## The Gravitational Million-Body Problem## A Multidisciplinary Approach to Star Cluster Dynamics## Douglas Heggie and Piet HutCambridge University Press, 2003Publication date: 23 January 2003 (UK), 23 February 2003 (USA). Hard cover: £75.00/$100.00, SBN 0521773032; paperback £29.95/$50.00, SBN 0521774861 |

**Summary**The globular star clusters of the Milky Way contain hundreds of thousands of stars held together by gravitational interactions, and date from the time when the Milky Way was forming. This text describes the theory astronomers need for studying globular star clusters. The gravitational million-body problem is an idealised model for understanding the dynamics of a cluster with a million stars. After introducing the million-body problem from various view-points, the book systematically develops the tools needed for studying the million-body problems in nature, and introduces the most important theoretical models. Including a comprehensive treatment of few-body interactions, and developing an intuitive but quantitative understanding of the three-body problem, the book introduces numerical methods, relevant software, and current problems. Suitable for graduate students and researchers in astrophysics and astronomy, this text also has important applications in the fields of theoretical physics, computational science and mathematics.**Contents**Part I. Introductions: 1. Astrophysics introduction; 2. Theoretical physics introduction; 3. Computational physics introduction; 4. Mathematical introduction; Part II. The Continuum Limit: 5. Paradoxical thermodynamics; 6. Statistical mechanics; 7. Motion in a central potential; 8. Some famous models; 9. Methods; Part III. Mean Field Dynamics: 10. Violent relaxation; 11. Internal mass loss; 12. External influences; Part IV. Microphysics: 13. Exponential orbit instability; 14. Two-body relaxation; 15. From Kepler to Kustaanheimo; Part V. Gravothermodynamics: 16. Escape and mass segregation; 17. Gravothermal instability; 18. Core collapse rate for star clusters; Part VI. Gravitational Scattering: 19. Thought experiments; 20. Mathematical three-body scattering; 21. Analytical approximations; 22. Laboratory experiments; 23. Gravitational burning and transmutation; Part VII. Primordial Binaries: 24. Binaries in star clusters; 25. Triple formation and evolution; 26. A non-renewable energy source; Part VIII. Post-Collapse Evolution: 27. Surviving core collapse; 28. Gravothermal oscillations; 29. Dissolution; Part IX. Star Cluster Ecology: 30. Stellar and dynamical evolution; 31. Collisions and capture; 32. Binary star evolution and blue stragglers; 33. Star cluster evolution; Appendices.-
**Sample chapters**: click on The Gravitational Million-Body Problem and use the links at the bottom of the page. **Corrections**(pdf)