0 α2

t dt <∞ (we will call these admissible).

The Hamiltonian is

Ht(x, a, y, z) = x>L(t) y+y>M(t) a+tr
[
σ(t)>z

]
+x>C(t)x+a>D(t) a+2x>F (t) a .
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We see that as function of (a, x) it is a sum of linear and quadratic functions and
hence differentiable. Moreover since C ≤ 0 and D < 0 we see that it is concave.

We see that
∂xHt(x, a, y, z) = L(t)y + 2C(t)x+ 2F (t)a

and so the adjoint BSDE (Ŷ , Ẑ) for the optimal control α̂ is

dŶt = −
[
L(t)Ŷt + 2C(t)X̂t + 2F (t)α̂

]
dt+ Ẑt dWt for t ∈ [0, T ] , ŶT = 2RX̂T .

Note that x 7→ x>Rx is concave (since R ≤ 0) and so the Pontryagin’s maximum
principle applies. If α̂ is the optimal control, X̂ is the associated diffusion and (Ŷ , Ẑ)
is the solution to the adjoint BSDE for α̂ then the maximum principle says that

Ht(X̂t, α̂t, Ŷt, Ẑt) = max
a∈R

Ht(X̂t, a, Ŷt, Ẑt) .

In this case the maximum is achieved when (Hamiltonian is quadratic in a with neg-
ative leading coefficient so we just differentiate w.r.t. a and see for which value this
is 0):

0 = M(t)>Ŷt + 2D(t) a+ 2F (t)>X̂t

i.e.

α̂t = −1

2
D(t)−1

(
M(t)>Ŷt + 2F (t)>X̂t

)
.

Inspecting the terminal condition for the adjoint BSDE leads us to “guess” that we
should have Ŷt = 2S(t)X̂t for some S ∈ C1([0, T ];Rd×d) with S(T ) = R. We rewrite
the optimal control with our guess for Ŷ :

α̂t = −D(t)−1
(
M(t)>S(t) + F (t)>

)
X̂t

and we can also write the optimally controlled SDE:

dX̂t =
{
L(t) +M(t)

[
−D(t)−1

(
M(t)>S(t) + F (t)>

)]}
X̂t dt+ σ(t) dWt . (4.8)

Since our guess is that Ŷt = 2S(t)X̂t we have, due to Itô’s formula

dŶt = 2S′(t)X̂t dt+ 2S(t) dX̂t

= 2S′(t)X̂t dt+ 2S(t)
{
L(t) +M(t)

[
−D(t)−1

(
M(t)>S(t) + F (t)>

)]}
X̂t dt

+ 2S(t)σ(t) dWt .

On the other hand the adjoint equation for Ŷ gives

dŶt = −2
[
L(t)S(t) + C(t)− F (t)D(t)−1

(
M(t)>S(t) + F (t)>

)]
X̂t dt+ Ẑt dWt .

Since both must hold we get that Ẑt = 2S(t)σ(t) and that

S′(t) + S(t)L(t) + S(t)M(t)
[
−D(t)−1

(
M(t)>S(t) + F (t)>

)]
= −L(t)S(t)− C(t) + F (t)D(t)−1

(
M(t)>S(t) + F (t)>

)
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so that for t ∈ [0, T ]

S′(t) = [S(t)M(t) + F (t)]D(t)−1
(
M(t)>S(t) + F (t)>

)
− L(t)S(t)− S(t)L(t)− C(t)

with S(T ) = R.

The equation (4.8) for X̂ is linear and clearly has unique solution and all the moments
are bounded.

We observe (recalling Ŷt = 2S(t)X̂t) that

2X̂>T RX̂T = 2X̂>T S(T )X̂T = X̂>T ŶT = X̂>T ŶT−X̂>0 Ŷ0+X̂>0 Ŷ0 =

∫ T

0
d(X̂>t Ŷt)+2x>S(0)x.

(4.9)
Let us write ψ(t) := −D(t)−1

(
M(t)>S(t) + F (t)>

)
, so that

dX̂t = [L(t) +M(t)ψ(t)] X̂t dt+ σ(t) dWt ,

dŶt = −2 [L(t)S(t) + C(t) + F (t)ψ(t)] X̂t dt+ 2S(t)σ dWt .

Moreover

1

2
d(X̂>t Ŷt) =

1

2

(
X̂>t S(t)dX̂t + X̂>t dŶt + d(X̂>t )dŶt

)
=X̂>t S(t)L(t)X̂t dt+ X̂>t S(t)M(t)ψ(t)X̂t dt+ X̂>t S(t)σ(t) dWt

− X̂>t L(t)S(t)X̂t dt− X̂>t C(t)X̂t − X̂>t F (t)ψ(t)X̂t

+ X̂>t S(t)σ(t) dWt + tr[σ(t)(S(t)σ(t))>] dt .

Hence,7

1

2
d(X̂>t Ŷt) = + X̂>t S(t)M(t)ψ(t)X̂t dt

− X̂>t C(t)X̂t − X̂>t F (t)ψ(t)X̂t

+ 2X̂>t S(t)σ(t) dWt + tr[σ(t)(S(t)σ(t))>] dt .

(4.10)

We also have

J α̂(x) = E
[∫ T

0

(
X̂>t C(t)X̂t + α̂>t D(t)α̂t + 2X>t F (t)α̂t

)
dt+RX̂2

T

]
. (4.11)

Noting that α>t D(t)α̂t = X̂>t (M(t)>S(t) + F (t)>)>ψ(t)X̂t and substituting (4.10)
into (4.9) and using this in (4.11) we see that most terms cancel and hence

J α̂(x) = E
[∫ T

0
tr
[
σ(t)(S(t)σ(t))>

]
dt+

∫ T

0
2X̂>t S(t)σ(t) dWt + x>S(0)x

]
.

Since the solution of the SDE for X̂ has all moments bounded we have

E
∫ T

0
4|S(t)|2|σ(t)|4|X̂t|2 dt ≤ N

∫ T

0
E|X̂t|2 dt ≤ NT <∞ .

The stochastic integral is thus a martingale and so

v(x) = J α̂(x) = x>S(0)x+

∫ T

0
tr
[
σ(t)(S(t)σ(t))>

]
dt .

7We are using that x>ABx = x>BAx.

55



Example 4.12 (Minimum variance for given expected return). We consider the
simplest possible model for optimal investment: we have a risk-free asset B with
evolution given by dBt = rBt dt and B0 = 1 and a risky asset S with evolution given
by dSt = µSt dt + σSt dWt with S0 given. For simplicity we assume that σ, µ, r are
given constants, σ 6= 0 and µ > r. The value of a portfolio with no asset injections /
consumption is given by X0 = x and

dXα
t =

αt
St
dSt +

Xt − αt
Bt

dBt ,

where αt represents the amount invested in the risky asset. Then

dXα
t = (rXt + αt(µ− r)) dt+ σαt dWt . (4.12)

Given a desired return m > 0 we aim to find a trading strategy which would minimize
the variance of the return (in other words a strategy that gets as close to the desired

return as possible). We restrict ourselves to α such that E
∫ T

0 α2
t dt < ∞. Thus we

seek
V (m) := inf

α
{Var(Xα

T ) : EXα
T = m} . (4.13)

See Exercise 4.13 to convince yourself that the set over which we wish to take infimum
is non-empty. Conveniently, if, for λ ∈ R, we can calculate

v(λ) := inf
α

E
[
|Xα

T − λ|2
]

then [11, Proposition 6.6.5] tells us that

V (m) = sup
λ∈R

[
v(λ)− (m− λ)2

]
.

Furthermore
v(λ) = − sup

α
E
[
−|Xα

T − λ|2
]
.

Thus our aim is to maximize

Jλ(α) := E [g(Xα
T )] with g(x) = −(x− λ)2 .

Since g is concave and differentiable we will try to apply Pontryagin’s maximum
principle. As there is no running gain (i.e. f = 0) and since Xα is given by (4.12) we
have the Hamiltonian

Ht(x, a, y, z) = [rx+ a(µ− r)]y + σa z .

