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Abstract: The equilibrium theory of Hall and Higham (1988} can be used to determine whether a Runge-Kutta
algorithm will perform smoothly when stability resiricts the stepsize. In this paper we show that current high quality
order 4, 5 pairs do not behave well in this respest, and we determine the extent to which the overall quality must be
compromised in order for the equilibrium conditions to be satisfied. Three new formulae are presented and their
properties are compared with those of existing formulae.
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1. Intreduction

Explicit Runge—Kutta pairs can be effective tools for solving nonstiff and mildly stuff
initial-value problems. In the latter case, when stability restricts the stepsize, the analysis given in
[4-6] for a simple test problem leads to conditions which ensure efficient behaviour of the
stepsize control mechanmism. In this report we present three Runge-Kutta pairs which are
well-behaved in the above sense. These are embedded 4,5 pairs from the 4-parameter family of
Dormand and Prince [1].

We introduce the general formula pair below and cutline properties which a good quality pair
must possess. {For more details, see [1,9]) In Section 2 we show how the results of [4-6] can be
used to influence the choice of parameters. We derive three new formula pairs and compare their
properties with those of existing formulae. Numerical results which support the theory are given
in Section 3.

We are concerned with the numerical solution of the initial-value problem

v =f{x, ¥}, yixg)gven, [:RXR™ >R™,

using an s-stage embedded Runge—Kutta 4,5 pair. The approximate solution, §, =y(x,}, 18
advanced to x, + h, by forming

5
yn-i—l = "n + Z bfkﬂ
=1
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along with

8n+1 = Va1 " Y1

where
‘ i1
ey =h, f{x,, §.), k,=h,fl|x, + chy §,+ 3 aj ki, =25,
j=1
and

s
Forr = Pa T Z bik,.
i=1 .
We assume here that the pair is being used in local extrapolation mode: this means that ., and
Yoo; come from the 5th and 4th-order formulae respectively. This is by far the most popular
choice in modern codes. The quantity 8,., gives an estimate for the local error in y,., which
can be compared with the user-supplied tolerance TOL. After a successful step the next stepsize
may be chosen according to an absolute error-per-step criterion

y TOL }
hr? = kn ? {E
o ( H §1a + 1 ” ’ )
with € <y <1 a safety factor.
For a sufficiently smooth function f the local error in §, ., may be writien
s e
le,yy = hS T FOFO + 1) T #VED + (i), | @)
j=1 j=1

where the elementary differentials F %) depend only on f, and the truncation error coefficients
#5 depend only on the Sth-order formu:a Hence, in order for ¥, , and &,,, to be as accurate
a&, possible 1t is desirable to have a small leading term in (2). Although this term is problem-de-
pendent, good results were obtained in {1] by minimising the truncation error norm,

|| # O, =4,
Further, to help justify the dgymploiics used in the stepsize sélection mechanism (1), Prince and
Dormand [9] require that
PR NG
179 = 2O,

= B(G) and ————— =
f (9 “
; P2

é
i P
(53

Il

(6)

ik

be fairly small (= < 1) and also 717+ 0, j=1,...,r, where 7" are the kth-order truncation
error qoefficients of the 4th-order formula. Finally, to reduce the chance of excessive roundoff
errors we should avoid having large coefficients {«,;}, {b,} and { b, ~ b, }.

2. The new formulae
The behaviour of a Runge-Kutta pair when stability is restricting the stepsize has received

much attention. Considering a linear test problem, Shampine [10] shows that the method will
take an average stepsize h, where hA lies on the absolute stability boundary and A is the
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dominant eigenvalue of the Jacobian. Further analysis is given in [4] and extended in [5,6]. It is
shown that an equilibrium state exists in which the method continues with constant stepsize A.
This equilibrium state is realised in practice provided that it is stable with respect to small
perturbations. If the equilibrium state is unstable then £, A oscillates about the stability
boundary and frequent step rejections occur, resulting in wasted function evaluations. Also, the
global error fluctuates wildly. Hence the cost of the integration and the quality of the solution
depend not only on the size of the absolute stability region but also on the stability of the
equilibrium state. A sufficient condition for a stable equilibrium at a point 2A on the stability
boundary is [6]

_igp[ BAEL(RM)
! S0y }
p(C)<1, where C= , . (3)
" hAS (k?\)} :
{ SCAN)

and the polynomials S and E are characteristic of the method. We denote p(C) at the point
where arg(hA) =6 by py, for =02 L. When A is nonreal the result is only strictly valid when
a certain Euclidean-type norm is used in (1). However, in practice condition (3) seems to be
beneficial in more general circumstances (see [5]). In the important special case where A is real,
the result holds for any choice of norm and hence p, <1 is an extremely desirable property,
guaranteeing smooth, efficient solutions on many practical problems.