This, being affine in (a, x), is certainly differentiable and concave. Moreover, if there
is an optimal control β and if the solution of the adjoint BSDE is denoted (Y β, Zβ)
then

max
a

Ht(X
β
t , a, Y

β
t , Z

β
t ) = max

a

[
rXβ

t Y
β
t + a(µ− r)Y β

t + σaZβt

]
.

The quantity being maximized is linear in a and thus it will be finite if and only if
the solution to the adjoint equation satisfies

(µ− r)Y β
t + σZβt = 0 a.s. for a.a t. (4.14)

From now on we omit the superscript β everywhere. Recalling the adjoint equation:

dYt = −rYt dt+ Zt dWt and YT = ∂xg(XT ) = −2(XT − λ). (4.15)
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To proceed we will need to make a guess at what the solution to the adjoint BSDE
will look like. Since the terminal condition is linear in XT we will try the ansatz
Yt = ϕ(t)Xt +ψ(t) for some C1 functions ϕ and ψ. Notice that this is rather different
to the situation in Example 4.3, since there we obtain a solution but only in terms of
an unknown process arising from the martingale representation theorem. With this
ansatz we have, substituting the expression for Y on the r.h.s. of (4.15), that

dYt = −rϕ(t)Xt dt− rψ(t) dt+ Zt dWt (4.16)

and on the other hand we can use the ansatz for Y and product rule on the l.h.s.
of (4.15) to see

dYt = ϕ(t) dXt +Xtϕ
′(t) dt+ ψ′(t) dt

= ϕ(t) [rXt + βt(µ− r)] dt+ ϕ(t)σβt dWt +Xtϕ
′(t) dt+ ψ′(t) dt .

(4.17)

The second equality above came from (4.12) with β as the control. Then (4.16)
and (4.17) can simultaneously hold only if Zt = ϕ(t)σβt and if

ϕ(t) [rXt + βt(µ− r)] +Xtϕ
′(t) + ψ′(t) = −rϕ(t)Xt − rψ(t) .

This in turn will hold as long as

βt =
2rϕ(t)Xt + rψ(t) + ϕ′(t)Xt + ψ′(t)

ϕ(t)(r − µ)
. (4.18)

On the other hand from the Pontryagin maximum principle we conculded (4.14) which,
with Yt = ϕ(t)Xt + ψ(t) and Zt = ϕ(t)σβt says

(µ− r)[ϕ(t)Xt + ψ(t)] + σ2ϕ(t)βt = 0,

i.e.

βt =
(r − µ)[ϕ(t)Xt + ψ(t)]

σ2ϕ(t)
. (4.19)

But (4.18) and (4.19) can both hold only if (collecting terms with Xt and without)

ϕ′(t) =
(

(r−µ)2

σ2 − 2r
)
ϕ(t) , ϕ(T ) = −2

ψ′(t) =
(

(r−µ)2

σ2 − r
)
ψ(t) , ψ(T ) = 2λ .

(4.20)

Note that the terminal conditions arose from YT (rather than from the equations for
β). Also note that ψ clearly depends on λ but for now we omit this in our notation.
Clearly

ϕ(t) = −2e
−
(

(r−µ)2

σ2 −2r

)
(T−t)

and ψ(t) = 2λe
−
(

(r−µ)2

σ2 −r
)

(T−t)
. (4.21)

We note that from (4.19) we can write the control as Markov control

β(t, x) = −(µ− r)[ϕ(t)x+ ψ(t)]

σ2ϕ(t)
.

Thus X driven by this control is square integrable. Indeed β is a linear function in x
and together with (4.12) and Proposition 2.6 we can conclude the square integrability.

Thus we also have E
∫ T

0 β2
t dt <∞ and so the control is admissable.
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We still need to know
v(λ) = −J(β) = E

[
|XT − λ|2

]
.

We cannot calculate this by solving for X as in Exercise 4.13 (try it). Instead we note
that

E|XT − λ|2 = E
[
−1

2
ϕ(T )X2

T − ψ(T )XT + λ2

]
.

From Itô’s formula for ξt := −1
2ϕ(t)X2

t − ψ(t)Xt we get that

−dξt =
(

1
2ϕ
′(t)X2

t + ψ′(t)Xt

)
dt+ [ϕ(t)Xt + ψ(t)] dXt + 1

2ϕ(t) dX(t)dX(t) .

And we have that
dXt = (rXt + βt(µ− r)) dt+ σβt dWt .

Hence

−EξT = −ξ0 + E
∫ T

0

(
1
2ϕ
′(t)X2

t + ψ′(t)Xt

+ rϕ(t)X2
t + rψ(t)Xt

+ βt(µ− r)[ϕ(t)Xt + ψ(t)]

+ 1
2ϕ(t)σ2β2

t

)
dt .

From the optimality condition (µ− r)βt[ϕ(t)Xt + ψt] + σ2ϕ(t)β2
t = 0 we get

1
2σ

2ϕ(t)β2
t = −1

2(µ− r)βt[ϕ(t)Xt + ψt]

and so

−EξT = −ξ0 + E
∫ T

0

(
1
2ϕ
′(t)X2

t + ψ′(t)Xt

+ rϕ(t)X2
t + rψ(t)Xt

+ 1
2βt(µ− r)[ϕ(t)Xt + ψ(t)]

)
dt .

This is

−EξT = −ξ0 + (r−µ)2

σ2 E
∫ T

0

(
1
2ϕ(t)X2

t + ψ(t)Xt − 1
2
ϕ(t)2X2

t +2ϕ(t)ψ(t)Xt+ψ(t)2

ϕ(t)

)
dt .

So

EξT = ξ0 + 1
2

(r−µ)2

σ2

∫ T

0

ψ(t)2

ϕ(t) dt .

Due to (4.21) we have

EξT = ξ0 − λ2 (r−µ)2

σ2

∫ T

0
e−

(r−µ)2

σ2 (T−t) dt .

Hence

EξT = ξ0 − λ2

[
1− e−

(r−µ)2

σ2 T

]
.

58



But E|XT − λ|2 = EξT + λ2 and so

E|XT − λ|2 = ξ0 + λ2e−
(r−µ)2

σ2 T .

Moreover ξ0 = −1
2ϕ(0)x2 − ψ(x)x and so

ξ0 = x2e
−
(

(r−µ)2

σ2 −2r

)
T
− 2xλe

−
(

(r−µ)2

σ2 −r
)
T
.

Finally

E|XT − λ|2 = e−
(r−µ)2

σ2 T [x2e2rT − 2xλerT + λ2
]

= e−
(r−µ)2

σ2 T (λ− xerT )2 .
which means that

v(λ) = −κ
(
λ− xerT

)2
,

where κ := e−
(r−µ)2

σ2 T > 0. We thus get

V (m) = sup
λ∈R

[
−κ
(
λ2 − 2λxerT + x2e2rT

)
− λ2 + 2λm−m2

]
.

This is achieved when
0 = −κλ+ κxerT − λ+m

i.e. when λ = κxerT+m
κ+1 .

4.3 Exercises

Exercise 4.13 (To complement Example 4.12). Show that, under the assumptions
of Example 4.12, the set {Var(Xα

T ) : EXα
T = m} is nonempty.

Exercise 4.14 (Merton’s problem with exponential utility, no consumption, using
Pontryagin’s Maximum Principle). Consider a model with a risky asset (St)t∈[0,T ] and
a risk-free asset (Bt)t∈[0,T ] given by

dSt = µSt dt+ σSt dWt t ∈ [0, T ] , S0 = S ,

dBt = rBt dt t ∈ [0, T ] , S0 = S ,B0 = 1 ,

where µ, r ∈ R and σ > 0 are given constants. Let (Xt)t∈[0,T ] denote the value of a
self-financing investment portfolio with X0 = x > 0 and let αt denote the fraction of
the portfolio value Xt invested in the risky asset. We note that Xt depends on the
investment strategy αt and so we write Xt = Xα

t . We will only consider α that are

real-valued, adapted and such that E
∫ T

0 α2
t dt < ∞, denoting such strategies A and

calling them admissable.

Our aim is to find the investment strategy α̂ which maximizes, over α ∈ A,

J(α) = E [− exp(−γXα
T )] ,

for some γ > 0.

i) Use the definition of a self-financing portfolio to derive the equation for the port-
folio value:

dXt = Xt [αt(µ− r) + r] dt+Xtαtσ dWt .
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ii) Write down the Hamiltonian for the problem and the adjoint BSDE for the op-
timal portfolio (use α̂ to denote the optimal control, (Ŷ , Ẑ) to denote the BSDE).

iii) Justify the use of Pontryagin’s maximum principle and show that it implies that

Ẑt = −µ− r
σ

Ŷt .

iv) Noting that ŶT = γe−γX̂T use the “ansatz” Ŷt = φte
−ψtX̂t with some φ, ψ ∈

C1([0, T ]) such that φT = γ and ψT = γ. Hence show that

X̂tα̂t = e−r(T−t)
µ− r
γσ2

.
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4.4 Solutions to the exercises

Solution (to Exercise 4.13). We start by solving (4.12) for some αt = a constant. Note that (with
X = Xα)

d(e−rtXt) = e−rt [dXt − rXt dt] = e−rt [a(µ− r) dt+ σa dWt] .

Thus

e−rTXT = x+

∫ T

0

e−rta(µ− r) dt+

∫ T

0

σae−rt dWt .

Since the stochastic integral is a true martingale

EXT = erTx+ erT a(µ− r)
∫ T

0

e−rt dt = erTx+ a(µ− r)1

r

(
erT − 1

)
.

Thus with

a = r
m− erTx

(µ− r)(erT − 1)

we see that EXT = m and so the set is non-empty.

Solution (to Exercise 4.14). i) We have

dXt =
αtXt
St

dSt +
Xt − αtXt

Bt
dBt = αtXtµdt+ αtXtσ dWt +Xtr dt− αtXtr dt

so
dXt = Xt [αt(µ− r) + r] dt+Xtαtσ dWt .

ii) Let us write down the Hamiltonian:

Ht(x, a, y, z) = x[a(µ− r) + r]y + x aσ z

so
∂xHt(x, a, y, z) = [a(µ− r) + r]y + a σ z .

The adjoint BSDE for the optimal portfolio X̂, which we denote (Ŷ , Ẑ) then is

dYt = −[α̂t(µ− r) + r]Ŷt dt+ α̂tσẐt dt+ Ẑt dWt t ∈ [0, T ] , ŶT = γ exp(−γX̂T ) . (4.22)

We can show that X̂t > 0 since x > 0. Hence |ŶT |2 = γ2 exp(−2γX̂T ) ≤ γ2 and so ŶT ∈ L2(FT ).
The above affine BSDE thus has a unique solution (Ŷ , Ẑ) and we may proceed.

iii) We note that the terminal reward function g(x) = −e−γx is concave. We can check that the
Hamiltonian is concave in x as well as in a. Thus the optimal control α̂ must satisfy

Ht(X̂t, α̂t, Ŷt, Ẑt) = max
a∈R

[
X̂t
(
a(µ− r)− r

)
Ŷt + X̂taσẐt

]
.

We need the Hamiltonian to be finite which in turns means that it must hold that

X̂tŶt(µ− r) + X̂tẐtσ = 0 .

Hence

Ẑt = −µ− r
σ

Ŷt . (4.23)

iv) We will use the “ansatz” Ŷt = φte
−ψtX̂t with some φ, ψ ∈ C1([0, T ]) such that φT = γ and

ψT = γ. We note that

d(−ψtX̂t) = −ψtX̂t[α̂t(µ− r) + r] dt− ψtX̂tα̂tσ dWt

so that

dŶt = φtd(e−ψtX̂t) + e−ψtX̂tdφt

= e−ψtX̂t

[
φtd(−ψtX̂t) +

1

2
φtd(−ψtX̂t)d(−ψtX̂t) + dφt

]
= e−ψtX̂t

[
− ψtφtdX̂t − X̂tφtdψt +

1

2
φtψ

2
t dX̂tdX̂t + dφt

]
= e−ψtX̂t

[
− ψtφtX̂t

[
(α̂t(µ− r) + r) dt+ α̂tσ dWt

]
− X̂tφtψ′t dt+

1

2
φtψ

2
t α̂

2
t X̂

2
t σ

2 dt+ φ′t dt
]
.

If we now go to the adjoint BSDE (4.22) and substitute for Ẑt from (4.23) we see that we must
also have

dŶt = −rŶtdt−
µ− r
σ

Ŷt dWt .
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Equating the “dW terms” leads to

µ− r
σ2

= ψtX̂tα̂t =⇒ X̂tα̂t =
µ− r
σ2ψt

.

Equating the “dt terms” will let us identify ψ and φ. Indeed we get

−rφte−ψtX̂t = e−ψtX̂t

[
− ψtφtX̂t

[
(α̂t(µ− r) + r)

]
− X̂tφtψ′t +

1

2
φtψ

2
t α̂

2
t X̂

2
t σ

2 + φ′t

]
.

Substituting the control and dividing by the exponential term leads to:

−rφt = −φt
(

(µ−r)2
σ2 + ψtX̂tr

)
− X̂tφtψ′t + 1

2
φt

(µ−r)2
σ2 + φ′t .

This simplifies to

−rφt = −ψtφtX̂tr − 1
2
φt

(µ−r)2
σ2 − X̂tφtψ′t + φ′t .

From this we get (equating the terms with Xt and without):

φ′t =
(

1
2

(µ−r)2
σ2 − r

)
φt , φT = γ

ψ′t = −rψt , ψT = γ .

Hence

φt = γ exp
(

(T − t)
(

1
2

(µ−r)2
σ2 − r

))
, t ∈ [0, T ] ,

ψt = γ exp(r(T − t)) , t ∈ [0, T ] .

So finally the optimal control is:

X̂tα̂t = e−r(T−t)
µ− r
γσ2

.
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A Appendix

A.1 Basic notation and useful review of analysis concepts

Here we set the main notation for the rest of the course. These pages serve as an easy
reference.

General For any two real numbers x, y,

x ∧ y = min{x, y}, x ∨ y = max{x, y}, x+ = max{x, 0}, x− = max{−x, 0}.

Sets, metrics and matrices N is the set of strictly positive integers and N0 =
N ∪ {0}.
Rd denotes the d-dimensional Euclidean space of real numbers. For any x = (x1, · · · , xd),
y = (y1, · · · , yd) in Rd, we denote the inner product by xy and by | · | the Euclidean
norm i.e.

xy :=
d∑
i=1

xiyi and |x| :=
( d∑
i=1

x2
i

) 1
2

Rd×n denotes the set of real valued d × n-matrices; In denotes the n × n-identity
matrix. For any σ ∈ Rn×d, σ = (σij)1≤i≤n,1≤j≤d we write the transpose of σ as
σ> = (σji)1≤j≤d,1≤i≤n ∈ Rd×n. We write the trace operator of an n × n-matrix σ as

Tr(σ) =
∑n

i=1 σii. For a matrices we will use the norm |σ| :=
(
Tr(σσ>)

)1/2
.

Definition A.1 (Supremum/Infimum). Given a set S ⊂ R, we say that µ is the
supremum of S if (i) µ ≥ x for each x ∈ S and if (ii) for every ε > 0 there exists an
element y ∈ S such that y > µ− ε. We write µ = supS.

The infimum is defined symmetrically as follows: λ is the infimum if (i) λ ≤ x for each
x ∈ S and if (ii) for every ε > 0 there exists an element y ∈ S such that y < λ + ε.
We write λ = inf S.

Note that supremum is the least upper bound, i.e. the smallest real number greater
than or equal to all the elements of the set S. Infimum is the greatest lower bound, i.e.
the largest number smaller than or equal to all the elements of the set S. It is also
important to note that the infimum (or supremum) do not necessarily have to belong
to the set S.