Therefore, in the search described below we sought methods which have p,; < 1 either at =
or over a wider range of 8. In particular we wished to determine the extent to which these exira
constraints affect the truncation and absolute stability properties. -

As a basis for our search we made use of the Dormand and Prince model {1]. Here the
coefficients {a;;}, {13,.}, {b;} and {¢;} are generated from the free parameters c;, ¢4, Cs and b,.
The formulae produced have 7 stages with the “first-same-as-last” property--after a successful
step the final function evaluation is the one required at the start of the next step. With this model
the polynomial S in (3), which also determines the absolute stability region, has the form

> z' 54(2 - 563) 5 .
SGI =Lt T 4o )
and it can be shown [8] that
ey — 2e4(1 = 562) +2¢3(2 — 5¢5)(15¢5 ~ 14¢; + 4) ]
3c, — 2eq(3 + 263~ 20¢3) + 20032 = 5¢y)(1 = 3¢5 + 3¢?) :

E(zy=2"—

ca(2 = 5c5Mes = ¢, (1062 — 8oy + 2)) C

~ 5
2(3¢s— 2¢4(3 + 265 — 2063 ) + 20c3(2 = 5¢,)(1 = 3es + 3¢3 ) ’ ®)

(Since E(z) appears in (3) in the form E’(2)/E(z) we have rescaled to give a leading coefficient
of unity.) From (4) and (5) we see that the absolute stability and equilibrium properties depend
only on ¢, and c,. Given these two values the term A is a quadratic in ¢;. Hence in performing
an extensive computer search our approach was to vary ¢; and ¢, over a range where the
absolute stability region has a reasonable size. For each pair {¢3, ¢4} the equilibrium properties
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Tabie 1

Coefficients of RK5(4)7FEql
Iy a;; b; b,
: 2
0 Tz i
5 3 0 0
) ; 1 oz z
3 2 4 ) 1]
] 3 4 2
; : 0 i P
3 91 27 78 & 125 2
= o0 T 778 115 S5 L
: 1 27 12 _ 5 5 *
1 —m b S 5 Ei 24
1 27 4 125 5 1
1 o) e = -3 G e 0 W

were examined and ¢, € (0, 1) was chosen to minimise 4‘®. Once a promising triple { ¢y, ¢4, ¢5}
had been located, b, was chosen to give acceptable values of B® C® and ),

Using this technique we obtained the three Runge—Kutta pairs presented in Tables 1--3. Our
nomenclature comes from [2]. The first two formulae, RK5(4)7FCgl and RK5(4)7FEq2, have
stable equilibrium states when the dominant eigenvalue 1s real, the latter being only just stable
with = 0.998. The third formula, RK5(4)7FEq3, has py <1 for @ = 8 = 1.005(37). (Although
formulae were found to exist with p, < 1 for 72 # = 3o, we chose to sacrifice the 6 = 1« case for