Functions, derivatives For any set A, the indicator function of A is

1A(x) = 1 if x ∈ A, otherwise 1A(x) = 0 if x /∈ A.

We write Ck(A) is the space of all real-valued continuous functions on A with con-
tinuous derivatives up to order k ∈ N0, A ⊂ Rn. In particular C0(A) is the space of
real-valued functions on A that are continuous.

For a real-valued function functions f = f(t, x) defined I ×A we write ∂tf , ∂xif and
∂xixjf for 1 ≤ i, j ≤ n for its partial derivatives. By Df we denote the gradient vector
of f and by D2f the Hessian matrix of f (whose entries 1 ≤ i, j ≤ d are given by
∂xixjf(t, x)).
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Consider an interval I (and think of I as a time interval I = [0, T ] or I = [0,∞)).
Then C1,2(I×A) is the set of real valued functions f = f(t, x) on I×A whose partial
derivatives ∂tf , ∂xif and ∂xixjf for 1 ≤ i, j ≤ n exist and are continuous on I ×A.

Integration and probability We use (Ω,F ,P) to denote a probability space with
P being the probability measure and F the σ-algebra.

“P-a.s.” denotes “almost surely for the probability measure P” (we often omit the
reference to P). “µ-a.e.” denotes “almost everywhere for the measure µ”; here µ
will not be a probability measure. This means is that a statement Z made about
ω ∈ Ω holds P-a.s. if there is a set E ∈ F such that P(E) = 0 and Z is true for all
ω ∈ Ec = Ω \ E.

B(U) is the Borel σ-algebra generated by the open sets of the topological space U .

E[X] is the expectation of the random variable X with respect to a probability P.
E[X|G] is the conditional expectation of X given G. The variance of the random vari-
able X, possibly vector valued, is denoted by Var(X) = E[(X − E(X))(X − E(X))>].

Since we may define different measures on the same σ-algebra we must sometimes
distinguish which measure is used for expectation, conditional expectation or variance.
We thus sometimes write EQ[X], EQ[X|G] or VarQ to show which measure was used.

General analysis definitions and inequalities

Definition A.2 (Convex function). A function f : R→ (−∞,∞] is called convex if

∀ λ ∈ [0, 1] ∀ x, y ∈ R f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y).

If a function f is convex then it is differentiable a.e. and (with f ′− denoting its left-
derivative, f ′+ its right-derivative) and we have

f ′+(x) := lim
y↘x

f(y)− f(x)

y − x
= inf

y>x

f(y)− f(x)

y − x
,

f ′−(x) := lim
y↗x

f(y)− f(x)

y − x
= sup

y<x

f(y)− f(x)

y − x
.

So, from the expression with infimum we see that,

if y > x then f ′+(x) ≤ f(y)− f(x)

y − x
which implies f(y) ≥ f(x)+f ′+(x)(y−x) for y > x.

Moreover, from the expression with supremum we see that8,

if y < x then f ′−(x) ≥ f(y)− f(x)

y − x
which implies f(y) ≥ f(x)+f ′−(x)(y−x) for y < x.

We review a few standard analysis inequalities, some not named and some others
named: Cauchy-Schwarz, Holder, Young and Gronwall’s inequality.

∀x ∈ R x ≤ 1 + x2

∀a, b ∈ R 2ab ≤ a2 + b2

∀ n ∈ N ∀a, b ∈ R |a+ b|n ≤ 2n−1
(
|a|n + |b|n

)
8As y < x we multiply by negative number, flipping the inequality.
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Lemma A.3 (Cauchy–Schwarz inequality). Let H be a Hilbert space with inner
product (·, ·) and norm | · |H . If x, y ∈ H then (x, y) ≤ |x|H |y|H .

Example A.4. i) If x, y ∈ Rd then xy < |x||y|.

ii) We can check that L2(Ω) with inner product given by E[XY ] for X,Y ∈ L2(Ω) is a

Hilbert space. Hence the Cauchy–Schwarz inequality is E[XY ] ≤
(
E[X2]

)1/2(E[Y 2]
)1/2

.

Lemma A.5 (Young’s inequality). Let a, b ∈ R. Then for any ε ∈ (0,∞) for any
p, q ∈ (1,∞) such that 1/p+ 1/q = 1 it holds that

ab ≤ ε |a|
p

p
+

1

ε

|b|q

q
.

The above inequality is not the original Young’s inequality, that is for the choice ε = 1.
The one here is the original Young’s inequality with the choice (ab) = (εa)(b/ε).

Lemma A.6 (Gronwall’s lemma / inequality). Let λ = λ(t) ≥ 0, a = a(t), b = b(t)
and y = y(t) be locally integrable, real valued functions defined on I (with I = [0, T ]
or I = [0,∞)) such that λy is also locally integrable and for almost all t ∈ [0, T ]

y(t) + a(t) ≤ b(t) +

∫ t

0
λ(s)y(s) ds.

Then

y(t) + a(t) ≤ b(t) +

∫ t

0
λ(s)e

∫ t
s λ(r)dr(b(s)− a(s)) ds for almost all t ∈ I.

Furthermore, if b is monotone increasing and a is non-negative, then

y(t) + a(t) ≤ b(t)e
∫ t
0 λ(r) dr, for almost all t ∈ I.

If the function y in Gronwall’s lemma is continuous then the conclusions hold for all
t ∈ I. For proof see Exercise 1.5.

Some fundamental probability results

(Following the notation established in SAF) we define lim inf and lim sup.

Definition A.7 (limsup & liminf). Let (an)n∈N be any sequence in R = R∪{−∞,∞}

lim
n→

inf
∞
an := lim

n→∞
lim
k→∞

min{an, an+1, an+2, . . . , ak} = inf
n

sup
k≥n

ak,

lim
n→

sup
∞

an := lim
n→∞

lim
k→∞

max{an, an+1, an+2, . . . , ak} = sup
n

inf
k≥n

ak.

Clearly lim infn→∞ an ≤ lim supn→∞ an and if limn→∞ an =: a exists, then lim infn→∞ an =
lim supn→∞ an = a. On the other hand, if lim infn→∞ an ≥ lim supn→∞ an, then
limn→∞ an = a exists.

Exercise A.8 (lim sup and lim inf of RV are RV). Show that lim infn→∞Xn and
lim supn→∞Xn are random variables for any sequence of random variables Xn.
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Lemma A.9 (Fatou’s lemma). Let (Xn)n∈N be a sequence of non-negative random
variables. Then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

Moreover,

i) If there exists a r.v. Y such that E[ |Y | ] < ∞ and Y ≤ Xn ∀n (allows Xn < 0),
then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

ii) If there exists a r.v. Y such that E[ |Y | ] <∞ and Y ≥ Xn ∀n, then

E
[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E [Xn] .

The first part of the above lemma does not require integrability of the sequence of
(Xn)n∈N due to the use of the Monotone Convergence Theorem in its proof. The
enumerated statements follow as a corollary of the first statement. Of course, a version
of Fatou’s lemma using conditional expectations also exists (simply replace E[·] with
E[·|Ft]).

Lemma A.10 (Hölder’s inequality). Let (X,X , µ) be a measure space (i.e. X is a
set, X a σ-algebra and µ a measure). Let p, q > 1 be real numbers s.t. 1/p+ 1/q = 1
or let p = 1, q =∞. Let f ∈ Lp(X,µ), g ∈ Lq(X,µ). Then∫

X
|fg| dµ ≤

(∫
X
|f |pdµ

) 1
p
(∫

X
|g|qdµ

) 1
q

In particular if p, q are such that 1/p+1/q = 1 and X ∈ Lp(Ω), Y ∈ Lq(Ω) are random
variables then

E[ |XY | ] ≤ E[ |X|p ]
1
pE[ |Y |q ]

1
q .