Table2
Coefficients of RK5(4)7FEq2
~
< iy b, b;
0 181 11377
] 754575
2 2
13 hE) 0 0
3 E 9. 656903 35378261
E 57 33 THAORG0 057259368
E 12955 __ 15028 12350 19683 393359
g 26234 T74R 6561 106400 1522850
Kl . 10383 13923 _ 170553 505197 34112 535952
[ SI4H0 19456 199474 997120 110365 1947645
1 1403 _ 42 733330 __ 7484 104960 67 134
TI36 768 EIERT] BT BEEDS 0 17175
1 18] 0 656903 19683 34112 67 0 1
TG T8A6R00 TO6A00 110365 00 T2
Table 3
Coefficients of RK5(4)7FEq3
=
¢ ar‘j b.- . bi
0 1247 21487
0890 TES130
11 11
i e 0 0
11 1 A 57375 963225
0 20 108053 1836901
35 106865 _ 40837 193875 _ 1229413 __ 39864832
<6 RTROR BTROE 3904 062015 13354258
a 19503 1053 147753 27048 125 2575
i TITH00 340 36RO THIETS 07 35TE
1 #9303 _ 2028 984650 _ 2547216 475 43 4472
78095 473 744541 78122215 0857 Tt ayas
1 1247 0 57375 . lapeaiz 125 43 0O 1
HiEE 108053 1963075 27 T4 0
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Fig. 1. py values for RK5(4)7FEql, RK5(4)7FEqg2 and
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Fig. 2. pp values for RKS(4)7FS,

s

RKS5{(4)TFC,
RK5(4Y7FM and the Fehlberg pair.

the sake of overall quality.) Figures 1-4 and Table 4 show the main characteristics of the new
formulae along with those of the following Dormand-Prince pairs [1,2]:

RK5(4)7FM which has a near-optimal error term, A4;

RK5(4)7FS which has a large absolute stability region;

RK5(4)7FC which offers a compromise between error and stability properties.
For simplicity we will refer to the above formulae as Eql, Eq2, Eq3, M, S and C. We also include
the commonly used Fehlberg formula [3] which is a true 6-stage 4,5 pair. (Note that a failed step
with this pair costs 5 function evaluations whereas a failed step with a member of the

3.8+
tmag. axis

3L

2.5

1.5}

Real axis

Fig. 3. Absolute stability boundaries of RK3(4)TFEq], RK5(4)7FEq2Z and RE5(4)7FEq3.
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Fig. 4. Absolute stability boundaries of RK5(4)7FS, RK5(4)7FC, RK5(4)7TFM and the Fehlberg pair.

Dormand-Prince family costs 6 function evaluations.) The M pair is widely acknowledged as the
most efficient 4,3 pair for general use. We give results for the S and C pairs since they were
specially designed to offer advantages on mildly stiff problems.

From Fig. 2 we see that the M, S and C pairs have p, > 1, and that their p, curves are
generally quite poor. In particular, the benefits offered by the extended absolute stability
boundaries near the real axis for the S and C pairs are outweighed by the large p, values
{typically a step rejection will occur after every two or three steps—see Section 3). For the
Fehlberg pair, u, <1 at # =« and over most of [3m, =] and the stability region is larger than
those of M and Eq2, but smaller than those of S, C, Eql and Eg3.

Although the M pair has a p, value which is close to 1, we were unable to satisfy the
condition p, <1 without a significant loss in overall efficiency, as measured by 4‘©. The Eq2
pairs comes within a factor 2.5 of the “optimum”™ 4® value, and Eql, with its larger stability
region, comes within a factor 5. To produce the excellent equilibrium properties of Eq3, a further
increase in A4® proved necessary. Note, however, that each of the new formulae has a smaller
A® value than the Fehlberg pair.

Table 4

Truncation and real equilibrium values

Formula A® B® c® B
REKS(4)7FEql 1.80-107° 1.7 1.1 0,925
RKS(4)7FEq2 9.38.10¢ 1.0 0.14 0.998
RK5(4)7FEq3 2.49.1073 1.0 0.38 0.731
RES(4YTFM 399.107¢ 15 0.19 1.02
RK5(4)7FS 1.81-107°? 5.0 1.3 2.08
RES(4)7FC 1.49.1073 2.8 12 1.60

Fehlberg 1.36-107° 3.2 0.16 0.9%5
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We conclude that the Eq3 pair is superior to the Fehlberg pair since it has smaller leading
truncation coefficients, a larger stability region and better equilibrium properties, We also
consider the Eq2 pair, based on our search procedures, as the optimal 4,5 formula subject to the
condition @, <1. Similar remarks apply to the Eq3 pair with the stronger restriction u, < 1,
fm<f<w In general though, comparison of Runge-Kutta formulae is a subjective process
which depends strongly upon how much emphasis one places on the different criteria. Clearly,
for problems where stability restrictions are known not be become active the M pair must remain
the method-of-choice among 4,5 formulae. It is worth stressing, however, that the Eqg3 pair is
significantly more efficient and reliable on mildly stiff problems than any other known pair.

3. Numerical results

To illustrate the equilibrium theory, we solved the following system:

Rcos —Rsind 1
y' =Ay, whereA=|Rsinf Rcos# 2,
0 0 -1
in which the Jacobian 4 has eigenvalues { Re*'’, —1}. We chose R=10* and used ¢ as a
parameter in order to vary the argument of the dominant eigenvalue(s) in the complex plane. The
seven Runge-Kutta pairs mentioned in Section 2 were implemented in locally extrapolated
crror-per-step mode using the stepsize mechanism (1) with Euclidean vector norm and a local
error tolerance of TOL = 107>, An initial condition of y(0) = (—10"% 107, 2)" ensured that the
fast transients affected the numerical stability rather than the accuracy of the methods. The
initial stepsize was chosen to put #A near the absolute stability boundary and 500 steps were
taken. Allowing 20 steps for the stepsize selection mechanism to settle down, we recorded Ny, ,

300 , . 300
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= arg(hA} 4 ? # = arg(h)} 4 *

Fig. 5. Step failures with RKS(4)7FEql, RK5(4)7FEq2 Fig. 6. Step failures with RK5(4)7FS, RK3(4)TFC and
and the Fehlberg pair on a linear problem. (For RK5(4)7FM on a linear problem.

RES5(4)TFEG3, Ngay = 0 except at 8 = 4m.)
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Fig. 7. Step failures with RK5(4)7FEql, RK3{4)7FEq2 Fig. 8. Step failures with RK5(4)7FS, RK5(4HTFC and
and the Fehlberg pair on the Krogh problem. (For RES5(4)7FM on the Krogh problem.

RKS5(4)7FEq3, Npay = 0.)

the number of failed steps between x,, and x. Results for 41 equally spaced values of 8 in
{w, 3] are given in Figs. 5 and 6—piecewise linear intefpolation has been used to emphasise the
pattern of failures. We see that the behaviour is in almost exact agreement with that predicted by
the equilibrium plots in Figs. 1 and 2. Exceptions occur at # = im; for example RK5(4)7FEql
records no failures here although .., >1 from Fig. 1. The explanation is that the absolute
stability boundary crosses the imaginary axis at more than one point and the method has found
an alternative equilibrium state.
Similar results were obtained using a nonlinear problem of Krogh [7]:

— 2 2 T
——-By+U (221 222,2122,23,,2@) ,

where
~10cos 8 —10sind 0 0O
_ _ 7| 10sin @ ~10cos @ 0 O
z={y, B=U 0 0 1 0 U,
_ 0 0 0 O 5
and U is the orthogonal matrix with diagonal elements of — 1 and all other elements equal to 4
Here the Jacobian has eigenvalues which approach { - |10 cos §1+110sind, —1, ~0.5} as
x — oo. Using the solution given by Krogh, which corresponds to the initial conditlon y{0) =
(0, =2, —1, —1)7, we started the integration at a point where stability restrictions occurred. As

above, the number of step fatlures Np,; between x,, and x5, were recorded for 41 equally
spaced 8 values in [, In]. These are plotted in Figs. 7 and 8. Again, for each formula pair, the
pattern of step failures closely matches the equilibrium plot.

If the infinity norm is used instead of the Euclidean norm, or the system is altered so that the
dominant subsystem has a nonnormal Jacobian, then, strictly, the equilibrium theory is no longer
apphicable. In practice we have observed that the former change makes little difference to the
overall pattern of rejected steps, although the latter does have a marked effect.
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We have also carried out precision-work tests (global error versus number of function
evaluations) on some nonstiff test problems for the seven Runge-Kutta pairs. Our results are in
broad agreement with those of [1,2]-—the size of the truncation coefficients, in particular A",
strongly influences the efficiency.

In summary, we have developed three new order 4,5 pairs with special properties which allow
them to perform extremely efficiently on a restricted problem class. We have also quantified the
compromises in overall quality which these extra features necessitate. A similar investigation of
higher order pairs is currently being undertaken.
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