Lemma A.11 (Minkowski’s inequality or triangle inequality). Let (X,X , µ) be a
measure space (i.e. X is a set, X a σ-algebra and µ a measure). For any p ∈ [1,∞]
and f, g ∈ Lp(X,µ)(∫

X
|f + g|p dµ

) 1
p

≤
(∫

X
|f |p dµ

) 1
p

+

(∫
X
|g|p dµ

) 1
p

.

Lemma A.12 (Jensen’s inequality). Let f be a convex function and X be any random
variable with E[|X|] <∞. Then

f
(
E[X]

)
≤ E

[
f(x)

]
.

A.2 Some useful results from stochastic analysis

For convenience we state some results from stochastic analysis. Proofs can be found
for example in Stochastic Analysis for Finance lecture notes, in [11], [2] or [7].
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Probability Space

Let us always assume that (Ω,F ,P) is a fixed probability space. We assume that F is
complete which means that all the subsets of sets with probability zero are included
in F . We assume there is a filtration (Ft)t∈[0,T ] (which means Fs ⊆ Ft ⊆ F) such
that F0 contains all the sets of probability zero.

Stochastic Processes, Martingales

A stochastic process X = (Xt)t≥0 is a collection of random variables Xt which take
values in Rd.
We will always assume that stochastic processes are measurable. This means that
(ω, t) 7→ X(ω)t taken as a function from Ω× [0,∞) to Rd is measurable with respect
to σ-algebra F ⊗ B([0,∞)).9 This product is defined as the σ-algebra generated by
sets E×B such that E ∈ F and B ∈ B([0,∞)). From Theorem A.30 we then get that

t 7→ Xt(ω) is measurable for all ω ∈ Ω.

We say X is (Ft)t≥0 adapted if for all t ≥ 0 we have that Xt is Ft-measurable.

Definition A.13. Let X be a stochastic process that is adapted to (Ft)t≥0 and such
that for every t ≥ 0 we have E[|Xt|] <∞. If for every 0 ≤ s < t ≤ T we have

i) E[Xt|Fs] ≥ Xs a.s.then the process is called submartingale.

ii) E[Xt|Fs] ≤ Xs a.s.then the process is called supermartingale.

iii) E[Xt|Fs] = Xs a.s.then the process is called martingale.

For submartingales we have Doob’s maximal inequality:

Theorem A.14 (Doob’s submartingale inequality). Let X ≥ 0 be an (Ft)t∈[0,T ]-
submartingale and p > 1 be given. Assume E

[
Xp
T

]
<∞. Then

E
[

sup
0≤t≤T

Xp
t

]
≤
(

p

p− 1

)p
E
[
Xp
T

]
.

Definition A.15 (Local Martingale). A stochastic process X is called a local mar-
tingale if is there exists a sequence of stopping time (τn)n∈N such that τn ≤ τn+1 and
τn →∞ as n→∞ and if the stopped process (X(t ∧ τn))t≥0 is a martingale for every
n.

Lemma A.16 (Bounded from below local martingales are supermartingales). Let
(Mt)t∈[0,T ] be a local Martingale and assume it is positive or more generally bounded
from below. Then M is a super-martingale.

Proof. The proof makes use of Fatou’s Lemma A.9 above. Since M is a local Mar-
tingale then there exists a sequence of stopping times (τn)n∈N increasing to infinity

9 If the process is almost surely continuous i.e. if the map [0,∞) 3 t 7→ Xt(ω) ∈ Rd is continuous
for almost all ω ∈ Ω then Ω × [0,∞) 3 (ω, t) 7→ X(ω) ∈ Rd is a so-called Carathéodory map the
stochastic process will be measurable due to e.g. Aliprantis and Border [1, Lemma 4.51].
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a.s. such that the stopped process Mn
t := Mt∧τn is a Martingale. We have then,

using Fatou’s lemma for any 0 ≤ s ≤ t ≤ T

E[Mt|Fs] = E[lim inf
n→∞

Mn
t |Fs] ≤ lim inf

n→∞
E[Mn

t |Fs] = lim inf
n→∞

Mn
s = Ms,

and hence M is a supermartingale.

Exercise A.17 (Submartingale). In view of the previous lemma, is a bounded from
above local martingale a submartingale?

Integration Classes and Itô’s Formula

Definition A.18. By H we mean all R-valued and adapted processes g such that for
any T > 0 we have

‖g‖2HT := E
[∫ T

0
|gs|2ds

]
<∞.

By S we mean all R-valued and adapted processes g such that for any T > 0 we have

P
[∫ T

0
|gs|2ds <∞

]
= 1.

The importance of these two classes is that stochastic integral with respect to W is
defined for all integrands in class S and this stochastic integral is a continous local
martingale. For the class H the stochastic integral with respect to W is a martingale.

Definition A.19. By A we denote R-valued and adapted processes g such that for
any T > 0 we have

P
[∫ T

0
|gs|ds <∞

]
= 1.

By Hd×n, Sd×n we denote processes taking values the space of d×n-matrices such that
each component of the matrix is in H or S respectively. By Ad we denote processes
taking values in Rd such that each component is in A

Itô processes and Itô Formula

We will need the multi-dimensional version of the Itô’s formula. Let W be an n-
dimensional Wiener martingale with respect to (F)t≥0. Let σ ∈ Sm×d and let b ∈ Am.
We say that the d-dimensional process X has the stochastic differential

dXt = bt dt+ σt dWt (A.1)

for t ∈ [0, T ], if

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dW (s).

Such a process is also called an Itô process.
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The Itô formula or chain rule for stochastic processes Before we go into the
main result, let us go over an example from classic analysis. Take three functions,
u = u(t, x), g = g(t) and h = h(t) given by h(t) := u

(
t, g(t)

)
. Let us compute d

dth(t).

Since h is given as a composition of functions, we use here is the standard chain for
functions of several variables (this takes into account that the variation of h arising
from changes in t comes from the variation of g and also from the first component in
u). Thus we have

d

dt
h(t) =

(
∂tu
)(
t, g(t)

)
+
(
∂xu

)(
t, g(t)

) d
dt
g(t).

We want to see the contrast with Itô formula, which has to be written in integral form
(since W has almost everywhere non-differentiable paths). To that end, we integrate∫ t

0

d

dt
h(s) ds =

∫ t

0

(
∂tu
)(
s, g(s)

)
ds+

∫ t

0

(
∂xu

)(
s, g(s)

) d
dt
g(s) ds

and use the Fundamental theorem of calculus

h(t)− h(0) =

∫ t

0

(
∂tu
)(
s, g(s)

)
ds+

∫ t

0

(
∂xu

)(
s, g(s)

)
dg(s)

which can be written in the differential notation as

dh(t) = ∂tf
(
t, g(t)

)
dt+ ∂xf

(
t, g(t)

)
dg(t). (A.2)

Compare (A.2) with (A.3) below. You see a fundamental difference: the second deriv-
ative term! It appears there exactly because the Wiener process has non-differentiable
paths and hence a correction to (A.2) is needed.

We have then the following important result.

Theorem A.20 (Multi-dimensional Itô formula). Let X be a m-dimensional Itô pro-
cess given by (A.1). Let u ∈ C1,2([0, T ]×Rm). Then the process given by u(t,Xt) has
the stochastic differential

du
(
t,Xt

)
= ∂tu

(
t,Xt

)
dt+

d∑
i=1

∂xiu
(
t,Xt

)
dXi

t

+
1

2

d∑
i,j=1

∂xixju
(
t,Xt

)
dXi

t dX
j
t ,

(A.3)

where for i, j = 1, . . . ,m

dt dt = dt dW i
t = 0, dW i

t dW
j
t = δij dt.

We now consider a very useful special case. Let X and Y be R-valued Itô processes.
We will apply to above theorem with f(x, y) = xy. Then ∂xf = y, ∂yf = x, ∂xxf =
∂yyf = 0 and ∂xyf = ∂yxf = 1. Hence from the multi-dimensional Itô formula we
have

df
(
Xt, Yt

)
= Yt dXt +Xt dYt +

1

2
dYt dXt +

1

2
dXt dYt.

Hence we have the following corollary

Corollary A.21 (Itô’s product rule). Let X and Y be R-valued Itô processes. Then

d
(
XtYt

)
= Xt dYt + Yt dXt + dXt dYt.
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Martingale Representation Formula and Girsanov’s theorem

Theorem A.22 (Lévy characterization). Let (Ft)t∈[0,T ] be a filtration. Let X =
(Xt)t∈[0,T ] be a continuous m-dimensional process adapted to (Ft)t∈[0,T ] such that for
i = 1, . . . , d the processes

M i
t := Xi

t −Xi
0

are local martingales with respect to (Ft)t∈[0,T ] and dM i
t dM

j
t = δij dt for i, j =

1, . . . , d. Then X is a Wiener martingale with respect to (Ft)t∈[0,T ].

So essentially any continuous local martingale with the right quadratic variation is a
Wiener process.

Theorem A.23 (Girsanov). Let (Ft)t∈[0,T ] be a filtration. Let W = (Wt)t∈[0,T ] be a
d-dimensional Wiener martingale with respect to (Ft)t∈[0,T ]. Let ϕ = (ϕt)t∈[0,T ] be a
d-dimensional process adapted to (Ft)t∈[0,T ] such that

E
[ ∫ T

0
|ϕs|2 ds

]
<∞.

Let

Lt := exp

{
−
∫ t

0
ϕ>s dW (s)− 1

2

∫ t

0
|ϕs|2 ds

}
(A.4)

and assume that E[LT ] = 1. Let Q be a new measure on FT given by the Radon-
Nikodym derivative dQ = L(T ) dP. Then

WQ
t := Wt +

∫ t

0
ϕs ds

is a Q-Wiener martingale.

We don’t give proof but only make some useful observations.

1. Clearly L0 = 1.

2. The Novikov condition is a useful way of establishing that E[LT ] = 1: if

E
[
e

1
2

∫ T
0 |ϕt|

2 dt
]
<∞

then L is a martingale (and hence E[LT ] = E[L0] = 1).

3. Applying Itô’s formula to f(x) = exp(x) and

dXt = −ϕ>t dWt −
1

2
|ϕt|2 dt

yields
dLt = −Ltϕ>t dWt.

Theorem A.24 (Martingale representation). Let W = (Wt)t∈[0,T ] be a d-dimensional
Wiener martingale and let (Ft)t∈[0,T ] be generated by W . Let M = (Mt)t∈[0,T ] be a
continuous real valued martingale with respect to (Ft)t∈[0,T ].

Then there exists unique adapted d-dimensional process h = (ht)t∈[0,T ] such that for
t ∈ [0, T ] we have

Mt = M0 +
d∑
i=1

∫ t

0
his dW

i
s .

If the martingale M is square integrable then h is in H.
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Essentially what the theorem is saying is that we can write continuous martingales
as stochastic integrals with respect to some process as long as they’re adapted to the
filtration generated by the process.

A.2.1 PDEs and Feynman-Kac Formula

(This section can be traced back to either [11] or SAF notes (Section 16).)

In the case of deterministic maps b and σ in (2.1), the so-called diffusion SDE, we can
give the following definition of Infinitesimal generator.

Definition A.25 (Infinitesimal generator (associated to an SDE)). Let b and σ be de-
terministic functions in (2.1). For all t ∈ [0, T ], the following second order differential
operator L is called the infinitesimal generator associated to the diffusion (2.1),

Lϕ(t, x) = b(t, x)Dϕ(t, x) +
1

2
Tr(σσ>D2ϕ)(t, x), ϕ ∈ C0,2([0, T ]× Rm).

Although the above definition does seems weird and unfamiliar, the operator L appears
every time one uses the Itô formula to ϕ(t,Xt) where the process (Xt)t∈[0,T ] is the
solution to (2.1).

Exercise A.26. Let (Xt)t∈[0,T ] be the solution to (2.1).

Show that for ϕ ∈ C1,2([0, T ]× R), we have

dϕ(t,Xt) =
(
∂tϕ+ Lϕ

)
(t,Xt) dt+

(
∂xϕσ

)
(t,Xt) dWt.

It is possible, for certain classes of SDE and differential equations, to write the solution
to a PDE as an expectation of (a function of) the solution to the SDE associated to
the differential operator appearing in the PDE; it is not surprising that the PDE
differential operator must be the infinitesimal generator. That is the core message of
the next result.

Theorem A.27 (Feynman-Kac formula in 1-dim). Assume that the function v :
[0, T ] × R → R belongs to C1,2([0, T ) × R) ∩ C0([0, T ] × R) and is a solution to the
following boundary value problem

∂tv(t, x) + b(t, x)∂xv(t, x) +
1

2
σ2(t, x)∂xxv(t, x)− rv(t, x) = 0, (A.5)

v(T, x) = h(x), (A.6)

where b and σ are deterministic functions.

For any (t, x) ∈ [0, T ] × R, define the stochastic process (Xs)s∈[t,T ] as the solution to
the SDE

dXs = b(s,Xs) ds+ σ(s,Xs) dWs, ∀ s ∈ [t, T ], Xt = x. (A.7)

Assume that the stochastic process
(
e−rsσ(s,Xs)∂xv(s,Xs)

)
s∈[t,T ]

∈ L2([0, T ]× R).

Then the solution v of (A.5)-(A.6) can be expressed as (with Et,x[·] = E[·|Xt = x])

v(t, x) = e−r(T−t)Et,x
[
h
(
XT

) ]
∀ (t, x) ∈ [0, T × R.
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Proof. The proof is rather straightforward and is based on a direct application of Itô’s
formula.

Define the process (Ys)s∈[t,T ] as Ys = e−rsv(s,Xs) where X is given by (A.7). Applying
Itô’s formula to Y , i.e. computing dYs gives

dYs = d
(
e−rsv(s,Xs)

)
= (−r)e−rsv ds+ e−rs∂sv ds+ e−rs∂xv dXs +

1

2
e−rs∂xxv

(
dXs

)2
= e−rs

[
− rv + ∂tv + b∂xv +

1

2
σ2∂xxv

]
ds+ e−rs

[
σ∂xv

]
dWs,

where the v function is evaluated in point (s,Xs). Using the equality given by (A.5)
we see that the ds term disappears completely leaving

dYs = d
(
e−rsv(s,Xs)

)
= e−rs

[
σ(s,Xs)∂xv(s,Xs)

]
dWs.

Integrating both sides from s = t to s = T gives

[
e−rsv(s,Xs)

]∣∣∣s=T
s=t

=

∫ T

t
e−ruσ(u,Xu)∂xv(u,Xu) dWu

⇔ e−rtv(t,Xt) = e−rT v(T,XT )−
∫ T

t
e−ruσ(u,Xu)∂xv(u,Xu) dWu,

⇔ v(t,Xt) = e−r(T−t)v(T,XT )−
∫ T

t
e−r(u−t)σ(u,Xu)∂xv(u,Xu) dWu.

Taking expectations E(t,x)[·] on both sides (recall that the process X starts at time t
in position x; this is the meaning of the subscript (t, x) in the expectation sign),

v(t,Xt) = e−r(T−t)Et,x
[
v(T,XT )

]
= e−r(T−t)Et,x

[
h(XT )

]
,

where the expectation of the stochastic integral disappears due to the properties of
the stochastic integral, since by assumption we have

(
e−rsσ(s,Xs)∂xv(s,Xs)

)
s∈[t,T ]

∈
L2([0, T ]× R).

Exercise A.28 (Two extensions of the Feynman-Kac formula). a) Redo the previous
proof when the constant r is replaced by a function r : [0, T ] × R → R; assume r to
be bounded and continuous. Hint instead of e−rs, use exp{−

∫ s
t r(u,Xu) du}.

b) Redo the previous proof when the PDE (A.5) is equal to some f(t, x) instead of
being equal to zero.
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A.3 Useful Results from Other Courses

The aim of this section is to collect, mostly without proofs, results that are needed
or useful for this course but that cannot be covered in the lectures i.e. prerequisites.
You are expected to be able to use the results given here.

A.3.1 Linear Algebra

The inverse of a square real matrix A exists if and only if det(A) 6= 0.

The inverse of square real matricies A and B exists if and only if the inverse of AB
exists and moreover (AB)−1 = B−1A−1.

The inverse of a square real matrix A exists if and only if the inverse of AT exists and
(AT )−1 = (A−1)T .

If x is a vector in Rd then diag(x) denotes the matrix in Rd×d with the entries of x
on its diagonal and zeros everywhere else. The inverse of diag(x) exists if and only if
xi 6= 0 for all i = 1, . . . , d and moreover

diag(x)−1 = diag(1/x1, 1/x2, . . . , 1/xd).

A.3.2 Real Analysis and Measure Theory

Let (X,X , µ) be a measure space (i.e. X is a set, X a σ-algebra and µ a measure).

Lemma A.29 (Fatou’s Lemma). Let f1, f2, . . . be a sequence of non-negative and
measurable functions. Then the function defined point-wise as

f(x) := lim inf
k→∞

fk(x)

is X -measurable and ∫
X
f dµ ≤ lim inf

k→∞

∫
X
fk dµ.

Consider sets X and Y with σ-algebras X and Y. By X ×Y we denote the collection
of sets C = A × B where A ∈ X and B ∈ Y. By X ⊗ Y = σ(X × Y), which is the
σ-algebra generated by X × Y.

Theorem A.30. Let f : X × Y → R be a measurable function, i.e. measurable
with respect to the σ-algebras X ⊗ Y and B(R). Then for each x ∈ X the function
y 7→ f(x, y) is measurable with respecto to Y and B(R). Similarly for each y ∈ Y the
function x 7→ f(x, y) is measurable with respecto to X and B(R).

The proof is short and so it’s easiest to just include it here.

Proof. We first consider functions of the form f = 1C with C ∈ X ⊗ Y. Let

H = {C ∈ X ⊗ Y : y 7→ 1C(x, y) is F −measurable for each fixed x ∈ E}.

It is easy to check that H is a σ-algebra. Moreover if C = A × B with A ∈ X and
B ∈ Y then

y 7→ 1C(x, y) = 1A(x)1B(y).
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As x is fixed 1A(x) is just a constant and since B ∈ Y the function y 7→ 1A(x)1B(y)
must be measurable. Hence X ×Y ⊆ H and thus X ⊗Y ⊆ H. But H ⊆ X ⊗Y and so
H = X ⊗Y. Hence if f is a simple function then the conclusion of the theorem holds.

Now consider f ≥ 0 and let fn be a sequence of simple functions increasing to f . Then
for a fixed x the function y 7→ gn(y) = fn(x, y) is measurable. Moreover since g(y) =
limn→∞ gn(y) = f(x, y) and since the limit of measurable functions is measurable
we get the result for f ≥ 0. For general f = f+ − f− the result follows using the
result for f+ ≥ 0, f− ≥ 0 and noting that the difference of measurable functions is
measurable.

Consider measure spaces (X,X , µx), (Y,Y, µy). That is, X and Y are sets, X and Y
are σ-algebras and µx and µy are measures on X and Y respectively. For all details
on Fubini’s Theorem we refer to Kolmogorov and Fomin [8].

Theorem A.31 (Fubini). Let µ be the Lebesgue extension of µx⊗µy. Let A ∈ X ⊗Y.
and let f : A→ R be a measurable function (considering B(R), the Borel σ-algebra on
R). If f is integrable i.e. if ∫

A
|f(x, y)|dµ <∞

then ∫
A
f(x, y)dµ =

∫
X

[∫
Ax

f(x, y)dµy

]
dµx =

∫
Y

[∫
Ay

f(x, y)dµx

]
dµy,

where Ax := {y ∈ Y : (x, y) ∈ A} and Ay := {x ∈ X : (x, y) ∈ A}.

Remark A.32. The conclusion of Fubini’s theorem implies that for µx-almost all
x the integral

∫
Ax
f(x, y)dµy exists which in turn implies that the function f(x, ·) :

Ax → R must be measurable. This statement also holds if we exchange x for y.

A.3.3 Conditional Expectation

Let (Ω,F ,P) be given.

Theorem A.33. Let X be an integrable random variable. If G ⊆ F is a σ-algebra
then there exists a unique G measurable random variable Z such that

∀G ∈ G
∫
G
XdP =

∫
G
ZdP.

The proof can be found in xxxx xxxx.

Definition A.34. Let X be an integrable random variable. If G ⊆ F is a σ-algebra
then G-random variable from Theorem A.33 is called the conditional expectation of X
given G and write E(X|G) := Z.

Conditional expectations are rather abstract notion so two examples might help.

Example A.35. Consider G := {∅,Ω}. So G is just the trivial σ-algebra. For a
random variable X we then have, by definition, that Z is the conditional expectation
(denoted E[X|G]), if and only if ∫

Ω
ZdP =

∫
Ω
XdP.
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The right hand side of the above expression is in fact just EX and so the equality
would be satisfied if we set Z = EX (just a constant). Indeed then (going right to
left)

EX =

∫
Ω
XdP =

∫
Ω
ZdP =

∫
Ω
EXdP = EX

∫
Ω
dP = EX.

Example A.36. Let X ∼ N(0, 1). Let G = {∅, {X ≤ 0}, {X > 0},Ω}. One can (and
should) check that this is a σ-algebra. By definition the conditional expectation is a
unique random variable that satisfies∫

Ω
1{X>0}ZdP =

∫
Ω
1{X>0}XdP,∫

Ω
1{X≤0}ZdP =

∫
Ω
1{X≤0}XdP,∫

Ω
ZdP =

∫
Ω
XdP .

(A.8)

It is a matter of integrating with respect to normal density to find out that∫
Ω
1{X>0}XdP =

∫ ∞
0

xφ(x)dx =
1

2

√
2

π
,

∫
Ω
1{X≤0}XdP = −1

2

√
2

π
. (A.9)

Since Z must be G measurable it can only take two values:

Z =

{
z1 on {X > 0},
z2 on {X ≤ 0},

for some real constants z1 and z2 to be yet determined. But (A.8) and (A.9) taken
together imply that

1

2

√
2

π
=

∫
Ω
1{X>0}ZdP =

∫
Ω
1{X>0}z1dP = z1P(X > 0) =

1

2
z1.

Hence z1 =
√

2/π. Similarly we calculate that z2 = −
√

2/π. Finally we check that
the third equation in (A.8) holds. Thus

E[X|G] = Z =


√

2
π on {X > 0},

−
√

2
π on {X ≤ 0}.

Here are some further important properties of conditional expectations which we
present without proof.

Theorem A.37 (Properties of conditional expectations). Let X and Y be random
variables. Let G be a sub-σ-algebra of F .

1. If G = {∅,Ω} then E(X|G) = EX.

2. If X = x a. s. for some constant x ∈ R then E(X|G) = x a.s. .

3. For any α, β ∈ R

E(αX + βY |G) = αE(X|G) + βE(Y |G).

This is called linearity.
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4. If X ≤ Y almost surely then E(X|G) ≤ E(Y |G)a.s. .

5. |E(X|G)| ≤ E(|X| |G).

6. If Xn → X a. s. and |Xn| ≤ Z for some integrable Z then E(Xn|G)→ E(X|G)
a. s. . This is the “dominated convergence theorem for conditional expectation”.

7. If Y is G measurable then E(XY |G) = Y E(X|G).

8. Let H be a sub-σ-algebra of G. Then

E(X|H) = E(E(X|G)|H).

This is called the tower property. A special case is EX = E(E(X|G)).

9. If σ(X) is independent of G then E(X|G) = EX.

Definition A.38. Let X and Y be two random variables. The conditional expecta-
tion of X given Y is defined as E(X|Y ) := E(X|σ(Y )), that is, it is the conditional
expectation of X given the σ-algebra generated by Y .

Definition A.39. Let X a random variables and A ∈ F an event. The conditional
expectation of X given A is defined as E(X|A) := E(X|σ(A)). This means it is the
conditional expectation of X given the sigma algebra generated by A i.e. E(X|A) :=
E(X|{∅, A,Ac,Ω}).

We can immediately see that E(X|A) = E(X|1A).

Recall that if X and Y are jointly continuous random variables with joint density
(x, y) 7→ f(x, y) then for any measurable function ρ : R2 → R such that E|ρ(X,Y )| <
∞ we have

Eρ(X,Y ) =

∫
R

∫
R
ρ(x, y)f(x, y)dydx.

Moreover the marginal density of X is

g(x) =

∫
R
f(x, y)dy

while the marginal density of Y is

h(y) =

∫
R
f(x, y)dx.

Theorem A.40. Let X and Y be jointly continuous random variables with joint
density (x, y) 7→ f(x, y). Then for any measurable function ϕ : R → R such that
E|ϕ(Y )| <∞ the conditional expectation of ϕ(Y ) given X is

E(ϕ(Y )|X) = ψ(X)

where ψ : R→ R is given by

ψ(x) = 1{g(x)>0}

∫
R ϕ(y)f(x, y)dy

g(x)
.
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Proof. Every A in σ(X) must be of the form A = {ω ∈ Ω : X(ω) ∈ B} for some B in
B(R). We need to show that for any such A∫

A
ψ(X)dP =

∫
A
ϕ(Y )dP.

But since E|ϕ(Y )| <∞ we can use Fubini’s theorem to show that∫
A
ψ(X)dP = E1Aψ(X) = E1{X∈B}ψ(X) =

∫
B
ψ(x)g(x)dx

=

∫
B

∫
R
ϕ(y)f(x, y)dydx =

∫
R

∫
R
1B(x)ϕ(y)f(x, y)dxdy

= E1{X∈B}ϕ(Y ) =

∫
A
ϕ(Y )dP.

Let on (Ω,F) be a measurable space. Recall that we say that a measure Q is absolutely
continuous with respect to a measure P if P(E) = 0 implies that Q(E) = 0. We write
Q << P.

Proposition A.41. Take two probability measures P and Q such that Q << P with

dQ = ΛdP.

Let G be a sub-σ-algebra of F . Then Q almost surely E[Λ|G] > 0. Moreover for any
F-random variable X we have

EQ[X|G] =
E[XΛ|G]

E[Λ|G]
. (A.10)

Proof. Let S := {ω : E[Λ|G](ω) = 0}. Then S ∈ G and so by definition of conditional
expectation

Q(S) =

∫
S
dQ =

∫
S

ΛdP =

∫
S
E[Λ|G]dP =

∫
S

0 dP = 0.

Thus Q-a.s. we have E[Λ|G](ω) > 0.

To prove the second claim assume first that X ≥ 0. We note that by definition of
conditional expectation, for all G ∈ G:∫

G
E[XΛ|G]dP =

∫
G
XΛdP =

∫
G
XdQ =

∫
G
EQ[X|G]dQ =

∫
G
EQ[X|G]ΛdP.

Now we use the definition of conditional expectation to take another conditional ex-
pectation with respect to G. Since G ∈ G:∫

G
EQ[X|G]ΛdP =

∫
G
E
[
EQ[X|G]Λ|G

]
dP.

But EQ[X|G] is G-measurable and so∫
G
E
[
EQ[X|G]Λ|G

]
dP =

∫
G
EQ[X|G]E [Λ|G] dP.
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Thus, since in particular Ω ∈ G, we get∫
Ω
E[XΛ|G]dP =

∫
Ω
EQ[X|G]E [Λ|G] dP.

Since X ≥ 0 (and Λ ≥ 0) this means that P-a.s. and hence Q-a.s. we have (A.10).

E[XΛ|G] = EQ[X|G]E [Λ|G] .

For a general X write X = X+ − X−, where X+ = 1{X≥0}X ≥ 0 and X− =
−1{X<0}X ≥ 0. Then

EQ[X+ −X−|G] =
E[X+Λ|G]

E[Λ|G]
− E[X−Λ|G]

E[Λ|G]
=

E[X+ −X−Λ|G]

E[Λ|G]
.

A.3.4 Multivariate normal distribution

There are a number of ways how to define a multivariate normal distribution. See
e.g. [5, Chapter 5] for a more definite treatment. We will define a multivariate normal
distribution as follows. Let µ ∈ Rd be given and let Σ be a given symmetric, invertible,
positive definite d×dmatrix (it is also possible to consider positive semi-definite matrix
Σ but for simplicity we ignore that situation here).

A matrix is positive definite if, for any x ∈ Rd such that x 6= 0, the inequality
xTΣx > 0 holds. From linear algebra we know that this is equivalent to:

1. The eigenvalues of the matrix Σ are all positive.

2. There is a unique (up to multiplication by −1) matrix B such that BBT = Σ.

Let B be a d× k matrix such that BBT = Σ.

Let (Xi)
d
i=1 be independent random variables with N(0, 1) distribution. Let X =

(X1, . . . , Xd)
T and Z := µ+BX. We then say Z ∼ N(µ,Σ) and call Σ the covariance

matrix of Z.

Exercise A.42. Show that Cov(Zi, Zj) = E((Zi − EZi)(Zj − EZj)) = Σij . This
justifies the name “covariance matrix” for Σ.

It is possible to show that the density function of N(µ,Σ) is

f(x) =
1

(2π)d/2
√

det(Σ)
exp

(
−1

2
((x− µ)TΣ−1(x− µ))

)
. (A.11)

Note that if Σ is symmetric and invertible then Σ−1 is also symmetric.

Exercise A.43. You will show that Z = BX defined above has the density f given
by (A.11) if µ = 0.

i) Show that the characteristic function of Y ∼ N(0, 1) is t 7→ exp(−t2/2). In other
words, show that E(eitY ) = exp(−t2/2). Hint. complete the squares.
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ii) Show that the characteristic function of a random variable Y with density f given
by (A.11) is

E
(
ei(Σ

−1ξ)TY
)

= exp

(
−1

2
ξTΣ−1ξ

)
.

By taking y = Σ−1ξ conclude that

E
(
eiy

TY
)

= exp

(
−1

2
yTΣ−1y

)
.

Hint. use a similar trick to completing squares. You can use the fact that since
Σ−1 is symmetric ξTΣ−1x = (Σ−1ξ)Tx.

iii) Recall that two distributions are identiacal if and only if their characteristic func-

tions are identical. Compute E
(
eiy

TZ
)

for Z = BX and X = (X1, . . . , Xd)
T with

(Xi)
d
i=1 independent random variables such that Xi ∼ N(0, 1). Hence conclude

that Z has density given by (A.11) with µ = 0.

You can now also try to show that all this works with µ 6= 0.

A.3.5 Stochastic Analysis Details

The aim of this section is to collect technical details in stochastic analysis needed to
make the main part of the notes correct but perhaps too technical to be of interest to
many readers.

Definition A.44. We say that a process X is called progressively measurable if the
function (ω, t) 7→ X(ω, t) is measurable with respect to Ft ⊗B([0, t]) for all t ∈ [0, T ].

We will use ProgT to denote the σ-algebra generated by all the progressively measur-
able processes on Ω× [0, T ].

If X is progressively measurable then the processes
(∫ t

0 X(s)ds
)
t∈[0,T ]

and (X(t ∧

τ))t∈[0,T ] are adapted (provided the paths of X are Lebesgue integrable and provided
τ is a stopping time). The important thing for us is that any left (or right) continuous
adapted process is progressively measurable.

A.3.6 More Exercises

Exercise A.45. Say f : R→ R is smooth and W = (W (t))t∈[0,T ] is a Wiener process.
Calculate

E
[
f ′(W (T ))W (T )

]
.
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